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1. Introduction

In this paper, it is shown that there is an algorithm Reduce that, given any

finite set E of ground equations. produces a reduced canonical rewriting

systeml R equivalent to E in polynomial time. The algorithm Reduce plays a

crucial role in the decision procedure showing that rigid unification (first

introduced in Gallier et al. [12]) is NP-complete, a result announced (without

complete proofs) at LICS’88 [13], and proved rigorously in Gallier et al. [15].

Rigid E-unification itself arises naturally in generalizing the method of matings

due to Bibel and Andrews [1, 4-6] to languages with equality. This extension of

the method of matings, called equational matings, is discussed extensively in

Gallier, Narendran, Plaisted, Raatz, and Snyder [12, 14, 16].

We wish to stress that we do not view our algorithm as a substitute for

congruence closure (Kozen [21, 22], Nelson and Oppen [25], Downey et al.

[10]). The original motivation for the algorithm Reduce arose in the process of

proving the decidability of rigid E-unification. Later on, we realized that this

algorithm could perhaps be useful in other areas. For instance:

—The study of this type of approach might yield generalizations to certain

classes of ground term rewriting systems + nonground term-rewriting sys-

tems that can be completed efficiently. For example, Jieh Hsiang (private

communication) has suggested that an extension of this method to account

for associativity and commutativity would be useful for Grobner Bases, an

important class of algorithms in symbolic computation.

—Our method might be a useful part of a Knuth-Bendix completion proce-

dure for nonground terms. It could help speeding up the completion process.

Also, from a theoretical point of view, it seems interesting to know how fast

reduced systems can be found.

—It has been suggested that the results presented here might be useful in an

“abstract interpretation” or “program analysis” approach to rewrite rules,

particularly those used in language implementation.

2. Preliminaries

We review briefly the concepts that will be needed in this paper. As much as

possible, we tried to use notation and terminology consistent with Huet and

Oppen [18] and Gallier [11]. In the interest of brevity, the reader is referred to
Gallier et al. [15] for all unexplained notation. In this paper, only jinite ranked

alphabets will be considered. Given a term t and a tree address a in t,t/a

denotes the subterm of t rooted at a. Given two terms s, t E Tz (the set of

ground terms over X) and a tree address a in s, the term S[ a - t] is the

result of replacing the subterm rooted at a in s by t.

A simplification ordering < is a strict ordering that is monotonic and has the

subterm property. It is shown in Dershowitz [8] that for finite ranked alphabets,

1A canonical system is a confluent and Noetherian system. The term, reduced. is defined m the
next section.
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every simplification ordering is well founded, and that there exist total simplifi-

cation orderings on ground terms. Note that if a strict ordering < is total,

monotonic, and well founded, we must have s ~ f(. . . ,s,... ) for every S, since

otherwise, by monotonicity, we would have an infinite decreasing chain.

Let E c T. X Tx be a set of ground rewrite rules. We denote the rewrite

relation associated with E as -+ ~, and we let ~ ~ be the reflexive, symmet-

ric, and transitive, closure of - ~. It is well known that ~ ~ is the smallest

congruence on Tx containing E. When we want to fully specify a rewrite step,
we use the notation tl ~ ~U,~+ ~lt2.

Definition 2.1. Given a set R of ground rewrite rules and a total simplifica-

tion ordering <, we say that R is compatible with < iff r <1 for every

l+r=R.

Given a set R of ground rewrite rules, we say that R is reduced iff

(1) No lefthand side of any rewrite rule 1 + r = R is reducible by any rewrite
rule in R – {1 + r};

(2) NO righthand side of any rewrite rule 1 -+ r = R is reducible by any rewrite
rule in R.

It is well know (Huet [17]) that a Noetherian relation is confluent iff it is

locally confluent. We say that R is canonical iff it is Noetherian and confluent.

Note that since a reduced set of ground rewrite rules has no critical pairs, by

[17], it is locally confluent. A reduced set of ground rewrite rules compatible

with > is also Noetherian because r < 1 for every rule 1 ~ r, and < is a

simplification ordering. Hence, by [17], such a set is confluent.

3. The Procedure Reduce

It has been known for some time that because total reduction orderings on

ground terms exist, Knuth-Bendix type completion procedures do not fail on

input sets consisting of ground equations and terminate with a canonical system

equivalent to the input set. This has been noted by Dershowitz [9] who

attributes the result to Lankford [24]. The precise reason is that newly formed

equations can always be oriented (because a reduction ordering total On

ground terms can be used). Actually, if one examines carefully the inference

rules describing the Knuth-Bendix completion procedure (Knuth and Bendix

[20]) in the formalism of Bachmair [2], Bachmair et al. [3], one will notice that

because the rules are ground, the inference rule yielding critical pairs never

applies, but instead the simplification rules apply. From this and the fact that

newly formed equations can always be oriented, it is easy to see that the

completion procedure always halts with success. However, the complexity of

such a procedure is unclear. In this section, we give such an algorithm based on

congruence closure (Kozen [21, 22], Nelson and Oppen [251, Downey et al. [101)

that runs in time 0(n3). The correctness of this algorithm is nontrivial, and we

give a rigorous proof.

We shall define a sequence of triples (%,, II,, W,) where %, is a finite set of

ground equations, IIi is a partition (associated with %,), and =, is a set of

ground rewrite rules. Given a triple ($31, IIi, =,), we let Y; be the set of all

subterms of terms occurring in equations in %, or in rewrite rules in ~,. The

algorithm below makes use of the congruence closure of a finite set of ground

equations (Kozen [21, 22], Nelson and Oppen [25], Downey et al. [101).
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Congruence closures are represented by their associated partition II. Given an

equivalence relation represented by its partition H, the equivalence class of t

is denoted by [t ]n, or [t]. Recall that s. t are in the same equivalence class of

II iff s and t are subterms of the terms occurring in E and s ~ ~ t (for details,

see Gallier [1 l]). The congruence closure algorithm will only be run once on E

to obtain H ~, but the partition 111 may change due to further steps (simplifica-

tion steps). Note that for the purpose of defining the algorithm, it is sufficient

to deal with pairs ( II,, 9,), but the component %, is necessa~ for the proof of

correctness, and this is why the method is presented in terms of triples. The

following conventions are used in the algorithm Reduce shown below:

—A nontrivial class is a class containing at least two elements, in which case ~,

has at least one nontrivial equation.

—ICI denotes the cardinality of the set C;

—For simplicity of notation, we occasionally omit the subscript i + 1.

—By a maximal redex of A we mean a redex of A that is not a proper subterm

of any other redex of A The simplified term is irreducible with respect to

s ,+ ~, so these replacements are only done once, and they can be done in

parallel because they apply to independent subterms of A

—The ordering on ground terms is < .

begin algorithm Reduce

Initially, we set%()= E. 90 = Jl,and run a congruence closure algorithm on the ground
set E to obtain IIo. z := O:

while H,, has some nontrivial equivalence class do {Simplification steps}

Let P,+, be the smallest element of the set

UC
(’GrI,,lc122

of terms belonging to nontrivial classes in II,. Let C,+, be the nontrivial class that
contains pi+,, and wrlte[ C,+ ~ = {p, +1, A~+l, . . .. A~41}. where k,+, > 1, since C’[+l is

-.
nontrivial. Let >,+1 = {Al+l + p, +,,.. ., A:L+I ~ P,+ ]}.
{Next, we use the rewrite rules in ~+, to simplify the rewrite rules in &Pl U ~+,, the

partition fI,, and the equations in %,.}2
To get W{+], first, we get a canonical system equivalent to S;+ ~. For this, for every

lefthand side A of a rule in Y;+,, replace every maximal redex of’ A of the form AJ by p,

where A] + p ● $;+, – {A + p}. Let >,+,, be the set of simplified rules. Also, let ~~+ ~
be the set obtained by simplifying the lefthand sides of rules in Y, using >;+, (reducing
maximal redexes only), and let

&P,+l =S?:+, U<q+l/.

Finally, use .Y~+ ~ to simplify all terms in H, and %,, using the simplification process
described earlier to obtain H,+, and %,+ ~.
~:=~+1

endwhile
{All classes of H, are trivial, and the set Q, is a canonical system equivalent to E.}

end algorithm

At the end of the algorithm, %, must consist entirely of trivial equations, that

is, equations of the form s ~ s. We have to justify the fact that when the

lefthand side of a rule 1 + r = W, is simplified to a rule 1’- r, it is still true

that r <1’ holds, and that righthand sides are never simplified. Note that

during the step where >;+, is used to simplify all terms in H, and %,, the class

c 1+1 is simplified to the trivial class { P,+,}.

z This is one of the cruc]al steps that ensures a polynomial-time algorithm
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We claim that any sequence defined by the above procedure terminates, and

that the set =, obtained in the last step is a reduced canonical system

equivalent to the original set E of equations. For this, we need a number of

lemmas, but first, the method is illustrated in the following example.

Example 3.1. Let %0 = E be the following set of ground equations:

E = {f3a ~ a,

f’a ~ a,

a&d,

gha ~ a,

gma ~ a,

ha ~ c,

r’r’zgc = b}.

Let < be a total simplification ordering such that, d x c < b < a < f + g < h

x m. After computing the congruence closure for E, we have the initial

partition

IIf, = {{d, a, fa, f2a, f3a, fqa, f5a, gc, gha, gma},

{c, ha},

{b, rngc, ma}}.

The class {d, a, fa, f ‘a, f 3a, f4a, f5a, gc, gha, gma} is selected, since d is the

least term. We have

YI={a+d,

fa Ad,

f2a -+ d,

f’a -+ d,

f’a + d,

f’a -+ d,

gc + d,

gha -+ d,

grna -+ d}.

After simplification, we obtain the reduced system

YZ?l={a+d,

fd -d,

gc - d,

ghd + d,

gmd + d}.
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The partition IIt) simplifies to

rI1 = {{d},

{c, hd},

{b, red}},

%[={d+d,

hd ~ C,

md : b}.

The next class selected is {c, hd}. We have

Y; == {hd + c}.

After simplification, we have

9’2={a+d,

fd + d,

gc + d,

gmd A d,

hd+ c},

It, = {{d},

{c},

{b, red}},

and

C=c,

md~b}.

Finally, the class {b, md} is selected, we have

S“ = {red+ b},

and after simplification, we have

Q?~={a+d,

fd + d,

gc + d,

gb + d,

hd + C,

md + b},

II, = {{d},

{c},

{b}},

J. GALLIER ET AL.

and
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%~={d~d,

The reduced canonical system equivalent to E is 33.

4. Correctness and Termination of the Procedure Reduce

We now prove that the procedure Reduce (described in Section 3) terminates

and produces a reduced canonical system equivalent to the original ground

set E.

Definition 4.1. A set S of ground rewrite rules is right uniform iff r = r’ for

alll+randl’+r’~S.

Definition 4.2. Let S be a right uniform set of rules. The relation *,$ is

defined such that %s is like rewriting using S, except restricted to maximal

redexes. Formally, given any two ground terms s, t,

s w~t iff t=,s[fl +-r],

where s/~ is a maximal proper redex of s such that s/~ + r G S (a maximal

redex is a redex that is not a proper subterm of any other redex). Note, the

definition implies that ~ # ~ (where ~ denotes the empty string). Let * ~

be the transitive closure of %s, and % ~ its reflexive and transitive

closure.

LEMMA 4.3. Let S be a set of ground rewrite rules compatible with < such

that

(1) S is right un~orrn;

(2) Whenever A + r G S and A’ Gs A where h’ is a subterm of the lefthand side

of some rule in S (A’ = l/~ for some rule 1 + r E S), then A’ + r E S.

Let s + r be any rule in S and let S1 = S – {s + r}. Then, the following

statements hold:

(i) In any simplification sequences H j,s’, there cannot be two steps applied at

addresses ~1 and & in that order such that fll is an ancestor of ~z;

(ii) In any simplification sequences * ~,s’, there cannot be two steps applied at
addresses ~1 and ~2 in that order such that f12 is an ancestor of (11.

PROOF

(i) Since 1> r for every rule in S, r is irreducible with respect to S. By the

definition of x , P # ~ for every redex ~ in the sequence s * ~,s’ and

in particular, Pl, Pz # e. Immediately after the step performed at B1,

s/~l = r. Since r is irreducible with respect to S, no step can be applied at

Pz if A iS an ancestor of Pz.
(ii) If there is some simplification sequence s * ~,s~ with two steps applied at

addresses 61 and ~z in that order such that 13, 1s an ancestor of ~1, by (i),
no step can be applied to any ancestor of ~z (including flz) until the step

applied to ~z, and so s/~z % ~,twhere all steps are applied strictly below

~,, and there is some rule 1 + r = S1 such that 1 = t, that is, t is reducible

by S1. Since s/& A s,, 1, S1 c S, and s -+ r G S, then by condition (2),
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S/Pz + r G S. Actually. s/@z + r = S1 since @2 * ● . This contradicts the

fact that maximal rules were applied in the sequence s/~z ~ .~,t (since all

steps in this sequence are applied strictly below f$ ). D

From Lemma 4.3, we obtain the following corollary.

COROLLARY 4.4. If S is a set of rewrife rules compatible with a tofal sinzplijica-

tion ordering < and satisjjing conditions (1) and (2) of Lemma 4.3, [hen for

el’ery ground term u, fhere is a unique ground term l) irreducible wi[h respecf fo

S –- {u + r] such that u * ~ L’, and u is obtained j70m u by replacing all

maximal (independent) redexes of u by r, the common righ[hand side of all rules

in S.

PROOF. Since S is compatible with <, it is clear that *~ is well

founded. Hence, there is some irreducible term u with respect to S – {U + r}

such that u * ~ L). For any two redexes occurring at addresses ~, and ~2 in

this derivation, ~, and & must be independent since otherwise one of the two

redexes would not be maximal. Then, by Lemma 4.3, the derivation u % j LI

consists in replacing all maximal independent proper redexes of u by r, and it

is clear that this yields a unique irreducible term u. ❑

LEMMA 4.5. Lef S be a set of ground rewrite rules cornpafihle wi[h < and

safisjjing conditions (1) and (2) of Lemma 4.3. Lefll

S’={l’+ rll%~l’,l’ >r,l+r= S},

where 1’ is the normal form of 1 with respec[ to w ~ guaranteed by Corolla~ 4.4.

Then S’ is a reduced canonical system equivalent fo S.

PROOF. First, we show that S and S’ are equivalent, that is, generate the

same congruence. First, let S~ = (11 + r, ..., 1. + r) be S viewed a sequence

ordered such that 1. < . . . < 11. Let

S~=(l\+r ,...,l~+ r,l, +l+r,l~+r), +r),

1 s i s n. We show by induction on i that S and S; are equivalent. This is

obvious for i = O since Sj is just S as a sequence. Assume that S and S;

are equivalent for i < n. Observe that due to the ordering of the 1,, the only

rules involved in the simplification steps lJ % ~ l; are the rules in the set

{l, +1+ r,..., z. + r}, But then, it is immediate that

are equivalent, and since S and S: are equivalent (by the induction hypothesis),

S and S~+l are also equivalent. This concludes the induction and shows that S

and S;, are equivalent. It is obvious that if we eliminate duplicate rules and

trivial rules from S;, we obtain the set of rules S’, and it is also obvious that S;

and S’ are equivalent. Thus, S and S’ are equivalent.

Assume that l; + r and Ii + r are rules in S’, where II + r and lZ + r are

rules in S, l; and lj are the normal forms of 11 and 12 with respect to S, and

that lj = 1~/~, that is, S’ is not reduced. Then, because r <1 for all 1 + r = S,

itmust be the case that no simplification steps are applied to 11 at or above ~
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(since otherwise r ~ lj//3 = lj and so r a lj, contradicting 1! + Y is compatib-
le with <), and so 1~/~ is the normal form of 11/~ in S and 11//3 ~ ~1~/

/3 = l; ~ ~lz. Since 12 + r e S by condition (2), we also have ll/B + r = S.
But this contradicts that simplification steps were applied at maximal sub-

terms of 11, since we showed previously that no simplification step can be per-

formed at or above /?. Hence, S’ is reduced. Since it is also Noetherian, it is

canonical. ❑

LEMMA 4.6. For eve~ i >0,

P,+l + P,+2 = min
( )

u c
cerIL+1,1c122

PROOF. First, note the following fact:

Fact. If S is a right uniform set of ground rules and r is the common

righthand side of all rules in S, for any ground term s % r, if s ~s s’, then

s’ > l’.

Next we prove the lemma by induction on i. For i = O, pl is the least

element of 70, (the set of all subterms occurring in equations in E) and the
claim follows from the fact stated above and because P1 @ U c ● n ,,lcl ~ zC. By

the induction hypothesis,

Since H,+ ~ is obtained from 111+~ by simplification using rules in S,+ ~, which

are of the form A -+ pi+z, and since PI < ““” ~ p,+, ~ P1+2, by the fact stated

above, it is clear that pi+ ~ is the smallest element of the set

(c==)u c -{p,,... >P,+,},
,+.

which implies that

since p,+z @ U ce11L+l,lclz2 C. This concludes the induction step. ❑

From Lemma 4.6, we obtain the following corollary:

COROLLARY 4.7. For ele~ 1 + r ● Si, r is nel’er simplified by any rule in

St+ 1, and if 1 simplifies to l’, then r < 1’.

PROOF. By Lemma 4.6, P,+ 1 ~ P,+Z for all i >0. Since the simplification

rules in ~+ ~ are of the form A -+ p,+, and the set of righthand sides of rules

in~, is{pl, ..., p,}, the result is clear. ❑

LEMMA 4.8

(1) The sequence (~,, II,, 2,) is finite and its length m is bounded by the number
of nontrivial eguiualence classes in II (,.

(2) H, is the partition associated with the congruence closure of E, for evey i,
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where O < i < m.

PROOF

(1) This part follows from the fact that when ~,, ~ is derived from fI,, the

equivalence class C,+ ~ (in IIi ) of p,+ 1 collapses to the trivial class { P,+ i}.

(2) This part is shown by induction on i. The details are straightforward and

are left to the reader (we use the fact that both 111 and %1 are simplified by

the set S,+ ~). ❑

LEMMA 4.9. Let m be the length of the sequence (~, II,, =,). Then,

for all i, O

PROOF.

is obvious

s~tE&Y 1

. ,
‘E

=++
&?,u2a>

<i <m.

The proof is by induction on i. By the definition of ( %., HO, ~0 ), it

that ~ ~ == ~ ~fl” ~,. Secondly, note that evev use of an equation

such that S, t G C,+ 1 can be simulated by using the rewrite rules—..
S+ PI+ I and t + p,+, that are in S,+ ~. Since by Lemma 4.8, 11, 1s the

partition associated with the congruence closure of %’, from the way it is

constructed the set of simplification rules S,+ 1 satisfies the conditions of

Lemma 4.5, and ~+ ~~ is a reduced canonical system equivalent to ~+ ~. Thus,

every use of an equation s ~ t as above can be simulated by rewrite rules in

~+, {. Thirdly, it is easy to show that the use of a rewrite rule 1 + r in 9, can

be simulated by the simplified rule 1’- r in J%’;+~ and rules in ~+ ~1. Similarly,

it is easy to show that the use of an equation 1 + r in %, such that 1, r E C,+ ~

can be simulated by the simplified equation 1’ ~ r’ in W:+ ~ and rules in S;+ ~.

This shows that

+’z, udt~* 8,+, IJ .-Z,, I>

that is,

-E~+ i”,+, U&?,+l$

since by the induction hypothesis we have

‘E “+’s,u:2i.

Conversely, since ~+, is formed from an equivalence class of 11, and, by

Lemma 4.8, 111 is the partition associated with the congruence closure of %,,

since by the induction hypothesis we have ~ ~ = G ~,,, ,q, it is clear that
,,+, g&E,A. But then, from the way %(+ ~ U J%’,+ ~ is obtained from %, u J2L

using Y;+ ~, it is easy to see that

c&E.~st+, L,=7,+, —

Hence,

*E .&F
z+lu~, +l’

establishing the induction step. u

We now prove the following crucial lemma.

LEMMA 4.10. The system 9P, is reduced.

PROOF. For every i, 1 s i < m, the set {C{ ,. ... CL,} is defined as follows:
{c; ,..., C’:l} consists of all classes in the set {Cl,..., C,} of nontrivial equiva-
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lence classes selected by the algorithm, and all singletons of the form {u},

where u is some subterm of a term in one of the classes Cl, ..., Ci and u 6! ck

for every k, 1< k s i. Given any set C;, its representative p; is defined such

that p; = p~, the representative chosen by the algorithm if C; = CL is a

nontrivial class, else p; = u, the single element in the set C; = {u}. We also

order the set {C; ,.. ., C;,} to form the sequence (C; ,..., C:, ) as follows: CL

precedes C; iff p~ < p;.

We say that a term u in IIi is simplified (at stage i) if, either 24 is not in any

of the classes Cj, . . ..C~Z , or u = pi for some k, 1 < k < n,. For i = O, we

define {C!,..., C~l,} as the empty set and (C\,..., C~, ) as the empty sequence.

We shall prove the following claim by induction on i’.

CLAIM. For eve~ i, O s i s m – 1, the following propetfies hold:

(a) If 1 -+ r is a rule in %,+1, then all proper subterms of 1 and all subterms of r

are simplified, and el)ery proper subterm of any tetm u = II ~+ ~ – Y?,+ ~ is

simplified.

(b) If u is a representative of some C;, 1<1< n,, then el’ery proper subterm of LL

is also the representatille of some C;, 1 < k <1.

PROOF OF CLAIM. The claim is true for i = O since {C\,..., Cjlt} is the

empty set. The induction step is established as follows: Observe that the new

class C,+l = C~, +, chosen by the algorithm has the property that all proper

subterms of the representative pi+ ~ = P;, + are previously chosen representa-

tives. This is because since < has the su&erm property, u < p~l,, for every

proper subterm u of p~[+,. Then, because p~,+, is chosen minimal, we must

have u G CL for some k < nt+, and the induction hypothesis applies. Thus,

property (b) holds. To prove (a), we simply note three facts:

(1) Righthand sides of rules in ~+ ~ or S??l+ ~ are representatives of

Cl,..., c,+l, since by Lemma 4.7, only lefthand sides of rules in W, are

simplified.

(2) When the lefthand side 1 of a rule in S,+ ~ or AZ, is simplified, either the

rule disappears, or some proper subterm LL or 1 is replaced by p,+ ~. But

then, every proper subterm 24 of 1 is either a subterm of pi+, = p;,,+,, or by

the induction hypothesis a subterm of pj for some k, 1 s k s n,, or u is
not in any of the classes Cj, ..., C;, . This shows that u is either the

representative of one of the classes C1j, 1 s k < ni + ~, or that u @ CL for

every k, 1 s k s n,+ ~. Hence, u is simplified at stage i + 1.

(3)The same property applies to proper subterms of terms in II,, ~ – 91,,.

This proves (a) and concludes the proof of the claim. ❑

We now apply the claim to the rules in %.,. Therefore, every subterm L1 of a

term in a rule from @,,Z is the representative of some equivalence class in

Cj,.. ., C;m or u ~ CL for every k, 1 s k s n,,,, except possibly for lefthand

sides of rules. Thus, every subterm u of a term in a rule from ~~ is the

representative of some equivalence class in C\, ..., C~fl, or belongs to some

trivial class of 11~, except possibly for lefthand sides of rules. This means that
no rewrite rule in E., can be used to further simplify s7,., except possibly to

simplify a lefthand side at the top level. Assume that some rule lz + r~ in W.,

simplifies the lefthand side of some rule 11 + rl in %n. Then, lZ and 11 must

be identical, so 11, lZ, rl, and rz are all in the same equivalence class. Since rl
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and rz are both the representative of this class. we have r, = Yz. However, by

definition, a rule does not reduce itself. Thus, w,. is reduced. ❑

We finally have our main result.

THEOREM 4.11. Giuen ii finite set E of ground equations. the procedure

Reduce terminates with a reduced canonical system Hn equivalent to E.

PROOF. The termination of the procedure Reduce is shown in Lemma 4.8.

By Lemma 4.9, ~ ~ = ~ ~,,1~,~,n, where m is the index of the final triple
{ %~1, Ii,,, g,,,). However, for this last triple, %~ consists of trivial equations,

and so, ~ ~ = A % . Finally, by Lemma 4,10, ~~ is reduced. Because Wm is

reduced and ground, there are no critical pairs, and since 9., is also Noethe-

rian, it is confluent. ❑

5. Complexity of the Procedure Reduce

In this section, we analyze the complexity of the procedure Reduce.

LEMMA 5.1. The algotithm Reduce (presented in Section 3) mm in time

O(n~), where n measures the size of E.

PROOF. First, observe that the number of subterms of terms occurring in E

is 0(n), where n measures the size of E (say the length of the string obtained

by concatenating the equations in E written in prefix notation). The number m

of nontrivial equivalence classes of II. is bounded by [n/2]. Every term t is

simplified using rules in ~+ ~ by replacing maximal (independent) subterms of

t by PI+ ~. If a DAG structure with sharing of common subterms is used, for
each round, the simplification of all terms in 111 and W, by rules in Y;+ ~ can

be performed in O(n). Hence, the complexity of the simplifications for m

rounds is 0( nz). The contribution of the congruence closure is 0(n2 ). Finally,

we need to make sure that there are total simplification orderings such that the

least element of a set of k ground terms of total size n can be determined in

time 0( n2 ). However, this is not difficult to achieve. For example, one can use

a recursive path ordering where sequences of subtrees are compared using a

lexicographic ordering (see Dershowitz [8]); then we can use an 0(n2 ) dynamic

programming algorithm such as found in Krishnamoorthy and Narendran [23]

or Snyder [27]. Hence, the complexity of the comparisons for n? rounds is

0(n3). Therefore, the complexity of the algorithm is 0(n3). ❑

Note that the dominant factor in the time complexity of the procedure is the

process of finding least elements with respect to a simplification ordering. If

this can be reduced, the time complexity of the algorithm will also be reduced.

The following example shows that a naive approach to simplification can lead
to an exponential-time complexity.

Example 5.2. Given any integer k > 1, consider the following set E of

equations:

~~c ; fgkc

. ..>. . .

mc ~ fggggc

gf&c ~ fgggc

tic ~ fggc
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tic ~ fgc

gc ~fc.

The set of nontrivial classes of the partition II ~

congruence closure of E is

({ fc>W}7

{jjfc, fgc, g$c, ggc},

{~c, fggc, gffc, gggc} ,

13

obtained after computing the

{fkc, fgk-’c, gf-’c, gkc}>

{fg’c, gf’c}} .

It is clear that there are total simplification orderings induced by the total

order on the function symbols such that c + f x g. The order in which the

classes are selected by our algorithm amounts to simplifying E bottom-up. It is

easy to see that we obtain the reduced system Wk+,

,gf’c + f“ ‘.

. . . + . . .

gjjfc + jf&c

tic 4 fl~

@ 4 ffc

gc + fc

in time 0( k2). On the other hand, if we do not compute the congruence

closure of E but simply transform E into the following set R of rewrite rules

~’c + fg’c

. . . + . . .

mc + fgt%w

dfc + fg%c

tic + fggc

@ + fgc

gc +fc,

and simplify R from the top-down, this takes exponential time in k. Indeed, in

order to simplify gf~c -+ fgkc to ~kc ~ f k+ lC, 2’ – 1 steps are required. This

is shown by proving by induction that g ‘c simplifies to f ‘c in 2 k – 1 steps.

For k = 1, this is obvious using the last rule gc ~ fc. Assuming inductively that

g ‘– ‘c simplifies to f ‘– lC in 2k–’ — 1 steps, then

gkc = gg k–lc -*gf–%

in 2k–~ – 1 steps, gf ‘-lC +fg h- lC using the second rule, and Jgk - lC - *
~k-lc in 2’1

– 1 steps again. The total number of steps is 2~- 1 – 1 + 1 +
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~k-l_l=2k – 1, as claimed. Hence, it will take

‘2k-1+~~-l-1+... +2~_l+21– 1=2~+1–(k +2)

steps to reduce R top-down.

6. Relation to Other Work

In this section, we clarify the relationship between our work and the work of

Dauchet et al. [7], Otto and Squier [26], and Kapur and Narendran [19], and

clear up some possibly confusing points. Dauchet et al. [7] prove that it is

decidable whether a set of ground rewrite rules is confluent. The algorithm is

fairly involved and its complexity is not clear, but it is unlikely that it runs in

polynomial time. This is not in contradiction with our result. In fact, this

decidability result has no bearing on our problem. Indeed, since our goal is to

find a canonical system equivalent to the input system R, the orientation of the

rules in R is irrelevant, and we are free to reorient the rules so that we have a

Noetherian system. Having oriented the rules in R properly, we force conflu-

ence by interreducing the rules using our algorithm. Hence, we do not care

whether the original set is confluent or not. Of course, Dauchet et al, [7] must

accept the original orientation of the rules in R and they cannot change it. It is

somewhat amusing to think that it might be faster to apply our algorithm to get

a reduced canonical system than to test whether the given rules are confluent!

Whether our work can be helpful for giving an alternate confluence test is

another story, but we have not explored this path.

Both Otto and Squier [26] and Kapur and Narendran [19] show that there

exist finite The systems with a decidable word problem for which no equivalent

finite canonical system exists. Otto and Squier actually prove this result for

finitely presented monoids with a decidable word problem. At first glance, this

may seem to contradict our result. Indeed, strings are ground terms after all!

However, we are forgetting that the free monoid over an alphabet Z satisfies

the associatiz~ity axiom

Vxvyvz[x. (y. z) = (X. y). z],

which is not equivalent to any finite set of ground equations. In fact, the

associativity axiom is equivalent to infinitely nzany ground equations, all ground

instances of the form u . (L . w ) = (ZL . u) . w obtained by substituting arbitrary

Y* for the variables x, y, z. This explains the apparentstrings u, L, w G ~

contradiction. Our algorithm deals with a fhzite set of ground equations on the

initial S-algebra TZ, where X is a finite ranked alphabet. The free monoid X*

is isomorphic to the quotient TA/ - of the initial algebra TA on the ranked
alphabet A = 2 u {., E} (where . is a binary symbol, E a constant, and every

letter in Z is a constant) by the least stable congruence = containing the set

of (nonground) equations

{.x” (y”z)=(x ”y)”z, x. E=x, E.x =x}.

This is not the free A-algebra.
In principle. our algorithm can deal with a finite set E of nonground

equations provided that there is a known bound k on the number of instances

of equations used, but then the running time of our algorithm is 0( k3). where

k has nothing to do with the number of equations in the input set E.
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7. Conclusion

An algorithm that produces a (reduced) canonical system equivalent to a set of

ground equations has been presented and proved correct. This algorithm calls

the congruence closure algorithm only once and performs simplification steps

carefully. The present version of the algorithm runs in time O(n3). It is

possible that using more sophisticated data structures the running time of the

algorithm can be improved, but in this paper we are more concerned with

correctness, and the issue of efficiency is left for further researtih. It is worth

noting that this algorithm is at the heart of the decision procedure showing

that rigid unification (first introduced in Gallier et al. [12]) is NP-complete, a

result proved in Gallier et al. [15]. The algorithm of this paper seems attractive

in applications where it is useful to compile a set of ground equations into a

canonical set of rules efficiently, but this remains to be explored.
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