
Chapter 6

Regular Languages and
Right-Invariant Equivalence Relations

6.1 Right-Invariant Equivalence Relations on Σ∗

Let D = (Q,Σ, δ, q0, F) be a DFA. The DFA D may be
redundant, for example, if there are states that are not
accessible from the start state.

The set Qr of accessible or reachable states is the subset
of Q defined as

Qr = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

The set Qr can be easily computed by stages.

If Q $= Qr, we can “clean up” D by deleting the states in
Q−Qr and restricting the transition function δ to Qr.

221

222 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

This way, we get an equivalent DFADr such that L(D) =
L(Dr), where all the states of Dr are reachable. From
now on, we assume that we are dealing with DFA’s such
that D = Dr (called reachable, or trim).

Recall that an equivalence relation & on a set A is a
relation which is reflexive, symmetric, and transitive.

Given any a ∈ A, the set

{b ∈ A | a & b}

is called the equivalence class of a, and it is denoted as
[a]&, or even as [a].

Recall that for any two elements a, b ∈ A, [a] ∩ [b] = ∅
iff a $& b, and [a] = [b] iff a & b.

The set of equivalence classes associated with the equiv-
alence relation & is a partition Π of A (also denoted
as A/ &). This means that it is a family of nonempty
pairwise disjoint sets whose union is equal to A itself.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 223

The equivalence classes are also called the blocks of the
partition Π. The number of blocks in the partition Π is
called the index of & (and Π).

Given any two equivalence relations &1 and &2 with as-
sociated partitions Π1 and Π2,

&1 ⊆&2

iff every block of the partition Π1 is contained in some
block of the partition Π2. Then, every block of the parti-
tion Π2 is the union of blocks of the partition Π1.

Definition 6.1.Given any two equivalence relations &1

and &2 on the same set A with associated partitions Π1

and Π2, we say that &1 is a refinement of &2 (and simi-
larly, Π1 is a refinement of Π2) if &1⊆&2. Note that Π2

has at most as many blocks as Π1 does.

We now define an equivalence relation on strings induced
by a DFA. This equivalence is a kind of “observational”
equivalence, in the sense that we decide that two strings
u, v are equivalent iff, when feeding first u and then v to
the DFA, u and v drive the DFA to the same state. From
the point of view of the observer, u and v have the same
effect (reaching the same state).

224 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Definition 6.2. Given a DFA D = (Q,Σ, δ, q0, F), we
define the relation &D (Myhill-Nerode equivalence) on
Σ∗ as follows: for any two strings u, v ∈ Σ∗,

u &D v iff δ∗(q0, u) = δ∗(q0, v).

Example 6.1.We can figure out what the equivalence
classes of &D are for the following DFA:

a b

0 1 0

1 2 1

2 0 2

with 0 both start state and (unique) final state. For ex-
ample

abbabbb &D aa

ababab &D ε

bba &D a.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 225

There are three equivalences classes:

[ε]&, [a]&, [aa]&.

Observe that L(D) = [ε]&. Also, the equivalence classes
are in one–to–one correspondence with the states of D.

The relation &D turns out to have some interesting prop-
erties.

Definition 6.3. An equivalence relation & on Σ∗ is
right-invariant if for all u, v, w ∈ Σ∗, if u & v, then
uw & vw.

Proposition 6.1. Given any trim DFA
D = (Q,Σ, δ, q0, F), the relation &D is an equivalence
relation which is right-invariant and has finite index.
Furthermore, if Q has n states, then the index of &D

is n, and every equivalence class of &D is a regular
language. Finally, L(D) is the union of some of the
equivalence classes of &D.

226 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

One should not be too optimistic and hope that every
equivalence relation on strings is right-invariant.

Example 6.2. For example, if Σ = {a}, the equivalence
relation & given by the partition
{
ε, a, a4, a9, a16, . . . , an

2
, . . . | n ≥ 0

}

∪
{
a2, a3, a5, a6, a7, a8, . . . , am, . . . | m is not a square

}

we have a & a4, yet by concatenating on the right with
a5, since aa5 = a6 and a4a5 = a9 we get

a6 $& a9,

that is, a6 and a9 are not equivalent. It turns out that
the problem is that neither equivalence class is a regular
language.

It is worth noting that a right-invariant equivalence rela-
tion is not necessarily left-invariant .

Definition 6.4. An equivalence relation & on Σ∗ is left-
invariant if for all u, v, w ∈ Σ∗, if u & v, then wu & wv.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 227

Example 6.3. For example, if & is given by the four
equivalence classes

C1 = {bb}∗, C2 = {bb}∗a, C3 = b{bb}∗,
C4 = {bb}∗a{a, b}+ ∪ b{bb}∗a{a, b}∗,

then we can check that & is right-invariant by figuring
out the inclusions Cia ⊆ Cj and Cib ⊆ Cj, which are
recorded in the following table:

a b

C1 C2 C3

C2 C4 C4

C3 C4 C1

C4 C4 C4

However, both ab, ba ∈ C4, yet bab ∈ C4 and bba ∈ C2,
so & is not left-invariant.

228 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Given two DFA’s D1 and D2, whether or not there is
a morphism h : D1 → D2 depends on the relationship
between &D1 and &D2. More specifically, we have the
following proposition:

Proposition 6.2.Given two DFA’s D1 and D2, with
D1 trim, the following properties hold.

(1) There is a DFA morphism h : D1→ D2 iff

&D1 ⊆&D2 .

(2) There is a DFA F -map h : D1 → D2 iff

&D1 ⊆&D2 and L(D1) ⊆ L(D2);

(3) There is a DFA B-map h : D1 → D2 iff

&D1 ⊆&D2 and L(D2) ⊆ L(D1).

Furthermore, h is surjective iff D2 is trim.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 229

The remarkable fact due to Myhill and Nerode, is that
Proposition 6.1 has a converse.

Example 6.4. Consider the equivalence relation & on
{a, b}∗ given by the three equivalence classes

C1 = {ε}, C2 = a{a, b}∗, C3 = b{a, b}∗.

We leave it as an easy exercise to check that & is right-
invariant.

For any subset C ⊆ {a, b}∗ and any string w ∈ {a, b}∗

define Cw as the set of strings

Cw = {uw | u ∈ C}.

230 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

There are two reasons why a DFA can be recovered from
the right-invariant equivalence relation &:

(1) For every equivalence class Ci and every string w,
there is a unique equivalence class Cj such that

Ciw ⊆ Cj.

Actually, it is enough to check the above property for
strings w of length 1 (i.e. symbols in the alphabet)
because the property for arbitrary strings follows by
induction.

(2) For every w ∈ Σ∗ and every class Ci,

C1w ⊆ Ci iff w ∈ Ci,

where C1 is the equivalence class of the empty string.

We can make a table recording these inclusions.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 231

Example 6.5. Continuing Example 6.4, we get:

a b

C1 C2 C3

C2 C2 C2

C3 C3 C3

The key point is that the above table is the transition
table of a DFA with start state C1 = [ε]. Furthermore,
if Ci (i = 1, 2, 3) is chosen as a single final state, the
corresponding DFA Di accepts Ci. This is the converse
of Myhill-Nerode!

Observe that the inclusions Ciw ⊆ Cj may be strict in-
clusions. For example, C1a = {a} is a proper subset of
C2 = a{a, b}∗

232 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Example 6.6.Consider the equivalence relation& given
by the four equivalence classes

C1 = {ε}, C2 = {a},
C3 = {b}+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗.

We leave it as an easy exercise to check that & is right-
invariant.

We obtain the following table of inclusions Cia ⊆ Cj and
Cib ⊆ Cj:

a b

C1 C2 C3

C2 C4 C4

C3 C4 C3

C4 C4 C4

The above table is the transition function of a DFA with
four states and start state C1. If Ci (i = 1, 2, 3, 4) is
chosen as a single final state, the corresponding DFA Di

accepts Ci.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 233

Proposition 6.3. Given any equivalence relation &
on Σ∗, if & is right-invariant and has finite index n,
then every equivalence class (block) in the partition Π
associated with & is a regular language.

Proof. Let C1, . . . , Cn be the blocks of Π, and assume
that C1 = [ε] is the equivalence class of the empty string.

First, we claim that for every block Ci and every w ∈ Σ∗,
there is a unique block Cj such that Ciw ⊆ Cj, where
Ciw = {uw | u ∈ Ci}.

We also claim that for every w ∈ Σ∗, for every block Ci,

C1w ⊆ Ci iff w ∈ Ci.

234 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

For every class Ck, let

Dk = ({1, . . . , n},Σ, δ, 1, {k}),

where δ(i, a) = j iff Cia ⊆ Cj.

Using induction, it can be shown that

δ∗(i, w) = j iff Ciw ⊆ Cj. (∗)

For this, we prove by induction on |w| that

(a) If δ∗(i, w) = j, then Ciw ⊆ Cj.

(b) If Ciw ⊆ Cj, then δ∗(i, w) = j.

Proving (b) is a little harder than proving (a).

Using (∗) and claim 2, it is not hard to verify that
L(Dk) = Ck, proving that every block Ck is a regular
language.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 235

We can combine Proposition 6.1 and Proposition 6.3 to
get the following characterization of a regular language
due to Myhill and Nerode:

Theorem 6.4. (Myhill-Nerode) A language L (over
an alphabet Σ) is a regular language iff it is the union
of some of the equivalence classes of an equivalence
relation & on Σ∗, which is right-invariant and has
finite index.

Theorem 6.4 can also be used to prove that certain lan-
guages are not regular.

236 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

The scenario is this: to prove that L is not regular, first
we check that L is infinite.

If so, we try finding three strings x, y, z, where and x and
y $= x are prefixes of strings in L such that

x & y,

where & is a right-invariant relation of finite index such
that L is the union of equivalence of L (which must exist
by Myhill–Nerode since we are assuming by contradiction
that L is regular), and where z is chosen so that

xz ∈ L and yz $∈ L.

Example 6.7. We prove that L = {anbn | n ≥ 1} is
not regular.

Assuming for the sake of contradiction that L is regu-
lar, there is some equivalence relation & which is right-
invariant and of finite index and such that L is the union
of some of the classes of &.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 237

Since the sequence

a, aa, aaa, . . . , ai, . . .

is infinite and & has a finite number of classes, two of
these strings must belong to the same class, which means
that

ai & aj for some i $= j.

But since & is right invariant, by concatenating with z =
bi on the right, we see that

aibi & ajbi for some i $= j.

However aibi ∈ L, and ajbi /∈ L since i $= j, which is
absurd. Thus, in fact, L is not regular.

Here is another illustration of the use of the Myhill-Nerode
Theorem to prove that a language is not regular.

238 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Example 6.8.We claim that the language,

L′ = {an! | n ≥ 1},

is not regular, where n! (n factorial) is given by 0! = 1
and (n + 1)! = (n + 1)n!.

Assume L′ is regular. Then, there is some equivalence
relation & which is right-invariant and of finite index and
such that L′ is the union of some of the classes of &.

Since the sequence

a, a2, . . . , an, . . .

is infinite, two of these strings must belong to the same
class, which means that

ap & aq for some p, q with 1 ≤ p < q.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 239

As q! ≥ q for all q ≥ 0 and q > p, we can concatenate
on the right with aq!−p and we get

apaq!−p & aqaq!−p,

that is,

aq! & aq!+q−p.

Since p < q we have q! < q! + q − p, so if we can prove
that

q! + q − p < (q + 1)!,

then we have a contradiction (q!+q−p is not a factorial).
Since p ≥ 1, it suffices to show that

q! + q − 1 < (q + 1)!,

which is easily done (this reduces to showing that

q − 1 < qq!).

240 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

There is another version of the Myhill-Nerode Theorem
involving congruences which is also quite useful.

Definition 6.5. An equivalence relation & on Σ∗ is left
and right-invariant iff for all x, y, u, v ∈ Σ∗,

if x & y, then uxv & uyv.

An equivalence relation & on Σ∗ is a congruence iff for
all u1, u2, v1, v2 ∈ Σ∗,

if u1 & v1 and u2 & v2, then u1u2 & v1v2.

It is easy to prove that an equivalence relation is a con-
gruence iff it is left and right-invariant.

6.1. RIGHT-INVARIANT EQUIVALENCE RELATIONS ON Σ∗ 241

For example, assume that & is a left and right-invariant
equivalence relation, and assume that

u1 & v1 and u2 & v2.

By right-invariance applied to u1 & v1 , we get

u1u2 & v1u2

and by left-invariance applied to u2 & v2 we get

v1u2 & v1v2.

By transitivity, we conclude that

u1u2 & v1v2.

which shows that & is a congruence.

Proving that a congruence is left and right-invariant is
even easier.

242 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

There is a version of Proposition 6.1 that applies to con-
gruences and for this we define the relation ∼D as fol-
lows: For any (trim) DFA, D = (Q,Σ, δ, q0, F), for all
x, y ∈ Σ∗,

x ∼D y iff (∀q ∈ Q)(δ∗(q, x) = δ∗(q, y)).

Proposition 6.5. Given any (trim) DFA
D = (Q,Σ, δ, q0, F), the relation ∼D is an equivalence
relation which is left and right-invariant and has finite
index. Furthermore, if Q has n states, then the index
of ∼D is at most nn and every equivalence class of ∼D

is a regular language. Finally, L(D) is the union of
some of the equivalence classes of ∼D.

Using Proposition 6.5 and Proposition 6.3, we obtain an-
other version of the Myhill-Nerode Theorem.

Theorem 6.6. (Myhill-Nerode, Congruence Version)
A language L (over an alphabet Σ) is a regular lan-
guage iff it is the union of some of the equivalence
classes of an equivalence relation & on Σ∗, which is a
congruence and has finite index.

6.2. FINDING MINIMAL DFA’S 243

6.2 Finding Minimal DFA’s

Given any language L (not necessarily regular), we can
define an equivalence relation ρL on Σ∗ which is right-
invariant, but not necessarily of finite index.

The equivalence relation ρL is such that L is the union of
equivalence classes of ρL.

Furthermore, when L is regular, the relation ρL has finite
index. In fact, this index is the size of a smallest DFA
accepting L.

As a consequence, if L is regular, a simple modification
of the proof of Proposition 6.3 applied to & = ρL yields
a minimal DFA DρL accepting L.

244 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Then, given any trim DFAD accepting L, the equivalence
relation ρL can be translated to an equivalence relation
≡ on states, in such a way that for all u, v ∈ Σ∗,

uρLv iff ϕ(u) ≡ ϕ(v),

where ϕ : Σ∗ → Q is the function (run the DFA D on u
from q0) given by

ϕ(u) = δ∗(q0, u).

One can then construct a quotient DFA D/ ≡ whose
states are obtained by merging all states in a given equiv-
alence class of states into a single state, and the resulting
DFA D/ ≡ is a mininal DFA.

Even though D/ ≡ appears to depend on D, it is in fact
unique, and isomorphic to the abstract DFADρL induced
by ρL.

6.2. FINDING MINIMAL DFA’S 245

The last step in obtaining the minimal DFA D/ ≡ is to
give a constructive method to compute the state equiva-
lence relation ≡.

This can be done by constructing a sequence of approxi-
mations ≡i, where each ≡i+1 refines ≡i.

It turns out that if D has n states, then there is some
index i0 ≤ n− 2 such that

≡j =≡i0 for all j ≥ i0 + 1,

and that

≡ =≡i0 .

Furthermore, ≡i+1 can be computed inductively from ≡i.
In summary, we obtain a iterative algorithm for comput-
ing ≡ that terminates in at most n− 2 steps.

246 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Definition 6.6. Given any language L (over Σ), we de-
fine the right-invariant equivalence ρL associated with
L as the relation on Σ∗ defined as follows: for any two
strings u, v ∈ Σ∗,

uρLv iff ∀w ∈ Σ∗(uw ∈ L iff vw ∈ L).

Proposition 6.7. For any language L, the relation
ρL is a right-invariant equivalence relation. Further-
more, L is the union of equivalence classes of ρL.

Example 6.9. For example, consider the regular lan-
guage

L = {a} ∪ {bm | m ≥ 1}.

We leave it as an exercise to show that the equivalence
relation ρL consists of the four equivalence classes

C1 = {ε}, C2 = {a},
C3 = {b}+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗

encountered earlier in Example 6.6. Observe that

L = C2 ∪ C3.

6.2. FINDING MINIMAL DFA’S 247

When L is regular, we have the following remarkable re-
sult:

Proposition 6.8. Given any regular language L, for
any (trim) DFA D = (Q,Σ, δ, q0, F) such that L =
L(D), ρL is a right-invariant equivalence relation, and
we have &D ⊆ ρL. Furthermore, if ρL has m classes
and Q has n states, then m ≤ n.

Proposition 6.8 shows that when L is regular, the index
m of ρL is finite, and it is a lower bound on the size of all
DFA’s accepting L.

248 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

It remains to show that a DFA with m states accepting
L exists.

However, going back to the proof of Proposition 6.3 start-
ing with the right-invariant equivalence relation ρL of fi-
nite index m, if L is the union of the classes Ci1, . . . , Cik,
the DFA

DρL = ({1, . . . ,m},Σ, δ, 1, {i1, . . . , ik}),

where δ(i, a) = j iff Cia ⊆ Cj, is such that L = L(DρL).
Thus, DρL is a minimal DFA accepting L.

In summary, we have the following result.

Proposition 6.9. If L ⊆ Σ∗ is regular, then the in-
dex of ρL is equal to the number of states of a minimal
DFA for L, and the DFA DρL defined above is a min-
imal DFA accepting L.

6.2. FINDING MINIMAL DFA’S 249

Example 6.10. For example, if

L = {a} ∪ {bm | m ≥ 1}.

then we saw in Example 6.9 that ρL consists of the four
equivalence classes

C1 = {ε}, C2 = {a},
C3 = {b}+, C4 = a{a, b}+ ∪ {b}+a{a, b}∗,

and we showed in Example 6.6 that the transition table
of DρL is given by

a b

C1 C2 C3

C2 C4 C4

C3 C4 C3

C4 C4 C4

By picking the final states to be C2 and C3, we obtain the
minimal DFA DρL accepting L = {a} ∪ {bm | m ≥ 1}.

In the next section, we give an algorithm which allows
us to find DρL, given any DFA D accepting L. This
algorithms finds which states of D are equivalent.

250 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

6.3 State Equivalence and Minimal DFA’s

The proof of lemma 6.8 suggests the following definition
of an equivalence between states.

Definition 6.7. Given any DFA D = (Q,Σ, δ, q0, F),
the relation ≡ on Q, called state equivalence, is defined
as follows: for all p, q ∈ Q,

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F). (∗)

When p ≡ q, we say that p and q are indistinguishable.

It is trivial to verify that ≡ is an equivalence relation.

Proposition 6.10. For any DFA D = (Q,Σ, δ, q0, F),
for all p, q ∈ Q,

if p ≡ q, then δ(p, a) ≡ δ(q, a), for all a ∈ Σ.

6.3. STATE EQUIVALENCE AND MINIMAL DFA’S 251

Since condition (∗) in Definition 6.7 must hold for w = ε,
in this case we get

p ∈ F iff q ∈ F.

Proposition 6.11. For any DFA D = (Q,Σ, δ, q0, F),
for all p, q ∈ Q, if p ≡ q, then p ∈ F iff q ∈ F , or
equivalently either both p, q ∈ F or both p, q ∈ F .

Therefore, if two states p, q are equivalent, then either
both p, q ∈ F or both p, q ∈ F . This implies that a final
state and a rejecting states are never equivalent.

Example 6.11. In the DFA of Figure 6.1, states A and
C are equivalent. No other two states are equivalent.

A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 6.1: A non-minimal DFA for {a, b}∗{abb}

252 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

It is illuminating to express state equivalence as the equal-
ity of two languages.

Given the DFAD = (Q,Σ, δ, q0, F), letDp = (Q,Σ, δ, p, F)
be the DFA obtained from D by redefining the start state
to be p. Then, it is clear that

p ≡ q iff L(Dp) = L(Dq).

If L = L(D), Theorem 6.12 below shows the relationship
between ρL and ≡ and, more generally, between the DFA
DρL and the DFA D/ ≡, obtained as the quotient of the
DFA D modulo the equivalence relation ≡ on Q.

6.3. STATE EQUIVALENCE AND MINIMAL DFA’S 253

The minimal DFA D/ ≡ is obtained by merging the
states in each block Si of the partition Π associated with
≡, forming states corresponding to the blocks Si, and
drawing a transition on input a from a block Si to a
block Sj of Π iff there is a transition q = δ(p, a) from any
state p ∈ Si to any state q ∈ Sj on input a.

The start state is the block containing q0, and the final
states are the blocks consisting of final states.

254 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Example 6.12. For example, consider the DFA D1 ac-
cepting L = {ab, ba}∗ shown in Figure 6.2.

0 1 2

3 4 5

a

b

b

a

a

ba

b

a

b

a, b

Figure 6.2: A nonminimal DFA D1 for L = {ab, ba}∗

This is not a minimal DFA. In fact,

0 ≡ 2 and 3 ≡ 5.

Here is the minimal DFA for L:

0, 2 1

3, 5 4

a

b

b aa

b

a, b

Figure 6.3: A minimal DFA D2 for L = {ab, ba}∗

6.3. STATE EQUIVALENCE AND MINIMAL DFA’S 255

The minimal DFA D2 is obtained by merging the states
in the equivalence class {0, 2} into a single state, sim-
ilarly merging the states in the equivalence class {3, 5}
into a single state, and drawing the transitions between
equivalence classes. We obtain the DFA shown in Figure
6.3.

Formally we have the following definition.

Definition 6.8.Given a trim DFAD = (Q,Σ, δ, q0, F),
the quotient DFA D/ ≡ is defined such that

D/ ≡ ::= (Q/ ≡,Σ, δ/ ≡, [q0]≡, F/ ≡),

where
δ/ ≡

(
[p]≡, a

)
= [δ(p, a)]≡.

256 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Theorem 6.12. For any (trim) DFA
D = (Q,Σ, δ, q0, F) accepting the regular language
L = L(D), the function ϕ : Σ∗ → Q defined such that

ϕ(u) = δ∗(q0, u)

satisfies the property

uρLv iff ϕ(u) ≡ ϕ(v) for all u, v ∈ Σ∗,

and induces a bijection ϕ̂ : Σ∗/ρL → Q/ ≡, defined
such that

ϕ̂([u]ρL) = [δ∗(q0, u)]≡.

Furthermore, we have

[u]ρLa ⊆ [v]ρL iff δ(ϕ(u), a) ≡ ϕ(v).

Consequently, ϕ̂, induces an isomorphism of DFA’s.
ϕ̂ : DρL → D/ ≡

Theorem 6.12 shows that the DFA DρL is isomorphic to
the DFA D/ ≡ obtained as the quotient of the DFA D
modulo the equivalence relation ≡ on Q. Since DρL is a
minimal DFA accepting L, so is D/ ≡.

6.3. STATE EQUIVALENCE AND MINIMAL DFA’S 257

Example 6.13. Consider the following DFA D,

a b

1 2 3

2 4 4

3 4 3

4 5 5

5 5 5

with start state 1 and final states 2 and 3. It is easy to
see that

L(D) = {a} ∪ {bm | m ≥ 1}.

It is not hard to check that states 4 and 5 are equivalent,
and no other pairs of distinct states are equivalent.

258 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

The quotient DFA D/ ≡ is obtained my merging states
4 and 5, and we obtain the following minimal DFA:

a b

1 2 3

2 4 4

3 4 3

4 4 4

with start state 1 and final states 2 and 3. This DFA is
isomorphic to the DFA DρL of Example 6.10.

6.3. STATE EQUIVALENCE AND MINIMAL DFA’S 259

There are other characterizations of the regular languages.

Among those, the characterization in terms of right deriva-
tives is of particular interest because it yields an alterna-
tive construction of minimal DFA’s.

Definition 6.9. Given any language, L ⊆ Σ∗, for any
string, u ∈ Σ∗, the right derivative of L by u, denoted
L/u, is the language

L/u = {w ∈ Σ∗ | uw ∈ L}.

Theorem 6.13. If L ⊆ Σ∗ is any language, then L is
regular iff it has finitely many right derivatives. Fur-
thermore, if L is regular, then all its right derivatives
are regular and their number is equal to the number
of states of the minimal DFA’s for L.

260 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Note that if F = ∅, then ≡ has a single block (Q), and
if F = Q, then ≡ has a single block (F). In the first
case, the minimal DFA is the one state DFA rejecting all
strings. In the second case, the minimal DFA is the one
state DFA accepting all strings.

When F $= ∅ and F $= Q, there are at least two states
in Q, and ≡ also has at least two blocks, as we shall see
shortly.

6.4. AN INDUCTIVE METHOD FOR COMPUTING STATE EQUIVALENCE 261

6.4 An Inductive Method For Computing State
Equivalence

It remains to compute ≡ explicitly. This is done using
a sequence of approximations. In view of the previous
discussion, we are assuming that F $= ∅ and F $= Q,
which means that n ≥ 2, where n is the number of states
in Q.

Definition 6.10. Given any DFA D = (Q,Σ, δ, q0, F),
for every i ≥ 0, the relation ≡i on Q, called i-state
equivalence, is defined as follows: for all p, q ∈ Q,

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i

(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F).

When p ≡i q, we say that
p and q are i-indistinguishable.

262 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

It remains to compute ≡i+1 from ≡i, which can be done
using the following proposition. The proposition also
shows that

≡ =≡i0 .

Proposition 6.14. For any (trim) DFA
D = (Q,Σ, δ, q0, F) with n states, for all p, q ∈ Q,

p ≡i+1 q iff p ≡i q and δ(p, a) ≡i δ(q, a), for every
a ∈ Σ.

Furthermore, if F $= ∅ and F $= Q, there is a smallest
integer i0 ≤ n− 2, such that

≡i0+1 =≡i0 =≡ .

Note that if F = Q or F = ∅, then ≡ = ≡0, and the
inductive characterization of Lemma 6.14 holds trivially.

Using proposition 6.14, we can compute ≡ inductively,
starting from ≡0 = (F,Q − F), and computing ≡i+1

from ≡i, until the sequence of partitions associated with
the ≡i stabilizes.

6.4. AN INDUCTIVE METHOD FOR COMPUTING STATE EQUIVALENCE 263

There are a number of algorithms for computing ≡, or to
determine whether p ≡ q for some given p, q ∈ Q.

A simple method to compute ≡ is described in Hopcroft
and Ullman. The basic idea is to propagate inequiva-
lence, rather than equivalence.

The method consists in forming a triangular array corre-
sponding to all unordered pairs (p, q), with p $= q (the
rows and the columns of this triangular array are indexed
by the states in Q, where the entries are below the de-
scending diagonal).

Initially, the entry (p, q) is marked iff p and q are not
0-equivalent, which means that p and q are not both
in F or not both in Q− F .

Then we proceed with rounds during which we process
the rows from top down, updating every unmarked entry
on every row as follows: for any unmarked pair (p, q),
we consider pairs (δ(p, a), δ(q, a)), for all a ∈ Σ. If any
pair (δ(p, a), δ(q, a)) is already marked, this means that
δ(p, a) and δ(q, a) are inequivalent, and thus p and q are
inequivalent, and we mark the pair (p, q). Otherwise we
consider the next unmarked pair.

264 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

We continue in this fashion, until at the end of a round
during which all the rows are processed, nothing has
changed. When the algorithm stops, all marked pairs
are inequivalent, and all unmarked pairs correspond to
equivalent states.

Example 6.14. Let us illustrates the above method.
Consider the following DFA accepting {a, b}∗{abb}.

a b

A B C

B B D

C B C

D B E

E B C

The start state is A, and the set of final states is
F = {E}.

6.4. AN INDUCTIVE METHOD FOR COMPUTING STATE EQUIVALENCE 265

The initial (half) array is as follows, using × to indicate
that the corresponding pair (say, (E,A)) consists of in-
equivalent states, and to indicate that nothing is known
yet.

B

C

D

E × × × ×

A B C D

After the first round, we have

B

C

D × × ×

E × × × ×

A B C D

266 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

After the second round, we have

B ×

C ×

D × × ×

E × × × ×

A B C D

6.4. AN INDUCTIVE METHOD FOR COMPUTING STATE EQUIVALENCE 267

Finally, nothing changes during the third round, and thus,
only A and C are equivalent, and we get the four equiv-
alence classes

({A,C}, {B}, {D}, {E}).

We obtain the minimal DFA showed in Figure 6.4.

0 1 2 3
a b

a

b

b a

b

a

Figure 6.4: A minimal DFA acepting {a, b}∗{abb}

There are ways of improving the efficiency of this algo-
rithm, see Hopcroft and Ullman for such improvements.

Fast algorithms for testing whether p ≡ q for some given
p, q ∈ Q also exist. One of these algorithms is based
on “forward closures ,” an idea due to Knuth. Such an
algorithm is related to a fast unification algorithm; see
Section 6.6.

268 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

6.5 The Pumping Lemma

Another useful tool for proving that languages are not
regular is the so-called pumping lemma.

Proposition 6.15.Given any DFA D = (Q,Σ, δ, q0, F)
there is some m ≥ 1 such that for every w ∈ Σ∗, if
w ∈ L(D) and |w| ≥ m, then there exists a decompo-
sition of w as w = uxv, where

(1) x $= ε,

(2) uxiv ∈ L(D), for all i ≥ 0, and

(3) |ux| ≤ m.

Moreover, m can be chosen to be the number of states
of the DFA D.

An important consequence of the pumping lemma is that
if a DFA D has m states and if there is some string w ∈
L(D) such that |w| ≥ m, then L(D) is infinite.

6.5. THE PUMPING LEMMA 269

As a consequence, if L(D) is finite, there are no strings
w in L(D) such that |w| ≥ m. In this case, since
the premise of the pumping lemma is false, the pump-
ing lemma holds vacuously; that is, if L(D) is finite, the
pumping lemma yields no information.

Another corollary of the pumping lemma is that there
is a test to decide whether a DFA D accepts an infinite
language L(D).

Proposition 6.16. Let D be a DFA with m states.
The language L(D) accepted by D is infinite iff there
is some string w ∈ L(D) such that m ≤ |w| < 2m.

270 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

If L(D) is infinite, there are strings of length ≥ m in
L(D), but a prirori there is no guarantee that there are
“short” strings w in L(D), that is, strings whose length
is uniformly bounded by some function of m independent
of D.

The pumping lemma ensures that there are such strings,
and the function is m 3→ 2m.

Typically, the pumping lemma is used to prove that a
language is not regular.

The method is to proceed by contradiction, i.e., to assume
(contrary to what we wish to prove) that a language L is
indeed regular, and derive a contradiction of the pumping
lemma.

6.5. THE PUMPING LEMMA 271

Thus, it would be helpful to see what the negation of
the pumping lemma is, and for this, we first state the
pumping lemma as a logical formula.

We will use the following abbreviations:

nat = {0, 1, 2, . . .},
pos = {1, 2, . . .},
A ≡ w = uxv,

B ≡ x $= ε,

C ≡ |ux| ≤ m,

P ≡ ∀i : nat (uxiv ∈ L(D)).

The pumping lemma can be stated as

∀D : DFA ∃m : pos ∀w : Σ∗(
(w ∈ L(D)∧|w| ≥ m) =⇒ (∃u, x, v : Σ∗A∧B∧C∧P)

)
.

272 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Recalling that

¬(A ∧ B ∧ C ∧ P) ≡ ¬(A ∧B ∧ C) ∨ ¬P
≡ (A ∧B ∧ C) =⇒ ¬P

and
¬(R =⇒ S) ≡ R ∧ ¬S,

the negation of the pumping lemma can be stated as

∃D : DFA ∀m : pos ∃w : Σ∗(
(w ∈ L(D) ∧ |w| ≥ m)

∧ (∀u, x, v : Σ∗ (A ∧B ∧ C) =⇒ ¬P)

)
.

Since
¬P ≡ ∃i : nat (uxiv /∈ L(D)),

in order to show that the pumping lemma is contradicted,
one needs to show that for some DFAD, for everym ≥ 1,
there is some string w ∈ L(D) of length at least m,
such that for every possible decomposition w = uxv
satisfying the constraints x $= ε and |ux| ≤ m, there
is some i ≥ 0 such that uxiv /∈ L(D).

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 273

6.6 A Fast Algorithm for Checking State Equivalence
Using a “Forward-Closure”

Given two states p, q ∈ Q, if p ≡ q, then we know that
δ(p, a) ≡ δ(q, a), for all a ∈ Σ.

This suggests a method for testing whether two distinct
states p, q are equivalent.

Starting with the relation R = {(p, q)}, construct the
smallest equivalence relation R† containing R with the
property that whenever (r, s) ∈ R†, then (δ(r, a), δ(s, a)) ∈
R†, for all a ∈ Σ.

If we ever encounter a pair (r, s) such that r ∈ F and
s ∈ F , or r ∈ F and s ∈ F , then r and s are inequivalent,
and so are p and q.

Otherwise, it can be shown that p and q are indeed equiv-
alent.

274 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Thus, testing for the equivalence of two states reduces to
finding an efficient method for computing the “forward
closure” of a relation defined on the set of states of a
DFA.

Such a method was worked out by John Hopcroft and
Richard Karp and published in a 1971 Cornell technical
report.

This method is based on an idea of Donald Knuth for
solving Exercise 11, in Section 2.3.5 of The Art of Com-
puter Programming, Vol. 1, second edition, 1973. A
sketch of the solution for this exercise is given on Page
594.

As far as I know, Hopcroft and Karp’s method was never
published in a journal, but a simple recursive algorithm
does appear on Page 144 of Aho, Hopcroft and Ullman’s
The Design and Analysis of Computer Algorithms,
first edition, 1974.

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 275

Essentially the same idea was used by Paterson and Weg-
man to design a fast unification algorithm (in 1978).

A relation S ⊆ Q × Q is a forward closure iff it is
an equivalence relation and whenever (r, s) ∈ S, then
(δ(r, a), δ(s, a)) ∈ S, for all a ∈ Σ.

The forward closure of a relation R ⊆ Q × Q is the
smallest equivalence relation R† containing R which is
forward closed.

We say that a forward closure S is good iff whenever
(r, s) ∈ S, then good(r, s), where good(r, s) holds iff ei-
ther both r, s ∈ F , or both r, s /∈ F . Obviously, bad(r, s)
iff ¬good(r, s).

Given any relation R ⊆ Q × Q, recall that the smallest
equivalence relation R≈ containing R is the relation
(R ∪ R−1)∗ (where R−1 = {(q, p) | (p, q) ∈ R}, and
(R ∪R−1)∗ is the reflexive and transitive closure of
(R ∪R−1)).

276 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

The forward closure of R can be computed inductively by
defining the sequence of relations Ri ⊆ Q×Q as follows:

R0 = R≈
Ri+1 = (Ri ∪ {(δ(r, a), δ(s, a)) | (r, s) ∈ Ri, a ∈ Σ})≈.

It is not hard to prove that Ri0+1 = Ri0 for some least
i0, and that R† = Ri0 is the smallest forward closure
containing R.

The following two facts can also been established.

(a) if R† is good, then

R† ⊆≡ . (6.1)

(b) if p ≡ q, then
R† ⊆≡;

that is, equation (6.1) holds. This implies that R† is
good.

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 277

As a consequence, we obtain the correctness of our pro-
cedure: p ≡ q iff the forward closure R† of the relation
R = {(p, q)} is good.

In practice, we maintain a partition Π representing the
equivalence relation that we are closing under forward
closure.

We add each new pair (δ(r, a), δ(s, a)) one at a time,
and immediately form the smallest equivalence relation
containing the new relation.

If δ(r, a) and δ(s, a) already belong to the same block
of Π, we consider another pair, else we merge the blocks
corresponding to δ(r, a) and δ(s, a), and then consider
another pair.

The algorithm is recursive, but it can easily be imple-
mented using a stack.

278 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

To manipulate partitions efficiently, we represent them as
lists of trees (forests).

Each equivalence class C in the partition Π is represented
by a tree structure consisting of nodes and parent point-
ers, with the pointers from the sons of a node to the node
itself.

The root has a null pointer. Each node also maintains
a counter keeping track of the number of nodes in the
subtree rooted at that node.

Note that pointers can be avoided. We can represent a
forest of n nodes as a list of n pairs of the form
(father , count). If (father , count) is the ith pair in the
list, then father = 0 iff node i is a root node, otherwise,
father is the index of the node in the list which is the
parent of node i.

The number count is the total number of nodes in the
tree rooted at the ith node.

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 279

For example, the following list of nine nodes

((0, 3), (0, 2), (1, 1), (0, 2), (0, 2), (1, 1), (2, 1), (4, 1), (5, 1))

represents a forest consisting of the following four trees:

1

3 6

2

7

4

8

5

9

Figure 6.5: A forest of four trees

Two functions union and find are defined as follows.

Given a state p, find(p,Π) finds the root of the tree con-
taining p as a node (not necessarily a leaf).

Given two root nodes p, q, union(p, q,Π) forms a new
partition by merging the two trees with roots p and q as
follows: if the counter of p is smaller than that of q, then
let the root of p point to q, else let the root of q point to
p.

280 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

For example, given the two trees shown on the left in
Figure 6.6, find(6,Π) returns 3 and find(8,Π) returns 4.
Then union(3, 4,Π) yields the tree shown on the right in
Figure 6.6.

3

2 6 7

4

8

3

2 4 6 7

8

Figure 6.6: Applying the function union to the trees rooted at 3 and 4

In order to speed up the algorithm, using an idea due to
Tarjan, we can modify find as follows:

during a call find(p,Π), as we follow the path from p to
the root r of the tree containing p, we redirect the parent
pointer of every node q on the path from p (including p
itself) to r (we perform path compression).

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 281

For example, applying find(8,Π) to the tree shown on
the right in Figure 6.6 yields the tree shown in Figure 6.7

3

2 4 6 7 8

Figure 6.7: The result of applying find with path compression

Then, the algorithm is as follows:

282 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

function unif [p, q,Π, dd]: flag ;

begin

trans := left(dd); ff := right(dd); pq := (p, q);

st := (pq); flag := 1;

k := Length(first(trans));

while st $= () ∧ flag $= 0 do

uv := top(st); uu := left(uv); vv := right(uv);

pop(st);

if bad(ff , uv) = 1 then flag := 0

else

u := find(uu,Π); v := find(vv,Π);

if u $= v then

union(u, v,Π);

for i = 1 to k do

u1 := delta(trans, uu, k − i + 1);

v1 := delta(trans, vv, k − i + 1);

uv := (u1, v1); push(st, uv)

endfor

endif

endif

endwhile

end

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 283

The initial partition Π is the identity relation on Q, i.e.,
it consists of blocks {q} for all states q ∈ Q.

The algorithm uses a stack st. We are assuming that
the DFA dd is specified by a list of two sublists, the first
list, denoted left(dd) in the pseudo-code above, being a
representation of the transition function, and the second
one, denoted right(dd), the set of final states.

The transition function itself is a list of lists, where the
i-th list represents the i-th row of the transition table for
dd.

The function delta is such that delta(trans, i, j) returns
the j-th state in the i-th row of the transition table of dd.

For example, we have the DFA

dd = (((2, 3), (2, 4), (2, 3), (2, 5), (2, 3),

(7, 6), (7, 8), (7, 9), (7, 6)), (5, 9))

consisting of 9 states labeled 1, . . . , 9, and two final states
5 and 9 shown in Figure 6.8.

284 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

Also, the alphabet has two letters, since every row in the
transition table consists of two entries.

For example, the two transitions from state 3 are given
by the pair (2, 3), which indicates that δ(3, a) = 2 and
δ(3, b) = 3.
The sequence of steps performed by the algorithm start-

ing with p = 1 and q = 6 is shown below.

At every step, we show the current pair of states, the
partition, and the stack.

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 285

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.8: Testing state equivalence in a DFA.

p = 1, q = 6, Π = {{1, 6}, {2}, {3}, {4}, {5}, {7}, {8}, {9}}, st = ((1, 6))

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.9: Testing state equivalence in a DFA.

p = 2, q = 7, Π = {{1, 6}, {2, 7}, {3}, {4}, {5}, {8}, {9}}, st = ((3, 6), (2, 7))

286 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.10: Testing state equivalence in a DFA.

p = 4, q = 8, Π = {{1, 6}, {2, 7}, {3}, {4, 8}, {5}, {9}}, st = ((3, 6), (4, 8))

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.11: Testing state equivalence in a DFA.

p = 5, q = 9, Π = {{1, 6}, {2, 7}, {3}, {4, 8}, {5, 9}}, st = ((3, 6), (5, 9))

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 287

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.12: Testing state equivalence in a DFA.

p = 3, q = 6, Π = {{1, 3, 6}, {2, 7}, {4, 8}, {5, 9}}, st = ((3, 6), (3, 6))

Since states 3 and 6 belong to the first block of the partition, the algorithm terminates. Since
no block of the partition contains a bad pair, the states p = 1 and q = 6 are equivalent.

Let us now test whether the states p = 3 and q = 7 are equivalent.

1

2

3

4 5

a

b

a

b

a b

a

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.13: Testing state equivalence in a DFA.

288 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

p = 3, q = 7, Π = {{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}, {9}}, st = ((3, 7))

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.14: Testing state equivalence in a DFA.

p = 2, q = 7, Π = {{1}, {2, 3, 7}, {4}, {5}, {6}, {8}, {9}}, st = ((3, 8), (2, 7))

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.15: Testing state equivalence in a DFA.

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 289

p = 4, q = 8, Π = {{1}, {2, 3, 7}, {4, 8}, {5}, {6}, {9}}, st = ((3, 8), (4, 8))

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.16: Testing state equivalence in a DFA.

p = 5, q = 9, Π = {{1}, {2, 3, 7}, {4, 8}, {5, 9}, {6}}, st = ((3, 8), (5, 9))

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.17: Testing state equivalence in a DFA.

290 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

p = 3, q = 6, Π = {{1}, {2, 3, 6, 7}, {4, 8}, {5, 9}}, st = ((3, 8), (3, 6))

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.18: Testing state equivalence in a DFA.

p = 3, q = 8, Π = {{1}, {2, 3, 4, 6, 7, 8}, {5, 9}}, st = ((3, 8))

1

2

3

4 5

a

b

a

b

a b

b

a

b

a

6 7 8 9
a b

a

b

b a

b

a

Figure 6.19: Testing state equivalence in a DFA.

6.6. A FAST ALGORITHM FOR CHECKING STATE EQUIVALENCE 291

p = 3, q = 9, Π = {{1}, {2, 3, 4, 6, 7, 8}, {5, 9}}, st = ((3, 9))

Since the pair (3, 9) is a bad pair, the algorithm stops,
and the states p = 3 and q = 7 are inequivalent.

With the implementation of find using Tarjan’s path
compression method this algorithm is the fastest one known
for testing the equivalence of two states.

292 CHAPTER 6. REGULAR LANGUAGES AND EQUIVALENCE RELATIONS

