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1. Introduction

In this paper, it is shown that there is an algorithm Reduce that, given any
finite set E of ground equations. produces a reduced canonical rewriting
system’ R equivalent to E in polynomial time. The algorithm Reduce plays a
crucial role in the decision procedure showing that rigid unification (first
introduced in Gallier et al. [12]) is NP-complete, a result announced (without
complete proofs) at LICS’88 [13], and proved rigorously in Gallier et al. [15].
Rigid E-unification itself arises naturally in generalizing the method of matings
due to Bibel and Andrews [1, 4-6] to languages with equality. This extension of
the method of matings, called equational matings, is discussed extensively in
Gallier, Narendran, Plaisted, Raatz, and Snyder [12, 14, 16].

We wish to stress that we do not view our algorithm as a substitute for
congruence closure (Kozen [21, 22], Nelson and Oppen [25], Downey et al.
[10]). The original motivation for the algorithm Reduce arose in the process of
proving the decidability of rigid E-unification. Later on, we realized that this
algorithm could perhaps be useful in other areas. For instance:

—The study of this type of approach might yield generalizations to certain
classes of ground term rewriting systems + nonground term-rewriting sys-
tems that can be completed efficiently. For example, Jich Hsiang (private
communication) has suggested that an extension of this method to account
for associativity and commutativity would be useful for Grobner Bases, an
important class of algorithms in symbolic computation.

—Our method might be a useful part of a Knuth—Bendix completion proce-
dure for nonground terms. It could help speeding up the completion process.
Also, from a theoretical point of view, it seems interesting to know how fast
reduced systems can be found.

—1It has been suggested that the results presented here might be useful in an
“abstract interpretation” or “program analysis” approach to rewrite rules,
particularly those used in language implementation.

2. Preliminaries

We review briefly the concepts that will be needed in this paper. As much as
possible, we tried to use notation and terminology consistent with Huet and
Oppen [18] and Gallier [11]. In the interest of brevity, the reader is referred to
Gallier et al. [15] for all unexplained notation. In this paper, only finite ranked
alphabets will be considered. Given a term ¢ and a tree address « in ¢, /«
denotes the subterm of ¢ rooted at «. Given two terms s, t € T (the set of
ground terms over %) and a tree address « in s, the term s[a < ¢] is the
result of replacing the subterm rooted at « in s by ¢.

A simplification ordering < is a strict ordering that is monotonic and has the
subterm property. It is shown in Dershowitz [8] that for finite ranked alphabets,

" A canonical system is a confluent and Noetherian system. The term, reduced, is defined in the
next section.
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every simplification ordering is well founded, and that there exist total simplifi-
cation orderings on ground terms. Note that if a strict ordering < is total,
monotonic, and well founded, we must have s < f(...,s,...) for every s, since
otherwise, by monotonicity, we would have an infinite decreasing chain.

Let E c Ty X Ty be a set of ground rewrite rules. We denote the rewrite
relation associated with E as — , and we let < . be the reflexive, symmet-
ric, and transitive, closure of — . It is well known that < ; is the smallest
congruence on Ty containing E. When we want to fully specify a rewrite step,
we use the notation #; =, yt5-

Definition 2.1. Given a set R of ground rewrite rules and a total simplifica-
tion ordering <, we say that R is compatible with < iff r <1 for every
I ->reR.

Given a set R of ground rewrite rules, we say that R is reduced iff

(1) No lefthand side of any rewrite rule / — r € R is reducible by any rewrite
rule in R — {/ —= r};

(2) No righthand side of any rewrite rule / — r € R is reducible by any rewrite
rule in R.

It is well know (Huet [17]) that a Noetherian relation is confluent iff it is
locally confluent. We say that R is canonical iff it is Noetherian and confluent.
Note that since a reduced set of ground rewrite rules has no critical pairs, by
[17], it is locally confluent. A reduced set of ground rewrite rules compatible
with > is also Noetherian because r </ for every rule / - r, and < is a
simplification ordering. Hence, by [17], such a set is confluent.

3. The Procedure Reduce

It has been known for some timc that because total reduction orderings on
ground terms exist, Knuth-Bendix type completion procedures do not fail on
input sets consisting of ground equations and terminate with a canonical system
equivalent to the input set. This has been noted by Dershowitz [9] who
attributes the result to Lankford [24]. The precise reason is that newly formed
equations can always be oriented (because a reduction ordering total on
ground terms can be used). Actually, if one examines carefully the inference
rules describing the Knuth—Bendix completion procedure (Knuth and Bendix
[20]) in the formalism of Bachmair [2], Bachmair et al. [3], one will notice that
because the rules are ground. the inference rule yielding critical pairs never
applies, but instead the simplification rules apply. From this and the fact that
newly formed equations can always be oriented, it is easy to see that the
completion procedure always halts with success. However, the complexity of
such a procedure is unclear. In this section, we give such an algorithm based on
congruence closure (Kozen [21, 22], Nelson and Oppen [25], Downey et al. [10])
that runs in time O(n?). The correctness of this algorithm is nontrivial, and we
give a rigorous proof.

We shall define a sequence of triples (&, I1,, #,) where & is a finite set of
ground equations, IT; is a partition (associated with &), and &, is a set of
ground rewrite rules. Given a triple {&,, II;, %7, we let 7] be the set of all
subterms of terms occurring in equations in &, or in rewrite rules in %,. The
algorithm below makes use of the congruence closure of a finite set of ground
equations (Kozen [21, 22], Nelson and Oppen [25], Downey et al. [10D.
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Congruence closures are represented by their associated partition II. Given an
equivalence relation represented by its partition II, the equivalence class of ¢
is denoted by [¢], or [¢]. Recall that s, ¢ are in the same equivalence class of
IT iff s and ¢ are subterms of the terms occurring in E and s <> ¢ (for details,
see Gallier [11]). The congruence closure algorithm will only be run once on E
to obtain 11, but the partition II, may change due to further steps (simplifica-
tion steps). Note that for the purpose of defining the algorithm, it is sufficient
to deal with pairs (I1,, #,), but the component &, is necessary for the proof of
correctness, and this is why the method is presented in terms of triples. The
following conventions are used in the algorithm Reduce shown below:

—A nontrivial class is a class containing at least two elements, in which case &,
has at least one nontrivial equation.

—]|C| denotes the cardinality of the set C;

—For simplicity of notation, we occasionally omit the subscript 7 + 1.

—By a maximal redex of A, we mean a redex of A that is not a proper subterm
of any other redex of A. The simplified term is irreducible with respect to
S .. so these replacements are only done once, and they can be done in
parallel because they apply to independent subterms of A.

—The ordering on ground terms is < .

begin algorithm Reduce
Initially, we set &, = E, %, = §, and run a congruence closure algorithm on the ground
set E to obtain I1,. 7 := 0;

while I1,, has some nontrivial equivalence class do {Simplification steps)
Let p,,, be the smallest element of the set

U C
Cell,.IClz2
of terms belonging to nontrivial classes in II,. Let €, ; be the nontrivial class that
contains p,, ;. and write C,; = {p,, .A} 1,..., Ay}, where k,,, = 1, since C,,, is
nontrivial. Let 57, = {Al,, = pyp,... AMp = o b

{Next, we use the rewrite rules in %%, to simplify the rewrite rules in %, U, the
partition 11,, and the equations in &,.}°

To get &, ,, first, we get a canonical system equivalent to .%,,,. For this, for every
lefthand side A of a rule in %], |. replace every maximal redex of A of the form A’ by p,
where A - p €9, — {A = p}. Let .7,/ be the set of simplified rules. Also, let %/,
be the set obtained by simplifying the lefthand sides of rules in 4%, using ./, , (reducing
maximal redexes only), and let

— g
‘%H-l _“9?1+I US]:«%I"

Finally, use .}, to simplify all terms in II, and &, using the simplification process
described earlier to obtain II,,, and &, ;.
i=i+1
endwhile
{All classes of II, are trivial, and the set 4%, is a canonical system equivalent to F.}
end algorithm

At the end of the algorithm, &, must consist entirely of trivial equations, that
is, equations of the form s =s. We have to justify the fact that when the
lefthand side of a rule / —» r €%, is simplified to a rule " — r, it is still true
that » < /" holds, and that righthand sides are never simplified. Note that
during the step where ., | is used to simplify all terms in II, and &, the class

C, ., is simplified to the trivial class { p,, ,}.

* This is one of the crucial steps that ensures a polynomial-time algorithm.
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We claim that any sequence defined by the above procedure terminates, and
that the set %, obtained in the last step is a reduced canonical system
equivalent to the original set E of equations. For this, we need a number of
lemmas, but first, the method is illustrated in the following example.

Example 3.1. Let &, = E be the following set of ground equations:

E= {f3a =g,
fPa=a,
a=d,
gha = a,
gma = a,
ha = c,
mgcib}.

Let < be a total simplification ordering such that, d < ¢ < b < a < f<g=<h
<m. After computing the congruence closure for E, we have the initial

partition
Iy = {{d,a, fa, fa, f3a, f*a, fa, gc, gha, gma},
{c, ha},
{b, mgc. ma}}.

The class {d, a, fa, fa, f3a, f*a, f3a, gc, gha, gma} is selected, since d is the
least term. We have

s =Ha - d,
fa — d,
fla > d,
fla —d,
fla —>d,
fla —d,
gc — d,
gha — d,
gma — dy.

After simplification, we obtain the reduced system

#, ={a - d,
fd—d,
gc —~ d,
ghd — d,
gmd — d}.
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The partition I1,, simplifies to

I, = {{d},
{c, hd},
{b, md}}.
and &, to
& =1{d=d,
hd = c,
md = b}.
The next class selected is {c, hd}. We have
= {hd - c}.
After simplification, we have
Fy = {a —d,
fd - d,
ge —d,
gmd — d,
hd — ¢},
I, = {{d}.
{c},
(b, md}},
and
&, ={d=d,
c=c,
md = b}.
Finally, the class {b, md} is selected, we have
Sy =1{md - b},

and after simplification, we have

Fy=1{a - d,
fd - d,
gc — d,
gb — d,
hd — c,
md — b},

1, = {{d},
{c},
(b)),

and

J. GALLIER ET AL.



Finding Canonical Sets of Ground Rewrite Rules 7

& =1{d=d,
c=c,
b = b}.

The reduced canonical system equivalent to E is ;.

4. Correctness and Termination of the Procedure Reduce

We now prove that the procedure Reduce (described in Section 3) terminates
and produces a reduced canonical system equivalent to the original ground
set E.

Definition 4.1. A set S of ground rewrite rules is right uniform iff r = v’ for
al l >rand ! - r 8.

Definition 4.2. Let § be a right uniform set of rules. The relation >— is
defined such that >— is like rewriting using S, except restricted to maximal
redexes. Formally, given any two ground terms s, ¢,

s >l iff r=s[B«r],

where 5/ is a maximal proper redex of s such that s/8 — r € § (a maximal
redex is a redex that is not a proper subterm of any other redex). Note, the
definition implies that B # e (where e denotes the empty string). Let >— ¢
be the transitive closure of >—, and >-% its reflexive and transitive
closure.

LEMMA 4.3. Let S be a set of ground rewrite rules compatible with < such
that

(1) S is right uniform;
(2) Whenever A — r € S and X & ¢\ where X is a subterm of the lefthand side
of some rule in S (X =1/ for some rulel - r € S), then X - r € S.

Let s > r be any rule in S and let S, = S — {s — r}. Then, the following
statements hold:

(i) In any simplification sequence s >— 5,8's there cannot be two steps applied at
addresses B, and B, in that order such that B, is an ancestor of B3,;

(it) In any simplification sequence s > 5.8, there cannot be two steps applied at
addresses 3, and B, in that order such that B, is an ancestor of B,.

PrOOF

(i) Since ! > r for every rule in S, r is irreducible with respect to S. By the
definition of >— , B # € for every redex B in the sequence s >— g s" and
in particular, B,, B, # €. Immediately after the step performed at S,
s/ B, = r. Since r is irreducible with respect to S, no step can be applied at
B, if B, is an ancestor of B,.

(i) If there is some simplification sequence s >— § s’ with two steps applied at
addresses B, and B, in that order such that 8, is an ancestor of 8,, by (i),
no step can be applied to any ancestor of B, (including B,) until the step
applied to B,,and so s/, > ;lt where all steps are applied strictly below
B,, and there is some rule / — r € §; such that / = ¢, that is, ¢ is reducible
by S,. Since 5/B8, <, 1, §; S, and s > r €S, then by condition (2),
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s/B, »reS. Actually, s/B, = r € S, since B, # €. This contradicts the
fact that maximal rules were applied in the sequence s/, > §‘t (since all
steps in this sequence are applied strictly below 8,). [

From Lemma 4.3, we obtain the following corollary.

COROLLARY 4.4. If S is a set of rewrite rules compatible with a total simplifica-
tion ordering < and satisfying conditions (1) and (2) of Lemma 4.3, then for
every ground term u, there is a unique ground term v irreducible with respect to
S —{u —>r} such that u > v, and v is obtained from u by replacing all
maximal (independent) redexes of u by r, the common righthand side of all rules
in S.

PROOF. Since § is compatible with <. it is clear that >—; is well
founded. Hence, there is some irreducible term v with respect to S — {u — r}
such that u > Sv. For any two redexes occurring at addresses 8, and 8, in
this derivation, 8, and 3, must be independent since otherwise one of the two
redexes would not be maximal. Then, by Lemma 4.3, the derivation u >— {v
consists in replacing all maximal independent proper redexes of u by r, and it
is clear that this yields a unique irreducible term v. O

LEMMA 4.5. Let S be a set of ground rewrite rules compatible with < and
satisfying conditions (1) and (2) of Lemma 4.3. Letv

S ={l' >rll =%l >r,l >res),

where l' is the normal form of | with respect to > ¢ guaranteed by Corollary 4.4.
Then §' is a reduced canonical system equivalent to S.

PROOF. First, we show that § and §’ are equivalent, that is, generate the
same congruence. First, let S§ = (I, = r....,[, = r) be S viewed a sequence
ordered such that [, < --- </,. Let

S'={U —=»r,.l—=rdl >, o1,

1 < i < n. We show by induction on i that S and S, are equivalent. This is
obvious for i = 0 since S; is just § as a sequence. Assume that § and S,
are equivalent for i < n. Observe that due to the ordering of the /, the only
rules involved in the simplification steps [ >—%/ are the rules in the set

{{ .y = r,....1, - r}. But then, it is immediate that

S =l -r...., I'=sr il —>rl. ,—=r,.. 0L, =
and

S, = —>r.... L A R N e N

are equivalent, and since S and S are equivalent (by the induction hypothesis),
S and S, | are also equivalent. This concludes the induction and shows that §
and §), are equivalent. It is obvious that if we eliminate duplicate rules and
trivial rules from S, we obtain the set of rules §', and it is also obvious that S,
and S’ are equivalent. Thus, § and S’ are equivalent.

Assume that /{ — r and [, — r are rules in §', where [, = r and /[, — r are
rules in S, /; and /; are the normal forms of /, and /, with respect to S, and
that I, = I} /3, that is, 8’ is not reduced. Then, because r </ forall / — r € §,
it must be the case that no simplification steps are applied to /; at or above 3
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(since otherwise r > [ /B = I, and so r > [}, contradicting /, — r is compati-
ble with <), and so [} /B is the normal form of /,/8 in S and /,/B <l /
B =1, l,. Since [, » r € § by condition (2), we also have [,/8 > r € S.
But this contradicts that simplification steps were applied at maximal sub-
terms of [, since we showed previously that no simplification step can be per-
formed at or above B. Hence, §’ is reduced. Since it is also Noetherian, it is
canonical. O

LEMMA 4.6. For everyi = 0,

pl+1<pl+2=min( U C).
Cell,,ICl=2

Proor. First, note the following fact:

Fact. 1f § is a right uniform set of ground rules and r is the common
righthand side of all rules in S, for any ground term s > r, if s = ¢s', then
s =7

Next we prove the lemma by induction on i. For i =0, p, is the least
element of .7, (the set of all subterms occurring in equations in E) and the
claim follows from the fact stated above and because p; & U ccp ) 2C. By
the induction hypothesis,

Piv1 = Pir2 = mln( U C) .
CGH,+1~|C|22

Since [T, , is obtained from If,,, by simplification using rules in §,,,, which
arc of the form A — p,,,, and since p; < - < p,. | < p,4,, by the fact stated
above, it is clear that p,,, is the smallest element of the set

( U C) _{p17""pl+l}’
Cell, .,
which implies that
P2 = b3 = mln( U C) ’
Cell,,,\Cl=2
since p,,, & Ucen ,c»2C- This concludes the induction step. O
From Lemma 4.6, we obtain the following corollary:

COROLLARY 4.7. For every | - r €%, r is never simplified by any rule in
S,+ 1, and if | simplifies to I', then r < I'.

PrOOF. By Lemma 4.6, p,,, < p,,, for all i > 0. Since the simplification
rules in %, | are of the form A — p,,, and the set of righthand sides of rules
in %, is{py,...,p}, the result is clear. O

LeMmMA 4.8

(1) The sequence {&,, 11,, #,) is finite and its length m is bounded by the number
of nontrivial equivalence classes in 11,.
(2) 11, is the partition associated with the congruence closure of &, for every i,
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where 0 <1 < m.
ProOOF

(1) This part follows from the fact that when II,., is derived from II,, the
equivalence class C,,, (in II,) of p,,; collapses to the trivial class { p, .

(2) This part is shown by induction on i. The details are straightforward and
are left to the reader (we use the fact that both II, and &, are simplified by
the set S,. ). O

LEMMA 4.9.  Let m be the length of the sequence (&, 11,, %,). Then,

+ ¥
CETCgums

foralli,0 <i <m.

PrROOF. The proof is by induction on i. By the definition of (&, I1,, %), it
is obvious that & , = « e, u 2, Secondly, note that every use of an equation
s =t €& such that s, t € C,, can be simulated by using the rewrite rules
s —p., and t > p,,, that are in S, . Since by Lemma 4.8, II, is the
partition associated with the congruence closure of &, from the way it is
constructed the set of simplification rules S,,; satisfies the conditions of
Lemma 4.5, and .7;, ,/ is a reduced canonical system equivalent to . ;. Thus,
every use of an equation s =t as above can be simulated by rewrite rules in
., ;+. Thirdly, it is easy to show that the use of a rewrite rule / - r in %, can
be simulated by the simplified rule !/ — r in %/, | and rules in . ;,. Similarly,
it is easy to show that the use of an equation / = r in &, such that [, r & C
can be simulated by the simplified equation /' = 7" in %/, ; and rules in S/ ;.
This shows that

Crua S Te v,

that is,

(—k—) >
Eg u(’+lu-7?x+1q

since by the induction hypothesis we have

CETCrua;

i

Conversely, since %, , is formed from an equivalence class of II, and, by
Lemma 4.8, II, is the partition associated with the congruence closure of &,
since by the induction hypothesis we have & =<, ., it is clear that
<, €< But then, from the way &, UZ,,, is obtained from &, U,

using .7, it is easy to see that

¥ &
. [ =
EFpq W E

Hence,

establishing the induction step. O
We now prove the following crucial lemma.
LEmMMA 4.10.  The system %, is reduced.

Proor. For every i, 1 <i <m, the set {C|,...,C, } is defined as follows:
{C,...,C } consists of all classes in the set {C},...,C} of nontrivial equiva-
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lence classes selected by the algorithm, and all singletons of the form {u},
where u is some subterm of a term in one of the classes C,,...,C; and u & C,
for every k, 1 < k <. Given any set C), its representative p, is defined such
that p; = p,, the representative chosen by the algorithm if C/ = C, is a
nontrivial class, else p]’ = u, the single element in the set C) = {u}. We also
order the set {Ci,...,C,} to form the sequence (Cj,....C, ) as follows: C;
precedes C; iff p, < p).

We say that a term u in 11, is simplified (at stage i) if, cither u is not in any
of the classes Cj,...,C, , or u = p; for some k, 1 <k <n, For i =0, we
define {C},...,C, } as the empty set and (C},...,C, ) as the empty sequence.
We shall prove the following claim by induction on I.

CLamM.  For every i, 0 < i < m — 1, the following properties hold:

(a) Ifl - ris arulein %, , then all proper subterms of | and all subterms of r
are simplified, and every proper subterm of any terem uw €11, | — %, | is
simplified.

(b) If u is a representative of some Cj, | <1 < n,, then every proper subterm of u
is also the representative of some C), 1 <k <.

Proor oF Cram. The claim is true for i = 0 since {Ci,...,C,} is the
empty set. The induction step is established as follows: Observe that ‘the new
class C,; = C,  chosen by the algorithm has the property that all proper
subterms of the representative p,,, = p,  are previously chosen representa-
tives. This is because since < has the subterm property, u < p,  for every
proper subterm u of p, . Then, because p,  is chosen minimal, we must
have u € C, for some k < n,,, and the induction hypothesis applies. Thus,
property (b) holds. To prove (a), we simply note three facts:

(1) Righthand sides of rules in .%,, or %,, are representatives of
C,...,C, ., since by Lemma 4.7, only lefthand sides of rules in %, are
simplified.

(2) When the lefthand side / of a rule in §,,, or %, is simplified, either the
rule disappears, or some proper subterm u or [ is replaced by p,, ;. But
then, every proper subterm u of [ is either a subterm of p;,; = p, ,or by
the induction hypothesis a subterm of p, for some k, 1 <k <n, or u is
not in any of the classes Ci,...,C, . This shows that u is either the
representative of one of the classes Ci, 1 <k<n,,,orthat u & C, for
every k, 1 <k < n,,,. Hence, u is simplified at stage i + 1.

(3) The same property applies to proper subterms of terms in II,, | — %, ;.

This proves (a) and concludes the proof of the claim. O

We now apply the claim to the rules in #,,. Therefore, every subterm u of a
term in a rule from %, is the representative of some equivalence class in
Ci,...,C or u¢&Cj for every k, 1 <k <n,, except possibly for lefthand
sides of rules. Thus, every subterm u of a term in a rule from %, is the
representative of some equivalence class in Cj,...,C, —or belongs to some
trivial class of IT,, except possibly for lefthand sides of rules. This means that
no rewrite rule in &%, can be used to further simplify %, , except possibly 1o
simplify a lefthand side at the top level. Assume that some rule [, - r, in %,
simplifies the lefthand side of some rule /; — r, in &,. Then, [, and [, must
be identical, so [, [,, r;, and r, are all in the same equivalence class. Since r,
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and r, are both the representative of this class., we have r| = r,. However, by
definition, a rule does not reduce itself. Thus, -7, is reduced. O

We finally have our main result.

THEOREM 4.11. Given a finite set E of ground equations. the procedure
Reduce terminates with a reduced canonical system %, equivalent to E.

Proor. The termination of the procedure Reduce is shown in Lemma 4.8.
By Lemma 4.9, &, =6, ,,, where m is the index of the final triple
(& ,1,, %, > However, for this last triple, &, consists of trivial equations,
and so, < ; = < _ . Finally, by Lemma 4.10, .%,, is reduced. Because %,, Is
reduced and ground, there are no critical pairs. and since .%,, is also Noethe-

rian, it 18 confluent. O

5. Complexity of the Procedure Reduce
In this section, we analyze the complexity of the procedure Reduce.

LemMA 5.1. The algorithim Reduce ( presented in Section 3) runs in fime
O(n*), where n measures the size of E.

Proor. First, observe that the number of subterms of terms occurring in £
is O(n), where n measures the size of E (say the length of the string obtained
by concatenating the equations in £ written in prefix notation). The number m
of nontrivial equivalence classes of II; is bounded by [n/2]. Every term ¢ is
simplified using rules in ., | by replacing maximal (independent) subterms of
t by p If a DAG structure with sharing of common subterms is used, for
cach round, the simplification of all terms in II, and &2, by rules in .%/, , can
be performed in O(n). Hence, the complexity of the simplifications for m
rounds is O(n?). The contribution of the congruence closure is O(n?). Finally,
we need to make sure that there are total simplification orderings such that the
least element of a set of k& ground terms of total size n can be determined in
time O(n?). However, this is not difficult to achieve. For example, one can use
a recursive path ordering where sequences of subtrees are compared using a
lexicographic ordering (see Dershowitz [8]); then we can use an O(n?) dynamic
programming algorithm such as found in Krishnamoorthy and Narendran [23]
or Snyder [27]. Hence, the complexity of the comparisons for m rounds is
O(n?*). Therefore, the complexity of the algorithm is O(n?). O

Note that the dominant factor in the time complexity of the procedure is the
process of finding least elements with respect to a simplification ordering. If
this can be reduced, the time complexity of the algorithm will also be reduced.
The following example shows that a naive approach to simplification can lead
to an exponential-time complexity.

Example 5.2. Given any integer k > 1, consider the following set E of
equations:

gftc = fgke
gifffc = feeggce
gfffc = fegge

gffc = fege
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gfe = fge
ge = fe.

The set of nontrivial classes of the partition I, obtained after computing the
congruence closure of E is

{(fe. e}
{ ffc. fec. gfc, gge},
{ fifc, fege, gffc, ggsc},

{Fre fg* e, gf* e gke),
{fghe, gf"'c}} :

It is clear that there are total simplification orderings induced by the total
order on the function symbols such that ¢ < f < g. The order in which the
classes are selected by our algorithm amounts to simplifying E bottom-up. It is
easy to see that we obtain the reduced system %,

gckc — fk+1 c
e D e
gfffc — ffffc
gffe — fife
gfe — ffe
gc — fe
in time O(k?). On the other hand, if we do not compute the congruence
closure of E but simply transform E into the following set R of rewrite rules

gffc = feke
LY ——) v .
gffffe — fesgse
gfffe — fegge
gffc — fege
gfc — fee
ge = fe,
and simplify R from the top-down, this takes exponential time in k. Indeed, in
order to simplify gf*c — fg¥c to gf*c — f**lc, 2% — 1 steps are required. This
is shown by proving by induction that g*c simplifies to f*c in 2* — 1 steps.

For k = 1, this is obvious using the last rule gc — fc. Assuming inductively that
g* le simplifies to f¥71c in 2571 — 1 steps, then

gkC =ggk—lc =*gfk*10

in 2°71 — 1 steps, gf*"'c = fg" " 'c using the second rule, and fg* 'c =*
ff*lc in 27! — 1 steps again. The total number of steps is 2*7' — 1 + 1 +
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2k=1 _ 1 = 2% — 1, as claimed. Hence. it will take
2k — 1428 - 27— 12— =2 - (k+ 2)

steps to reduce R top-down.

6. Relation to Other Work

In this section, we clarify the relationship between our work and the work of
Dauchet et al. [7], Otto and Squier [26], and Kapur and Narendran [19], and
clear up some possibly confusing points. Dauchet et al. [7] prove that it is
decidable whether a set of ground rewrite rules is confluent. The algorithm is
fairly involved and its complexity is not clear, but it is unlikely that it runs in
polynomial time. This is not in contradiction with our result. In fact, this
decidability result has no bearing on our problem. Indeed, since our goal is to
find a canonical system equivalent to the input system R, the orientation of the
rules in R is irrelevant, and we are free to reorient the rules so that we have a
Noetherian system. Having oriented the rules in R properly, we force conflu-
ence by interreducing the rules using our algorithm. Hence, we do not care
whether the original set is confluent or not. Of course, Dauchet et al. [7] must
accept the original orientation of the rules in R and they cannot change it. It is
somewhat amusing to think that it might be faster to apply our algorithm to get
a reduced canonical system than to test whether the given rules are confluent!
Whether our work can be helpful for giving an alternate confluence test is
another story, but we have not explored this path.

Both Otto and Squier [26] and Kapur and Narendran [19] show that there
exist finite The systems with a decidable word problem for which no equivalent
finite canonical system exists. Otto and Squier actually prove this result for
finitely presented monoids with a decidable word problem. At first glance, this
may seem to contradict our result. Indeed, strings are ground terms after all!
However, we are forgetting that the free monoid over an alphabet 3, satisfies
the associativity axiom

VxVyVzlx-(y-z) = (x-y)-z],

which is not equivalent to any finite set of ground equations. In fact, the
associativity axiom is equivalent to infinitely many ground equations, all ground
instances of the form u - (v - w) = (u - v) - w obtained by substituting arbitrary
strings u, v, w € X* for the variables x, y. z. This explains the apparent
contradiction. Our algorithm deals with a finite set of ground equations on the
initial %-algebra T, where % is a finite ranked alphabet. The free monoid 3*
is isomorphic to the quotient T,/ = of the initial algebra 7, on the ranked
alphabet A = % U {-,e} (where - is a binary symbol, € a constant, and every
letter in X is a constant) by the least stable congruence = containing the set
of (nonground) equations

{x (y-2)=(x-y)-z,x-e=x, e x =x}.

This is not the free A-algebra.

In principle. our algorithm can deal with a finite set £ of nonground
equations provided that there is a known bound & on the number of instances
of equations used, but then the running time of our algorithm is O(k?), where
k has nothing to do with the number of equations in the input set E.



Finding Canonical Sets of Ground Rewrite Rules 15
7. Conclusion

An algorithm that produces a (reduced) canonical system equivalent to a set of
ground equations has been presented and proved correct. This algorithm calls
the congruence closure algorithm only once and performs simplification steps
carefully. The present version of the algorithm runs in time O(n®). It is
possible that using more sophisticated data structures the running time of the
algorithm can be improved, but in this paper we are more concerned with
correctness, and the issue of efficiency is left for further research. It is worth
noting that this algorithm is at the heart of the decision procedure showing
that rigid unification (first introduced in Gallier et al. [12]) is NP-complete, a
result proved in Gallier et al. [15]. The algorithm of this paper seems attractive
in applications where it is useful to compile a set of ground equations into a
canonical set of rules efficiently, but this remains to be explored.
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