
Chapter 8

Introduction to LR-Parsing

8.1 LR(0)-Characteristic Automata

The purpose of LR-parsing , invented by D. Knuth in
the mid sixties, is the following: Given a context-free
grammar G, for any terminal string w ∈ Σ∗, find out
whether w belongs to the language L(G) generated by
G, and if so, construct a rightmost derivation of w, in a
deterministic fashion.

Of course, this is not possible for all context-free gram-
mars, but only for those that correspond to languages that
can be recognized by a deterministic PDA (DPDA).

Knuth’s major discovery was that for a certain type of
grammars, the LR(k)-grammars, a certain kind of DPDA
could be constructed from the grammar (shift/reduce
parsers).

383

384 CHAPTER 8. INTRODUCTION TO LR-PARSING

The k in LR(k) refers to the amount of lookahead that
is necessary in order to proceed deterministically.

It turns out that k = 1 is sufficient, but even in this case,
Knuth construction produces very large DPDA’s, and his
original LR(1) method is not practical.

Fortunately, around 1969, Frank DeRemer, in his MIT
Ph.D. thesis, investigated a practical restriction of Knuth’s
method, known as SLR(k), and soon after, theLALR(k)
method was discovered.

The SLR(k) and the LALR(k) methods are both based
on the construction of the LR(0)-characteristic automa-
ton from a grammar G, and we begin by explaining this
construction.

The additional ingredient needed to obtain an SLR(k)
or an LALR(k) parser from an LR(0) parser is the com-
putation of lookahead sets.

8.1. LR(0)-CHARACTERISTIC AUTOMATA 385

In the SLR case, the FOLLOW sets are needed, and
in the LALR case, a more sophisticated version of the
FOLLOW sets is needed.

For simplicity of exposition, we first assume that gram-
mars have no ε-rules.

Definition 8.1. Given a reduced context-free grammar
G = (V,Σ, P, S ′) augmented with a start production
S ′ → S, where S ′ does not appear in any other pro-
ductions, the set CG of characteristic strings of G is
the following subset of V ∗ (watch out, not Σ∗):

CG = {αβ ∈ V ∗ | S ′
∗
=⇒
rm

αBv =⇒
rm

αβv,

α, β ∈ V ∗, v ∈ Σ∗, B → β ∈ P}.

In words, CG is a certain set of prefixes of sentential
forms obtained in rightmost derivations: those obtained
by truncating the part of the sentential form immediately
following the rightmost symbol in the righthand side of
the production applied at the last step.

386 CHAPTER 8. INTRODUCTION TO LR-PARSING

Example 8.1. Consider the grammar G1 given by

S −→ E

E −→ aEb

E −→ ab,

where Σ = {a, b}. The rightmost derivations are of the
form

S
1
=⇒
rm

E

S
∗
=⇒
rm

anEbn
1
=⇒
rm

anabbn

S
∗
=⇒
rm

anEbn
1
=⇒
rm

anaEbbn,

with n ≥ 0, so

CG1 = {E, an+1b, an+1Eb | n ≥ 0}.

Observe that this is a regular. This is actually the crucial
property of CG.

8.1. LR(0)-CHARACTERISTIC AUTOMATA 387

The fundamental property of LR-parsing, due to D. Knuth,
is that CG is a regular language. Furthermore, a DFA,
DCG, accepting CG, can be constructed from G.

Conceptually, it is simpler to construct the DFA accepting
CG in two steps:

(1) First, construct a nondeterministic automaton with
ε-rules, NCG, accepting CG.

(2) Apply the subset construction (Rabin and Scott’s
method) to NCG to obtain the DFA DCG.

In fact, careful inspection of the two steps of this construc-
tion reveals that it is possible to construct DCG directly
in a single step, and this is the construction usually found
in most textbooks on parsing.

388 CHAPTER 8. INTRODUCTION TO LR-PARSING

The nondeterministic automaton NCG accepting CG is
defined as follows:

The states of NCG
are “marked productions”, where a

marked production is a string of the form A → α“.”β,
where A→ αβ is a production, and “.” is a symbol not
in V called the “dot” and which can appear anywhere
within αβ.

The start state is S ′ → “.”S, and the transitions are
defined as follows:

(a) For every terminal a ∈ Σ, if A→ α“.”aβ is a marked
production, with α, β ∈ V ∗, then there is a tran-
sition on input a from state A → α“.”aβ to state
A → αa“.”β obtained by “shifting the dot.” Such a
transition is shown in Figure 8.1.

8.1. LR(0)-CHARACTERISTIC AUTOMATA 389

A→ α“.”aβ

A→ αa“.”β

a

Figure 8.1: Transition on terminal input a

(b) For every nonterminal B ∈ N , if A → α“.”Bβ is
a marked production, with α,β ∈ V ∗, then there is
a transition on input B from state A → α“.”Bβ to
state A→ αB“.”β (obtained by “shifting the dot”),
and transitions on input ε (the empty string) to all
states B → “.”γi, for all productions B → γi with
left-hand sideB. Such transitions are shown in Figure
8.2.

(c) A state is final if and only if it is of the formA→ β“.”
(that is, the dot is in the rightmost position).

390 CHAPTER 8. INTRODUCTION TO LR-PARSING

A→ α“.”Bβ

B → “.”γ1A→ αB“.”β B → “.”γm

B ε ε

Figure 8.2: Transitions from a state A→ α“.”Bβ

The above construction is illustrated by the following ex-
ample:

Example 8.2. Consider the grammar G1 given by:

S −→ E

E −→ aEb

E −→ ab

The NFA for CG1 is shown in Figure 8.3.

The result of making the NFA for CG1 deterministic is
shown in Figure 8.4 (where transitions to the “dead state”
have been omitted). The internal structure of the states
1, . . . , 6 is shown below:

8.1. LR(0)-CHARACTERISTIC AUTOMATA 391

S → .E

E → .aEb

E → a.Eb

E → aE.b

E → aEb.

S → E. E → .ab

E → a.b

E → ab.

E
ε

ε

E

b

a

b

εa ε

Figure 8.3: NFA for CG1

392 CHAPTER 8. INTRODUCTION TO LR-PARSING

1 2 3

4 5 6

a E

E b b
a

Figure 8.4: DFA for CG1

1 : S −→ .E

E −→ .aEb

E −→ .ab

2 : E −→ a.Eb

E −→ a.b

E −→ .aEb

E −→ .ab

3 : E −→ aE.b

4 : S −→ E.

5 : E −→ ab.

6 : E −→ aEb.

The next example is slightly more complicated.

8.1. LR(0)-CHARACTERISTIC AUTOMATA 393

Example 8.3. Consider the grammar G2 given by:

S −→ E

E −→ E + T

E −→ T

T −→ T ∗ a
T −→ a

The result of making the NFA for CG2 deterministic is
shown in Figure 8.5 (where transitions to the “dead state”
have been omitted).

1 2 5 7

3 6 8

4

E + T

∗ a

T
∗

a a

Figure 8.5: DFA for CG2

The internal structure of the states 1, . . . , 8 is shown be-
low:

394 CHAPTER 8. INTRODUCTION TO LR-PARSING

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a
T −→ .a

2 : E −→ E. + T

S −→ E.

3 : E −→ T.

T −→ T. ∗ a
4 : T −→ a.

5 : E −→ E + .T

T −→ .T ∗ a
T −→ .a

6 : T −→ T ∗ .a
7 : E −→ E + T.

T −→ T. ∗ a
8 : T −→ T ∗ a.

Note that some of the marked productions are more im-
portant than others.

8.1. LR(0)-CHARACTERISTIC AUTOMATA 395

For example, in state 5, the marked production
E −→ E + .T determines the state.

The other two items T −→ .T ∗ a and T −→ .a are
obtained by ε-closure.

Definition 8.2. We call a marked production of the
form A −→ α.β, where β (= ε, a

core item . A marked production of the form A −→ β.
is called a

reduce item. Reduce items only appear in final states.

If we also call S ′ −→ .S a core item, we observe that
every state is completely determined by its subset of core
items.

The other items in the state are obtained via ε-closure.

We can take advantage of this fact to write a more effi-
cient algorithm to construct in a single pass the LR(0)-
automaton.

396 CHAPTER 8. INTRODUCTION TO LR-PARSING

Also observe the so-called spelling property : All the tran-
sitions entering any given state have the same label.

Definition 8.3. Given a state s, if s contains both a
reduce item A −→ γ. and a shift item B −→ α.aβ,
where a ∈ Σ, we say that there is a shift/reduce conflict
in state s on input a. If s contains two (distinct) reduce
items A1 −→ γ1. and A2 −→ γ2., we say that there is a
reduce/reduce conflict in state s.

A grammar is said to be LR(0) if the DFA DCG has
no conflicts.

The grammar G1 is LR(0)..

However, it should be emphasized that this is extremely
rare in practice. The grammar G1 is just very nice and a
toy example.

In fact, G2 is not LR(0).

8.1. LR(0)-CHARACTERISTIC AUTOMATA 397

To eliminate conflicts, one can either compute SLR(1)-
lookahead sets, using FOLLOW sets, or sharper looka-
head sets, the LALR(1) sets.

For example, the computation of SLR(1)-lookahead sets
for G2 will eliminate the conflicts.

Example 8.4. In order to motivate the construction of
a shift/reduce parser from the DFA accepting CG, let us
consider a rightmost derivation for w = aaabbb in reverse
order for the grammar

0 : S −→ E

1 : E −→ aEb

2 : E −→ ab

398 CHAPTER 8. INTRODUCTION TO LR-PARSING

1 2 3

4 5 6

a E

E b b
a

Figure 8.6: DFA for CG

aaabbb α1β1v1
aaEbb α1B1v1 E −→ ab

aaEbb α2β2v2
aEb α2B2v2 E −→ aEb

aEb α3β3v3 α3 = v3 = ε

E α3B3v3 α3 = v3 = ε E −→ aEb

E α4β4v4 α4 = v4 = ε

S α4B4v4 α4 = v4 = ε S −→ E

8.1. LR(0)-CHARACTERISTIC AUTOMATA 399

Observe that the strings αiβi for i = 1, 2, 3, 4 are all
accepted by the DFA for CG shown in Figure 8.6.

Also, every step from αiβivi to αiBivi is the inverse of
the derivation step using the production Bi −→ βi, and
the marked production Bi −→ βi“ .” is one of the reduce
items in the final state reached after processing αiβi with
the DFA for CG.

This suggests that we can parse w = aaabbb by recur-
sively running the DFA for CG.

400 CHAPTER 8. INTRODUCTION TO LR-PARSING

The first time (which correspond to step 1) we run the
DFA for CG on w, some string α1β1 is accepted and the
remaining input in v1.

Then, we “reduce” β1 to B1 using a production
B1 −→ β1 corresponding to some reduce item
B1 −→ β1“ .” in the final state s1 reached on input α1β1.

We now run the DFA for CG on input α1B1v1. The string
α2β2 is accepted, and we have

α1B1v1 = α2β2v2.

We reduce β2 to B2 using a production B2 −→ β2 corre-
sponding to some reduce item B2 −→ β2“ .” in the final
state s2 reached on input α2β2.

We now run the DFA for CG on input α2B2v2, and so on.

8.1. LR(0)-CHARACTERISTIC AUTOMATA 401

At the (i + 1)th step (i ≥ 1), we run the DFA for CG

on input αiBivi. The string αi+1βi+1 is accepted, and we
have

αiBivi = αi+1βi+1vi+1.

We reduce βi+1 to Bi+1 using a production
Bi+1 −→ βi+1 corresponding to some reduce item
Bi+1 −→ βi+1“ .” in the final state si+1 reached on input
αi+1βi+1.

The string βi+1 in αi+1βi+1vi+1 if often called a handle.

Then we run again the DFA forCG on input αi+1Bi+1vi+1.

Now, because the DFA for CG is deterministic there is
no need to rerun it on the entire string αi+1Bi+1vi+1,
because on input αi+1 it will take us to the same state,
say pi+1, that it reached on input αi+1βi+1vi+1!

The trick is that we can use a stack to keep track of the
sequence of states used to process αi+1βi+1.

402 CHAPTER 8. INTRODUCTION TO LR-PARSING

Then, to perform the reduction of αi+1βi+1 to αi+1Bi+1,
we simply pop a number of states equal to |βi+1|, encov-
ering a new state pi+1 on top of the stack, and from state
pi+1 we perform the transition on input Bi+1 to a state
qi+1 (in the DFA for CG), so we push state qi+1 on the
stack which now contains the sequence of states on input
αi+1Bi+1 that takes us to qi+1.

Then we resume scanning vi+1 using the DGA for CG,
pushing each state being traversed on the stack until we
hit a final state.

At this point we find the new string αi+2βi+2 that leads
to a final state and we continue as before.

The process stops when the remaining input vi+1 becomes
empty and when the reduce item S ′ −→ S. (here
S −→ E.) belongs to the final state si+1.

8.1. LR(0)-CHARACTERISTIC AUTOMATA 403

1 2 3

4 5 6

a E

E b b
a

Figure 8.7: DFA for CG

Example 8.5. For example, on input α2β2 = aaEbb,
we have the sequence of states:

1 2 2 3 6

State 6 contains the marked production E −→ aEb“.”,
so we pop the three topmost states 2 3 6 obtaining the
stack

1 2

and then we make the transition from state 2 on input
E, which takes us to state 3, so we push 3 on top of the
stack, obtaining

1 2 3

We continue from state 3 on input b.

404 CHAPTER 8. INTRODUCTION TO LR-PARSING

Basically, the recursive calls to the DFA for CG are im-
plemented using a stack.

What is not clear is, during step i + 1, when reaching a
final state si+1, how do we know which production
Bi+1 −→ βi+1 to use in the reduction step?

Indeed, state si+1 could contain several reduce items
Bi+1 −→ βi+1“.”.

This is where we assume that we were able to compute
some lookahead information, that is, for every final state
s and every input a, we know which unique production
n : Bi+1 −→ βi+1 applies. This is recorded in a table
name “action,” such that action(s, a) = rn, where “r”
stands for reduce.

Typically we compute SLR(1) or LALR(1) lookahead sets.

8.1. LR(0)-CHARACTERISTIC AUTOMATA 405

Otherwise, we could pick some reducing production non-
deterministicallly and use backtracking. This works but
the running time may be exponential.

The DFA for CG and the action table giving us the re-
ductions can be combined to form a bigger action table
which specifies completely how the parser using a stack
works.

This kind of parser called a shift-reduce parser is dis-
cussed in the next section.

In order to make it easier to compute the reduce entries in
the parsing table, we assume that the end of the input w
is signalled by a special endmarker traditionally denoted
by $.

406 CHAPTER 8. INTRODUCTION TO LR-PARSING

8.2 Shift/Reduce Parsers

A shift/reduce parser is a modified kind of DPDA.

Firstly, push moves, called shift moves , are restricted so
that exactly one symbol is pushed on top of the stack.

Secondly, more powerful kinds of pop moves, called re-
duce moves , are allowed. During a reduce move, a finite
number of stack symbols may be popped off the stack,
and the last step of a reduce move, called a goto move,
consists of pushing one symbol on top of new topmost
symbol in the stack.

Shift/reduce parsers use parsing tables constructed from
theLR(0)-characteristic automatonDCG associated with
the grammar.

8.2. SHIFT/REDUCE PARSERS 407

The shift and goto moves come directly from the transi-
tion table of DCG, but the determination of the reduce
moves requires the computation of lookahead sets .

The SLR(1) lookahead sets are obtained from some sets
called the FOLLOW sets, and the LALR(1) lookahead
sets LA(s, A −→ γ) require fancier FOLLOW sets.

The construction of shift/reduce parsers is made simpler
by assuming that the end of input strings w ∈ Σ∗ is indi-
cated by the presence of an endmarker , usually denoted
$, and assumed not to belong to Σ.

Example 8.6. Consider the grammar G1 of Example
8.1, where we have numbered the productions 0, 1, 2:

0 : S −→ E

1 : E −→ aEb

2 : E −→ ab.

The parsing tables associated with the grammar G1 are
shown below:

408 CHAPTER 8. INTRODUCTION TO LR-PARSING

1 2 3

4 5 6

a E

E b b
a

Figure 8.8: DFA for CG

a b $ E

1 s2 4

2 s2 s5 3

3 s6

4 acc

5 r2 r2 r2

6 r1 r1 r1

Entries of the form si are shift actions , where i denotes
one of the states, and entries of the form rn are reduce
actions , where n denotes a production number (not a
state).

8.2. SHIFT/REDUCE PARSERS 409

The special action acc means accept, and signals the suc-
cessful completion of the parse.

Entries of the form i, in the rightmost column, are goto
actions .

All blank entries are error entries, and mean that the
parse should be aborted.

410 CHAPTER 8. INTRODUCTION TO LR-PARSING

We will use the notation action(s, a) for the entry cor-
responding to state s and terminal a ∈ Σ ∪ {$}, and
goto(s, A) for the entry corresponding to state s and non-
terminal A ∈ N − {S ′}.

Assuming that the input is w$, we now describe in more
detail how a shift/reduce parser proceeds.

The parser uses a stack in which states are pushed and
popped. Initially, the stack contains state 1 and the cur-
sor pointing to the input is positioned on the leftmost
symbol.

There are four possibilities:

(1) If action(s, a) = sj, then push state j on top of the
stack, and advance to the next input symbol in w$.
This is a shift move.

8.2. SHIFT/REDUCE PARSERS 411

(2) If action(s, a) = rn, then do the following: First,
determine the length k = |γ| of the righthand side of
the production n : A −→ γ. Then, pop the topmost
k symbols off the stack (if k = 0, no symbols are
popped). If p is the new top state on the stack (after
the k pop moves), push the state goto(p, A) on top of
the stack, whereA is the lefthand side of the “reducing
production” A −→ γ. Do not advance the cursor in
the current input. This is a reduce move.

(3) If action(s, $) = acc, then accept. The input string w
belongs to L(G).

(4) In all other cases, error, abort the parse. The input
string w does not belong to L(G).

Observe that no explicit state control is needed. The
current state is always the current topmost state in the
stack.

412 CHAPTER 8. INTRODUCTION TO LR-PARSING

We illustrate below a parse of the input aaabbb$.

Example 8.7.

stack remaining input action

1 aaabbb$ s2

12 aabbb$ s2

122 abbb$ s2

1222 bbb$ s5

12225 bb$ r2

1223 bb$ s6

12236 b$ r1

123 b$ s6

1236 $ r1

14 $ acc

Observe that the sequence of reductions read from bottom-
up yields a rightmost derivation of aaabbb from E (or
from S, if we view the action acc as the reduction by the
production S −→ E).

This is a general property of LR-parsers.

8.2. SHIFT/REDUCE PARSERS 413

Example 8.8. The shift and goto entries of the parsing
tables for the grammar

0 : S −→ E

1 : E −→ E + T

2 : E −→ T

3 : T −→ T ∗ a
4 : T −→ a

of Example 8.3 are obtained directly from the character-
istic automaton shown in Figure 8.5.

We obtain the following table

a + ∗ $ E T

1 s4 2 3

2 s5

3 s6

4

5 s4 7

6 s8

7 s6

8

414 CHAPTER 8. INTRODUCTION TO LR-PARSING

Recall that the internal structure of the states 1, . . . , 8 is

1 : S −→ .E

E −→ .E + T

E −→ .T

T −→ .T ∗ a
T −→ .a

2 : E −→ E. + T

S −→ E.

3 : E −→ T.

T −→ T. ∗ a
4 : T −→ a.

5 : E −→ E + .T

T −→ .T ∗ a
T −→ .a

6 : T −→ T ∗ .a
7 : E −→ E + T.

T −→ T. ∗ a
8 : T −→ T ∗ a.

8.2. SHIFT/REDUCE PARSERS 415

Observe that there is a shift/reduce conflicts in state 2
on input +, in state 3 on input ∗, and from state 7 on ∗.
These conficts can be resolved by computing the SLR(1)
lookahead sets using the FOLLOW sets. This method is
explained in Section 3.1,

It can be shown that

FOLLOW(T) = {+.∗, $}, FOLLOW(E) = {+, $}.

The SLR(1) reduce entries in the parsing tables are de-
termined as follows: for every state s containing a reduce
item B −→ γ., if B −→ γ is the production number
n, enter the action rn for state s and every terminal
a ∈ FOLLOW(B).

If the resulting shift/reduce parser has no conflicts, we say
that the grammar is SLR(1). If s is the state containing
the reduce item S ′ → S., the action from state s on input
$ is accept (acc).

416 CHAPTER 8. INTRODUCTION TO LR-PARSING

The following SLR(1)-parsing table is obtained from the
table of Example 8.8.

a + ∗ $ E T

1 s4 2 3

2 s5 acc

3 r2 s6 r2

4 r4 r4 r4

5 s4 7

6 s8

7 r1 s6 r1

8 r3 r3 r3

