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LINEAR-TIME ALGORITHMS FOR TESTING THE 
SATISFIABILITY OF PROPOSITIONAL HORN FORMULAE 

WILLIAM F. DOWLING AND JEAN H. GALLIER 

D New algorithms for deciding whether a (propositional) Horn formula is 
satisfiable are presented. If the Horn formula A contains K distinct 
propositional letters and if it is assumed that they are exactly Pi,. . . , PK, the 
two algorithms presented in this paper run in time O(N), where N is the 
total number of occurrences of literals in A. By representing a Horn 
proposition as a graph, the satisfiability problem can be formulated as a 
data flow problem, a certain type of pebbling. The difference between the 
two algorithms presented here is the strategy used for pebbling the graph. 
The first algorithm is based on the principle used for finding the set of 
nonterminals of a context-free grammar from which the empty string can be 
derived. The second algorithm is a graph traversal and uses a “call-by-need” 
strategy. This algorithm uses an attribute grammar to translate a proposi- 
tional Horn formula to its corresponding graph in linear time. Our formula- 
tion of the satisfiability problem as a data flow problem appears to be new 
and suggests the possibility of improving efficiency using parallel processors. a 

The satisjability problem for a class C of propositions is the problem of testing for 
any given formula A in C, whether some truth assignment c’ satisfies A. It is well 
known that the satisfiability problem is NP-complete for the class of all propositions 
[2,8]. Therefore, if one is looking for a polynomial-time satisfiability test, one is led 
to consider subclasses of propositions. One such class is the class of propositional 
Horn formulae, which enjoys nice properties [l, 5,6]. The class of propositional Horn 
formulae is obtained by restricting the form of the conjuncts in the conjunctive 
normal form of a proposition. If a proposition A has conjunctive normal form 
c, A . . . A C,,,, where each C, is a disjunction of propositional letters (positive literal) 
or negations of propositional letters (negative literal), A is a Horn formula if and 
only if each C, contains at most one positive literal. 
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From results of Jones and Laaser [6], it can be shown that testing the satisfiability 
of propositional Horn formulae is complete for the class P of problems solvable in 
polynomial time (in the size of the input) [2,7,8]. The method used in [6] to show 
that testing the satisfiability of Horn formulae is in P is to show that a 
polynomial-time algorithm can be obtained using unit-resolution [l, 51. The complex- 
ity of this algorithm is 0( N 2), where N is the total number of occurrences of literals. 

Alternatively, by observing that the satisfiability problem for Horn propositions 
reduces to the problem of determining whether the empty string belongs to the 
language generated by a context-free grammar G = (N, T, P, S), a very simple 
algorithm running in time 0( N2) can also be obtained (see Section 2). 

In this paper, we present two linear-time algorithms for deciding whether a 
propositional Horn formula is satisfiable [l, 81, hence providing algorithms whose 
time complexity is optimal, since the input must be scanned at least once. Actually, 
these algorithms not only test whether a Horn formula A is satisfiable, but if so, find 
the least truth-assignment in the boolean algebra {false, true}K satisfying A (assum- 
ing that A contains K distinct positive literals, and that false < true). 

The essence of these methods is to test whether sets of paths of a certain kind, 
called pebblings, exist in a graph associated with the Horn formula. In brief, the 
methods differ in the strategy used to find a pebbling. 

The graph associated with a Horn proposition A describes the logical implica- 
tions defined by the basic Horn propositions in it. The nodes of this graph are the 
distinct propositional symbols occurring in A plus two special nodes, one for true 
and one for false. The edges are labeled with basic Horn formulae. The fundamental 
property of the graph associated with the proposition A is that A is unsatisfiable if 
and only if there is a pebbling from true to false. 

The first algorithm finds a pebbling in a breadth-first fashion and is a mo&fica- 
tion of the algorithm for finding the set of erasable nonterminals of a context-free 
grammar [4]. The second algorithm finds a pebbling by proceeding backward from 
false, using a “call-by-need” strategy. 

One advantage of the second graph method is the fact that it proceeds from false 
in a “demand-driven fashion”, and is therefore more oriented towards showing 
inconsistency. 

Another advantage of our approach is that the representation of the problem 
leads to a data flow interpretation, which may lead to a very efficient algorithm if 
processors are used in parallel. We intend to investigate this question in a subse- 
quent publication. 

Since a proposition A is a tautology (satisfied by all possible truth assignments) if 
and only if -, A is not satisfiable, our algorithms can also be used as theorem provers 
for the class of negations of Horn formulae. In particular, our methods allow us to 
prove in linear-time theorems of the form (C, A . . . A Cm) - D, where each C, is a 
basic Horn formula, and D is a disjunction of conjunctions of literals in which at 
most one literal is negative. The second algorithm (the graph method) is particularly 
well suited to prove theorems of the above form, because it proceeds from false to 
true in a “call-by-need” fashion. This is even more interesting in the first-order case, 
since this generalizes PROLOG, in which D is typically a conjunction of positive 
literals. As a matter of fact, the second author has generalized the third algorithm of 
this paper to the first-order case, and built a prototype theorem-prover, HORNLOG 
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[3], which extends PROLOG in some respects. However, in order to keep this paper 
of reasonable length, we only present our algorithms for the propositional case. 

1. PRELIMINARIES 

Definition 1. A literal is either a propositional letter P (a positive literal) or the 
negation 7P of a propositional letter P (a negative literal). A basic Horn formula 
is a disjunction of literals, with at most one positive literal. A basic Horn formula 
will also be called a Horn clause, or simply a clause. A Horn formula is a 
conjunction of basic Horn formulae. 

First, observe that every Horn formula A is equivalent to a conjunction of 
distinct basic Horn formulae by associativity, commutativity, and idempotence of 
“ A “. Since “ v ” also has these properties, each basic Horn formula is equivalent to 
a clause of one of three types: 

(i) Q, a propositional letter; or 
(ii) 7P, V . . . v 7 P4 where q 2 1 and P,, . . . , P4 are distinct propositional letters; 

or 
(iii) 7 P, V . . . V ‘P4 V Q where q 2 1, P,, . . . , Pq are distinct propositional 

letters, and Q is a propositional letter. 

For example, (7P1V,P,)A(P,)~(-,P,V,P,V,P,)A(,P,VP,) is equiv- 
alent to (-, P, V 7P2) A (P3) A (-,P4 V Ps). In the rest of this paper, it will be 
assumed that Horn formulae are in this “reduced” form, i.e., that there are no 
duplicate clauses and no duplicate literals within clauses. 

Dejinition 2. A directed edge-labeled graph G is a triple (V, E, L), where V is a set of 
nodes, L is a set of labels, and E is a subset of V X L X V of ordered triples 
called edges. Given an edge e = (ut, a, u2), vr is the source of e, v2 is the target 
of e, and a is the label of e. 

Givenanintegern21,let[n]denotethefiniteset{1,2,...,n}. 

2. A SIMPLE ALGORITHM RUNNING IN TIME 0( N *) 

Assume that the Horn formula A is the conjunction of M basic Horn formulae, that 
the number of occurrences of literals in A is N, and the number of distinct 
propositional letters occurring in A is K. 

We show that a context-free grammar GR, can be constructed from A such that, 
if I is the start symbol of GR,, A is unsatisfiable if and only if the empty string is 
derivable from I. As a consequence, we obtain a simple algorithm for testing the 
satisfiability of a Horn proposition, by adapting the well-known method for finding 
the set of erasable nonterminals of a context-free grammar [4]. 
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Dejnition 3. Given a Horn proposition A, the context-free grammar GR, = 
(N, T, P, I) associated with A is defined as follows: 

N= {PI,..., PK, Z} where Z is a new symbol; 

T = 0 (the empty set); 

P is the set of productions defined as follows: 

(i) For every basic Horn proposition of the form Pi, there is a production 
P, -+ e (where e denotes the empty string); 

(ii) For every basic Horn proposition of the form -, P, V . . . V 7 Pq v Q, there 
is a production Q + P, . . . Pq; 

(iii) For every basic Horn proposition of the form T P, V . . . V 7 Pq, there is a 
production of the form Z --, P, . . . Pq (where Z is the start symbol). 

We now state the following Theorem reducing the satisfiability problem for Horn 
propositions to the well-known problem of finding the set of erasable nonterminals 
of a context-free grammar. However, instead of showing this Theorem immediately. 
we postpone its proof which can be obtained by introducing the concept of a 
pebbling which will be needed later. 

Theorem 1. Given a Horn proposition A, A is unsatis$able if and only if Z - +e. 
Furthermore, if A is satisjiable, a letter Q in A must be true if and onb if Q * ‘e. 

Using Theorem 1, a simple algorithm is obtained by adapting the standard 
method for computing the set of nonterminals from which the empty string can be 

ALGoRlTHM 1. 

Let V be a boolean array of size K, and consistent and change be 

boolean flags. 

begin 
let S - {cl,. . .,c,), where A = Cl/\. . .AC, 
consistent := true; change := true; 
for each propositional letter P in A clo 

V(P) := false 
endfor; 
for each P such that (P) is a basic Horn formula in A do 

V(P) := true 
crdfor; 
rbile change and consistent do 

change := false; 
for each basic Horn formula C fn S 

and consistent do 
if C is of the form 

and V(P,)=.. .=,J’,1~;;;“,,h’,g E 
consistent := falsge 

else 
if C is of the form 

and V(P )=... 
7P1V.. .“7P,VP 

and 
=V(P,)=trre 

V(Pf=fal*e then 
V(P) := true ; change := true; 
s := s-{C} 

endif 
endif 

endfor 
cndrbile 

end 
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derived [4]. Recall that the set E of erasable nonterminals can be computed using 
the following sequence of sets: 

E,= {AEN]A -6-P) 

E k+l =E,U{A ENlA -+ B,. . B,, E P and B, ,.... B,,E E,}. 

Since the sets E, are subsets of the finite set N of nonterminals, there is a least k, 
say k,, for which Eki, = Eko+l, and it can be shown that E = Eke. Algorithm 1 
mimics the computation of the sets E,. 

If Algorithm 1 terminates with consistent = true, a satisfying assignment is given 
by I/. The while loop can be executed at most K + 1 times, and the for loop at most 
N times (since it may be necessary to check every production). Hence, this algorithm 
is O(N*). 

Note that the time complexity of Algorithm 1 can be improved if a more efficient 
way of checking the condition inside of the for loop can be found. Such a method 
will be presented in Sections 4 and 5. 

3. THE GRAPH ASSOCIATED WITH A HORN PROPOSITION 
AND PEBBLINGS 

The computation performed by Algorithm 1 can be clarified if we define a graph GA 
associated with A. This graph implicitly represents all possible ways of checking the 
satisfiability of A, and is a powerful tool. Indeed, the satisfiability problem is 
expressible as a pebbling problem on G,, and this provides intuition to the various 
strategies used by satisfiability testing algorithms. 

The graph associated with a Horn proposition can be used to determine which 
propositional letters must be true in all truth assignments satisfying A, if any. A 
propositional letter Q is forced to be true iff either Q is a basic Horn formula in A, 
or there is some basic Horn formula C, = -, P, V . . . VT Pq V Q and it has already 
been established that P,, . . . , Pq must all be true. If the above situation occurs and Q 
must also have the value false (which is the case if -,Q is a basic Horn formula in 
A), there is an inconsistency and A is not satisfiable. Our approach represents the 
proof process as a flow (of the truth value true) through a network of nodes that 
represents the implicational structure of a Horn formula. These nodes may be 
thought of or even implemented as individual processors that emit a boolean signal 
when their inputs surpass a certain threshold. The number of nodes of the network 
corresponding to A is only K + 2, and its total size including edges is approximately 
the size of A. Since it can be processed in linear time this is a fast and novel 
approach to the Horn formula satisfiability problem. 

Definition 4. Given a Horn formula A = C, A AC,,,,, G, is a labeled directed 
graph with K + 2 nodes (a node for each propositional letter occurring in A, a 
node for true, and a node for false) and set of labels [Ml. It is constructed with i 
taking values in [M] as follows: 

(0 

(ii) 

(iii) 

If the ith basic Horn formula in A is a positive literal Q, there is an edge 
from true to Q labeled i. 
If the i th basic Horn formula in A is of the form 7P, V . . V -, Pq, there 
are q edges from P,, . . , Pq to false labeled i. 
If the ith basic Horn formula in A is of the form 7P, v . . V 1 PC, V Q, 
there are q edges from P,, . . . , P, to Q labeled i. 
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This graph is called the graph corresponding to A. 

Example I 

A=(,P,V,P,VP,)r\(,P,vP,)r\(,P,vP,)r\ 

(~P3VP4)A(P3)A(lPIVlPZ) 

The graph GA corresponding to A is the following: 

false 

6 6 

n 

3 

p1 p2 p3 

2 

trne 1 

We now present the theoretical basis for all graph-based satisfiability procedures. 

Definition 5. Let G = (V, E, L) be an edge-labeled directed graph. There is a 
pebbling of a node Q E V from a set XC V if either Q belongs to X or, for some 
label i (corresponding to some basic Horn formula C,), there are pebblings for 
P I,. . . , P, from X, where P,, . . . , P, are the sources of all incoming edges to Q 
labeled i. 

Hence, Q can be pebbled from X if there is a sequence of “pebbling moves” such 
that, starting from nodes in X, a node is pebbled if and only if for some label i, all 
sources of incoming edges labeled i are pebbled. 

DeJnition 6. The length d of a pebbling of Q from X is defined inductively as 
follows: if Q belongs to X, then d = 0. Otherwise, d = 1 + max{ d,, . . , dy}, 
where d, is the length of the pebbling of P, from X. 

Theorem 2. Let A be a Horn formula, and GA = (V, E, [MI) be the graph correspond- 
ing to A. If for some truth assignment v and some propositional letter Q, v I= A and 
there is a pebbling of Q E V from {true}, then v k Q. 

PROOF. We proceed by induction on the length of pebblings. The case d = 0 is 
trivial. If there is a pebbling of length 1 from {true} to Q, there is an i such that 
(true, i, Q) E E, which means that Q is a basic Horn formula in A. Since u satisfies 
A, v satisfies every basic Horn formula in A and so, u k Q. If there is a pebbling of 
length n > 1 then, as above, there is an i such that the ith clause of A is 
lP, V . . . V -, Pg v Q, and there are pebblings of length less than n from {true} to 
each P, (1 2 j I q). By induction, for each Pj, v I= Pj. Therefore, since v k 
7P, v . . . V 7 P4 V Q, we conclude that u k Q. ??

Corollary (Soundness). A is unsatisjiable if there is a pebbling of false from {true}. 
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This follows since if A were satisfiable, there would be some truth assignment u 
such that u F A, and by virtue of the pebbling of false from {true}, we would have 
u K false, a contradiction, 

Completeness is shown using the following theorem. 

Theorem 3. Let GA = (V, E, [MI) be the graph corresponding to a Horn formula A. If 
there is no pebbling of false from {true} then A is satis$able. 

PROOF. We will define a valuation u and then show that u EA. Let u E P, iff there is 
a pebbling of P, from {true}. We show that u satisfies every basic Horn formula C, 
in A. There are three cases depending on the form of C,. 

(i) If C, = Q is a propositional symbol in A, then (true, k, Q) is in E, there is a 
pebbling of length 1 from {true} to Q, and therefore u != Q. 

(ii) If C,=,P,V . . . V,P,VP,+, is in A but u does not satisfy C,, then u != P, 
(1 I i I q) and so there is a pebbling of each P, from {true}. But then, there 
is a pebbling of Pq+ 1 from {true} and u k Pq+,, which implies that u satisfies 
C,, a contradiction. 

(iii) If C, = T P, v . . . V 7 P4, since for each P, there is an edge (P,, k, false) from 
P, to false and there is no pebbling of false from {true}, for some i, say i,,, 
there is no pebbling of <,,] from {true}. Hence, u assigns the value false to P,,, 
and u F C,. Since u satisfies every basic Horn formula in A, u satisfies A. 

If we view {false,true} as a boolean algebra in which false -c true, the K-fold 
Cartesian product {false, true} ’ is also a boolean algebra. Then, we have the 
following corollary. 

Corollary. Given a Horn formula A, let G, = (V, E, [ M]) be its corresponding graph. 

(1) A is satisjiable if and only if there is no pebbling of false from {true}. 
(2) Zf A is satis-able, the truth assignment (u( PI), . . . , u( PK)) such that u( P,) = 

true if and on!v if there is a pebbling of P, from {true} and u( P,) = false 
otherwise, is the least truth assignment in the boolean algebra {false, true} K 
satisfying A. 

Theorem 1 can now be proved by showing the following lemma whose simple 
proof is omitted. 

Lemma I. Given a Horn proposition A, its grammar GR,, and its graph GA, there is a 
pebbling of Q from {true} if and only if Q 3 ‘e. 

The above lemma indicates that there is a duality between pebblings in the graph 
GA and derivations in the grammar GR,. This duality helps in understanding how 
sat&lability methods actually work. The method given in Section 2 and unit 
resolution attempt to find a pebbling, starting from true. On the other hand, the 
graph method presented in Section 6 attempts to find a derivation of the empty 
string from false (or any other propositional letter). 

In the next two sections, we present linear-time algorithms for deciding the 
satisfiability of a Horn proposition. The key to linear-time complexity is to store and 
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propagate information which indicates when a positive literal in a basic Horn 
proposition is “ready to be pebbled”. Such a method is presented in the next two 
sections. 

4. A LINEAR-TIME ALGORITHM REFINING ALGORITHM 1 

Before presenting a linear-time refinement of Algorithm 1, we discuss the representa- 
tion of Horn formulae. 

4.1. Representation of Horn formulae 
Since we are concerned with the complexity of an algorithm for testing the 
satisfiability of a Horn formula, it is important that the actual representation of 
Horn formulae be absolutely clear since, as we shall see later, this affects the 
complexity of the algorithm. 

If A is a Horn formula containing K distinct propositional letters, we will assume 
that it is represented as a string in the language defined by the context-free grammar 
given below, and that if A contains K distinct propositional letters, they are exactly 
the letters Pi,. . . , PK. This seemingly innocuous assumption actually affects the 
complexity of the algorithm as we shall see later. However, we do not feel that it is 
an unreasonable assumption, since the problem of interest is to test the satisfiability 
of Horn formulae, and not to find the set of distinct propositional letters in it. 

BNF Defining the Syntax of Horn Formulae 

(S) + (Horn-clause) 
(Horn-clause) + (Basic-Horn)] (Basic-Horn) A (Horn-clause) 
(Basic-Horn) -+ ((neg-lit-list)) 

]( (neg-lit-list) V (pos-lit)) 1 
((pos-lit)) 

(neg-lit-list) -+ (neg-lit) ](neg-lit-list) V (neg-lit) 
(neg-lit) -+ ,ID 
(pos-lit) + ID 

In this BNF, ID is treated as a terminal. In an implementation, ID would be 
decoded by the lexical analyzer. 

In order to speed up the selection of the basic Horn clause in the for loop of 
Algorithm 1, we shall compute for each positive literal P, the list clauselist [P] of all 
basic Horn propositions in which P occurs as a negative literal. We also compute the 
arrays numargs and poslitlist of dimension M (the number of basic Horn proposi- 
tions) such that, numargs[n] is the number of negative literals in clause number n 
that have current truth value false, and poslitlist[n] is the positive literal occurring in 
clause n, if any. If clause n does not contain a positive literal, poslitlist[n] = 0 (0 
corresponds to false). Then, a basic Horn clause C,, is ready to be processed if 
numargs[n] = 0, meaning that all negative literals in C, have been evaluated to true. 

We keep the basic Horn clauses ready to be processed inside of the for loop in a 
queue which is updated whenever a new positive literal is evaluated to true. Initially, 
the queue contains the basic Horn propositions consisting of a single positive literal. 
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Upon entry to the while loop, the queue contains the basic Horn clauses which have 
just been processed, that is, such that the positive literal in them has been evaluated 
to be true. The size of the queue is held in oldnumclause. During the for loop, each 
clause on the queue is popped and processed as follows. Let clause1 be the current 
head of the queue, and let nextpos = poslitlist[clausel] be the positive literal in 
clausel. Since the basic Horn clause clause1 was entered into the queue because all 
of its negative literals are true, nextpos is set to true if it is not already true. Then, 
for each basic Horn clause clause2 on the list clauselist[nextpos] of clauses contain- 
ing nextpos negatively, numargs[clause2] is decremented by one. If numargs[clause2] 
= 0, all negative literals in clause2 are true, and clause2 is ready to be processed. If 
clause2 contains a positive literal n = poslitlist[clause2], clause2 is entered into the 
queue to be processed at the next round. Otherwise, clause2 only contains negative 
literals (which is indicated by poslitlist[clause2] = 0). If the queue is empty, the Horn 
clause is consistent. Otherwise the clause on the top of the stack is popped and the 
while loop is reentered. The number of basic Horn clauses entered in the queue 
during the for loop is newnumclause. At the end of the for loop, oldnumclause is 
reset to newnumclause and the while loop is reentered if some new literal has been 
found true, which is indicated by the fact that the queue is nonempty. 

Each propositional symbol P, is represented as a record containing a value field 
“ val” and a pointer field “clauselist” to the list of clauses containing P, negatively. 
See Algorithm 2. 

ALGORITHM 2. 

program algorithm2(lnfile,outfile); 
Ik - number of distinct positive literals in A 

m = number of basic Horn clauses in A) 
constant nodefalse = 0; 
type clause = record 

clauseno: 1. .maxclause; 
next: &clause 

end; 
type literal = record 

val: boolean; 
clauselist: -clause 

end; 
typo Hornclause = array[l..maxliteral] of literal; 
type count = array[l..maxclause] of nodefalse..maxliteral; 
war A: Hornclause; 

numargs, poslitlist: count; 
queue : queue type; 
numpos : O..maxclause; {number of positive unit clauses} 
consistent: boolean; 

begin 
input(A) ; 
initialize(clauselist, numargs, poslitlist); 
let queue = list of basic Horn clauses consisting of a single 

positive literal, and numpos be their number. 
consistent := true; 
satisfiable(A,queue,consistent); 
if consistent then 

print(‘Satisfiable Horn Clause’); 
printassignment 

else 
print(‘Unsatisfiable Horn Clause’) 

crdif 
erd 
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procedure satisfiable(rmr A: Hornclause, yueu=,.queuetype, 
consistent: boolean); 

war clausel, clause2: 1. .maxclnuse; 
n: nodefalse..maxliteral; 
nextpos : 1. .maxliteral; 
oldnumclause, newnumclause: O..maxclause; 

begin 
oldnumclause := numpos; (number of positive unit clauses} 

{Propagate trre as long as new literals become true 
and no inconsistency} 

while queue <> ril and consistent do 
newnumclause := 0; 

{propagate trre for every clause in the clauselist for the 
positive literal nextpos in clausei, the head of the queue) 

for I := 1 to oldnumclause and consistent do 
clause1 := pop(queue); 
nextpos := poslitlist(clausel); 

{for every clause clause2 on the clauselist for nextpos, 
decrement the number of negative literals and check 
whether the positive literal n in clause2 can be computed} 

for clause2 ia A[nextpos].clauselist do 
numargs[clauseZ] := numargs[clause2] -I ; 

(If all negative literals in clause2 are true and the 
the positive literal is not already computed, then compute) 

if numargs[clause2] - 0 then 
n := poslitlist[clause21; 
if mot A[n] .val then 

{If n is a positive literal, then evaluate and enter clause2 
into the queue. Otherwise, n corresponds to falm and 
A is inconsistent) 

if n <> nodefalse then 
A[n].val := true; 
queue :=push(clause2,queue); 
newnumclause := newnumclause+l 

else 
consistent := f8loe 

endif 
endif 

cndlf 
erdfor 

endfor; 
oldnumclause := newnumclause 

endwhile 
end 

ALGORITHM 2 (Continued) 

4.2. Complexity of Algorithm 2 

Assuming that the distinct positive literals in A are PI,. . . , PK, it is easy to initialize 
the arrays numargs and poslitlist and the lists clauselist in linear time. However, if 
we allowed arbitrary identifiers for the propositional letters, we would have to build 
a symbol table to uniquely index the distinct identifiers, and this would require 
N log(N) steps. Since the problem of interest is to test satisfiability and not a 
parsing problem, we do not feel that the above assumption is unreasonable. 



LINEAR-TIME TESTS OF BOOLEAN HORN FORMULAE 277 

Note that every basic Horn clause in A is entered at most once into the queue. 
Indeed, a basic Horn clause clause2 is entered into the queue if and only if all the 
negative literals in it are true and the positive literal in it is not already true. As soon 
as clause2 is entered, the positive literal in it is set to true, thus preventing reentry. 
Whenever a clause clause1 is removed from the queue upon entrance to the while 
loop, all clauses clause2 in the clauselist for the positive literal nextpos in clause1 are 
considered. Notice that this corresponds to the deletion of negative occurrences of 
nextpos in A, and that these occurrences are disjoint for each round through the 
while loop. Hence, the contribution of the while loop is proportional to the number 
of negative occurrences of literals in A, which is linear in N, the total number of 
occurrences in A. 

Note that Algorithm 2 finds pebblings in the graph G, by moving from true to 
false in a breadth-jut fashion. 

Example 2 

A=(,P,vP,)r\(,P,vP,)r\(,P,vP,)/\ 

(P3)QP,)~(P,)f%P,)~ 

(TP, V P,) A (7P3 V P7) A (TP, V P,) 

Graph associated with A: 

Initially, the queue contains the clauses (4,5,6) with 4 the head element, and since 
clause 4 consists of the positive literal P3, Algorithm 2 will compute Pd., P6, P,, P8, 
and find the inconsistency in computing P,. 

5. A “CALL-BY-NEED” GRAPH ALGORITHM 

The algorithm given below checks whether for every propositional letter Q, the 
empty string can be derived from Q (in the grammar CR, associated with A). 
Actually, the algorithm starts by checking whether 13 +e, thus checking for 
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consistency first. This algorithm proceeds in a “call-by-need” fashion, in the sense 
that to determine whether Q * +e, it determines whether for some basic Horn clause 
C,=(7P1V...v-,PqvQ),P,~+e ,..., Pq- +e. Hence, this algorithm proceeds 
from false to true, contrary to the previous one. 

The algorithm is conveniently implemented as a recursive procedure which, given 
a basic Horn formula C, = 7P, V . V 7 Pq V Q, finds recursively whether all P, 
must be true in order to set Q to true. Observe that in order to find whether Q 
should be true, it is sufficient to visit all the nodes reachable from Q in the graph Gi 
obtained from GA by reversing the direction of the edges. For instance. in Example 
1, in order to know whether P, should be true, since there are edges from P3 and P4 
to Ps, we must find whether both P3 and P4 are true. Since there is an edge from 
true to P3 and an edge from Pj to P4, all of P3, P4, Ps are indeed true. 

Hence, in writing this algorithm, it is convenient to consider the graph Gd 
obtained from GA by reversing the direction of the edges. 

Since the graph may have cycles (as the cycle P,, P2, P, in Example l), it is 
necessary to use a marking technique to prevent the procedure from looping. 
Choosing the right kind of marking is actually rather subtle, as illustrated by the 
following example. 

Example 3 

A=(,P,v,P,~P,)A(,P,vP,)A(,P,vP,)A 

(~p,VP,)A(P,)A(,p,V,P,)A(,p,Vp,) 

The graph CL corresponding to A is the following: 

The difficulty is that we want to minimize both the number of visits to nodes, and 
the number of truth computations (that is, determining whether a positive literal in a 
clause has the value true). The first solution that comes to mind is to mark the nodes 
as they are visited, and only visit unmarked nodes. Unfortunately, this does not 
work. Indeed, if the algorithm visits the path beginning with false, Pz, P,, P,, even 
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though P2 will eventually get the value true, P, will not since it has been marked 
and therefore, will not be revisited. The problem is that there may be different ways 
of entering a node and multiple visits must be allowed. 

The solution is to mark the edges and allow a visit to a node provided that either 
there is some unmarked incoming edge to it, or one of its immediate successors has 
some unmarked outgoing edge. To implement the above strategy, each edge of the 
graph has a field visited, and each node has a field marked. The marked field is a 
counter holding the number of nonvisited outgoing edges from a node, and it is 
decremented every time such an edge is visited. In order to perform truth evaluations 
only when necessary, we use the lists clauselist and the array numargs. As in the 
previous algorithms, whenever it is found that a positive literal P has the value true, 
the counters corresponding to all the clauses on the clauselist corresponding to P are 
updated (decremented by 1). To avoid recomputing the value of a positive literal, a 
field computed is then set to true. In this way, every positive literal is computed at 
most once. 

The graph Gi is implemented as an array of linked lists, each entry in the array 
being a record corresponding to a node of the graph, and each linked list being the 
list representing all edges having that node as source. In order to speed up the 
algorithm, for every node P (positive literal), we create a list successors consisting of 
records (one for each label in the set of all outgoing edges with source P). Each 
record contains a label number i and a pointer to the list of target nodes of all edges 
with source P labeled i. 

The graph is initialized in such a way that, for every basic Horn clause consisting 
of a single positive literal, the ual field of the corresponding node is set to true, and 
it is set to false for other nodes. The visited field of every edge is set to false and the 
computed field of every node P is set to the sum of the number of negative literals in 
all basic clauses containing P. 

5. I. Algorithm Buildgraph 

The algorithm buildgraph builds the graph Cd associated with a Horn formula A 
and initializes the fields. Since we have checked that the BNF given above is SLR(l), 
we can use a syntax-directed translation scheme for building the graph. The abstract 
translation of a Horn clause to its associated graph can be rigorously and elegantly 
specified by an attribute grammar. Using an attribute grammar to specify such a 
translation scheme is not a major innovation, but it is one of the distinctive features 
of this paper. Indeed, the translation of a Horn clause into its associated graph 
specified by the attribute grammar given below is independent of the evaluation 
scheme used. Hence, this specification is truly denotational, which is an elegant 
feature of this approach. 

The following attribute grammar specifies the translation. 

(S) + (Horn-clause) 
newG(0) = newG(l) 
Num-basic(l) = 1 

(Horn-clause) + (Basic-Horn) 
Num-basic(l) = Num-basic(O) 
newG(0) = newG(l) 
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(Horn-clause) --+ (B asic-Horn) A (Horn-clause) 
Num-basic(l) = Num-basic(O) 
Num-basic(3) = Num-basic(O) + 1 
newG(0) = union(newG(l), newG(3)) 
(Basic-Horn) + (( neg-lit-list)) 
newG(0) = makegraph(falsq list-node(2), Num-basic(O)) 

(Basic-Horn) -+ ((neg-lit-list) v (pos-lit)) 
newG(0) = makegraph(node(4) list-node(2), Num-basic(O)) 

(Basic-Horn) -+ ((pos-lit)) 
newG(0) = makegraph(node(2) true, Num-basic(O)) 

(neg-lit-list) -+ (neg-lit) 
list-node(O) = append(node(l), NIL) 

(neg-lit-list) + (neg-lit-list) V (neg-lit) 
list-node(O) = append(node(3), list-node(l)) 

(neg-lit) + ,ID 
node(O) = lexval(2) 

(pos-lit) + ID 
node(O) = lexval(1) 

Following the usual conventions, symbols occurring in a production are indexed 
from left to right, starting with 0. The attributes newG, node, list-node, and lexval 
are all synthesized attributes. The attribute Num-basic is inherited. 

For this particular attribute grammar, a bottom-up syntax-directed translation 
can be used, and it is enough to initialize Num-basic to one and increment it 
whenever a reduction by production (Horn-clause) -+ (Basic-Horn) A (Horn- 
clause) is made. The attribute lexval returns the integer code assigned to a proposi- 
tional letter assigned by the lexical analyzer (n is assigned to P,). All other attributes 
and functions are self-explanatory. It is obvious that the fields val, computed, and 
visited can be initialized during the construction of the graph. 

Once the graph GA is constructed, the Algorithm 3 is used to test the satisfiability 
of A. 

The procedure update updates numargs[n] for every clause n in the clauselist 
corresponding to the positive literal current. 

5.2. Complexity of Algorithm 3 

5.2.1. ALGORITHM BUILDGRAPH 

Assuming that the input Horn formula A has K distinct propositional letters and 
that they are exactly P,, . . . , PK, neither union nor makegraph has to make compari- 
sons to find out which nodes are identical. Indeed, the nodes of the graph are 
represented as records in a linear array, and each node is identified by its integer 
index. Hence, during the parse using the shift/reduce algorithm, each reduction has 
a cost which is proportional to the number of symbols in the right-hand side of the 
production involved, and the total number of steps is proportional to the number in 
symbols in A, which is 0( N ), where N is the number of occurrences of literals in A. 
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prolrar algorithm3(infile,outfile); 
conmtant nodefalse = 0; 

maxclause = 500; 
maxnode = 500; 

type edge = record 
target: nodefalse..maxnode; 
visited: boolean; 
next: -edge 

end; 
type clause = record 

clauseno: l..maxclause; 
next: Clause 

end; 
type pairitem = record 

clauseno: I..maxclause; 
edgelist: -edge; 
next: *pairitem 

end; 
type succptr = -pairitem; 
type count = ??rrrr[l..maxclause] of O..maxnode 
type node - record 

marked : O..maxnode; 
computed: boolean; 
val: boolean; 
clauselist: *clause; 
successors: succptr 

end; 
type graph = record 

ill: 1. .maxclause; 
k: nodefalse..maxnode; 
nodes : array [nodefalse ..maxnode] of node 

end 
type nodeindex = nodefalse..maxnode; 
type labelindex = l..maxclause; 
ver g: graph; 

numargs: count; (number of negative literal8 in each clause) 
poslitlist: count; {positive literal in each clause} 
current: nodeindex; 
numpos : O..maxclause; (number of positive unit clauses} 

begin 

{build and initialize graph) 

buildgraph( 

{call traverse from false to check for unsatisfiability} 

if numpos = 0 them {no positive unit clauses, satisfiable) 
prlnt(‘Satisfiable Horn Clause’) 

else 
traverse(nodefalse,g); 
if g.nodes[nodefalse].val then 

{Clause is unsatisfiable} 
print(‘Unsatisfiable Horn Clause’) 

else 

{Clause is satisfiable, compute truth assignment} 

print(‘Satisfiable Horn Clause’); 
for current := 1 to g.k do 

if not g.nodes[curreot].computed then 
traverse(current,g) 

endif 
endfor 

endlf 
endif; 

{print satisfying assignment] 
print-assignment 

end 

ALGORITHM 3. 
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procedure traverse(current: nodeindex; g: graph); 
var arc: *edge ; 

tagset: succptr; 
j: labelindex; 

begin 

{If val of current is not already computed, 
call traverse recursively} 

if not g.nodes[current].computed then 

{Take care of nodes initialized to true} 

if g.nodes[current] .val then 
g.nodes[current].computed := true; 
update(current,numargs) 

else 

{For every clause number j, compute the value of 
the targets of all edges with source current labeled j, 
as long as current.val is not true} 

tagset := g.nodes[current].successors; 
for each j in tagset and not g.nodes[current].val do 

arc := tagset.edgelist; 

{traverse recursively for every arc labeled j} 

uhllc arc <> NIL do 

{If arc not visited then call traverse) 

If not arc^.visited then 
g.nodes[current].marked := g.nodes[current].marked-1; 
arc-.visited := true; 
traverse(arc^.target,g) 

{If all arcs visited and target node has some unmarked 
outgoing edge, then call traverse} 

??l8e 
If (g.nodes[arc^ .target].marked <> 0) and 

(g.nodes[current] .marked - 0) then 
traverse(arc^.target,g) 

endif 
cndif; 
arc :- arc*.next 

crdwhllc; {while arc <> NIL do) 

{If not already computed and 
all arguments for clause j are available, 
compute the truth value of current] 

If not g.nodes[current] .computed then 
if numargs[j] - 0 then 

{update counter for every clause in the clauselist 
corresponding to current and set to true) 

update(current,numargs); 
g.nodes[current].val :- true 

endlf {if numargs[j] - 0 then)) 
endif 

cndfor; 
g.nodes[current].computed :- true 

cndif {if g.nodes[current].val ] 
cndif {if not g.nodes[current].computed . ..] 

end; {traverse) 

ALGORITHM 3 (Continued) 
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5.2.2. ALGORITHM SATISFIABLE 
Observe that the graph Gi has K + 2 nodes and N - P edges, where N is the 

number of occurrences of literals in A and P the number of basic Horn formulae 
containing both a positive and a negative literal. 

CRUCIAL OBSERVATION. Due to the marking, only edges reachable from current 
are visited, and each such edge is visited exactly once (edges are marked using the 
field “visited”). This implies that the total number of calls to traverse is bounded by 
N + 1, where N is the number of occurrences of literals in A. 

Indeed, in the worse case, for every basic Horn clause in A, the positive literal (if 
any) in it and the targets of the edges which correspond to the negative literals in the 
basic Horn clause are visited once. This accounts for N visits, plus the starting node 
false. Also, the truth value of every node (current) is computed exactly once, since it 
is marked when it is computed (using the “computed” field). Since the contributions 
of the calls to update are disjoint and correspond to the deletion of occurrences of 
negative literals in A, the cost of the truth computations is also line in N. Hence, the 
complexity of traverse is linear in N. Since the construction of the graph has 
complexity O(N), the complexity of Algorithm 3 is O(N). 

REMARK. The assumption that if the Horn formula A contains K propositional 
letters, they are exactly P,,. . . , PK affects the complexity of the algorithm build- 
graph. Indeed, if the letters occurring in A are PI,, . . . , P,, where {ii,. . . , iK} is 
different from { 1,. . . , K }, in building the graph GA it is necessary to build a symbol 
table, which amounts to sorting Pi,, . . ., Pi,. Since the complexity of sorting is 
0( N log(N)), the construction of the graph would have complexity O(N log( N)). 
However, this assumption does not affect the complexity of the algorithm truuerse, 
since the input is the graph, in which the nodes have already been sorted. 

6. CONCLUSION 

We have presented two linear-time algorithms for testing the satisfiability of proposi- 
tional Horn formulae. We have shown that given a Horn proposition A, a context-free 
grammar GR, and a graph GA can be constructed and that the satisfiabihty problem 
for A is equivalent to two dual problems: 

(1) Whether the node false can be pebbled from true in the graph GA. 
(2) Whether the empty string can be generated by GR,. 

The difference between these algorithms is in the strategy used for pebbling. 
Algorithm 2 proceeds from true to false in a breadth-first fashion. On the other 
hand, Algorithm 3 proceeds from false to true in a depth-first fashion, trying to 
detect whether the empty string can be derived from false. Hence, Algorithm 2 will 
do more work on clauses whose graph is very wide, and Algorithm 3 will work 
harder on clauses whose graph has many long paths from false. For instance, 
Algorithm 3 is very fast on the following clause generalizing Example 2, but 
Algorithm 2 does a lot of redundant work. 
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Example 4 

(~~,V~,,,)A(,~,V~,+,)A...A(,~,V~,,) 
There are n + 2 nodes at height 2, which hurts algorithm 2. However, Algorithm 3 

finds immediately the path from false to true. This analysis suggests that an 
algorithm which proceeds simultaneously from true to false and from false to true, in 
a dovetailing fashion, might be more efficient. We leave the design of such an 
algorithm as a topic for further research. 

A nice feature of the algorithms of this paper is that they can take advantage of 
parallelism. Furthermore, because Algorithm 3 performs a “lazy unsatisfiability 
check”, it has an interesting generalization to the first-order case. This generalization 
has been worked out and implemented, see Gallier [3]. 

It is also possible to design an algorithm searching the graph from bottom-up in a 
depth-first fashion, and such an algorithm happens to correspond to positive unit 
resolution [5]. However, this algorithm does not appear to be as easily amenable to 
parallelism, and for this reason, is omitted. 

The formulation of the satisfiability problem as a data jlow problem is also 
interesting, in the sense that it suggests a solution using processors attached to the 
nodes of the graph and running in parallel. We intend to investigate this problem in 
a subsequent paper. 
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