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1. Introduction

In this paper we show that the method of matings due to Andrews [1] and Bibel
[7-10] can be extended to (first-order) languages with equality, and prove that
this extension is both sound and complete.! A decidable version of E-unifica-
tion called rigid E-unification is introduced, and it is shown that the method of
equational matings remains complete when used in conjunction with rigid
E-unification. The results of this paper extend significantly those presented at
LICS’87 [18]. In [18], it is conjectured that rigid E-unification is decidable.
Subsequently, we have shown that rigid E-unification is NP-complete ( LICS’S8
[20]), thus proving our conjecture. The main focus of this paper is the method
of equational matings, and we present a simplified version of the decidability of
rigid E-unification. Full details on the NP-completeness of rigid E-unification
can be found in [22].

At first glance, a generalization of the method of matings to first-order
languages with equality where equality is built-in in the sense of Plotkin [39]
(thus, it is not the naive method where explicit equality axioms are added which
is rejected for well-known inefficiency reasons) requires general E-unification
(Gallier and Snyder [21]). Hence, there are two factors contributing to the
undecidability of the method of matings for first-order languages with equality:
(1) the fact that one cannot predict how many disjuncts will occur in a
Herbrand expansion (which also holds for first-order languages without equal-
ity); (2) the undecidability of the kind of unification required (E-unification).

In this paper, we show that the completeness of the method of equational
matings is preserved if unrestricted E-unification is replaced by rigid F-
unification. We also prove that rigid E-unification is decidable, which shows
that the second undecidability factor can be eliminated. The NP-completeness
of rigid E-unification shows clearly how the presence of equality influences the
complexity of theorem-proving methods. For languages without equality, one
can use standard unification whose time complexity is polynomial, and in fact
O(n). For languages with equality, the unification required is NP-complete.
When dealing with a fixed equational theory for which a practically tractable or
decidable unification algorithm is known, we recognize that it is unclear
whether our new method compares favorably with the method of matings using
this specialized unification algorithm. It seems unlikely that this question can
be settled at the theoretical level, and since our method has not yet been
implemented, we are unable to make any claims of practicality. Nevertheless, it

" One of the referees has pointed out that Bibel’s connection method appeared in print earlier
than Andrews’s method of matings.
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seems unquestionable that having a decidable unification procedure (preserv-
ing completeness) represents significant progress.

The method of matings applies to formulas in negation normal form, and
was introduced with two motivations in mind: to avoid breaking a formula into
parts, which can result in loss of information about the global structure, and to
avoid transforming it to clausal form, which can result in an exponential
increase in the number of literals due to the repeated use of the distributive
law (PV(Q AR) =PV Q) APV R)). This method is an incremental
proof (or refutation) procedure that interleaves two steps: quantifier-duplica-
tion steps, and search for matings. It is an analytic proof procedure in the
sense of Smullyan [40], and, even though Andrews did not present it in terms of
Gentzen or Tableaux systems [17, 40, 41], it can easily be presented in any of
these formalisms. In fact, this is the approach followed in Bibel and Schreiber
[10], and thoroughly investigated in Eder [14, 15]. Fitting’s method of tableaux
[16] is also close in spirit to matings.

The method of matings has been implemented at CMU in the system TPS
designed by Andrews and his collaborators [3]. A large number of nontrivial
theorems have been proved by the system TPS, and this system is also used as
an effective teaching tool. Since TPS uses a version of Huet’s higher-order
unification procedure [25, 26], it is capable of performing higher-order reason-
ing. For example, the TPS system [3] can prove Cantor’s Theorem (that there is
no surjection from a set to its powerset) without any assistance (the higher-order
unification procedure finds a term that corresponds to the diagonal set {a €
Ala & f(a)} used in the standard proof). Equality reasoning can be dealt with
indirectly by defining equality using second-order quantifiers (see Section 5.4),
but this is very inefficient, and there are no other facilities in TPS to deal
directly with equality.

The method of matings exploits the fundamental property given by the
Skolem—Herbrand—Goddel theorem [1, 2, 17]. In short, the unsatisfiability of a
(universally) quantified sentence can be reduced to the unsatisfiability of a
quantifier-free formula, modulo guessing a ground substitution. The crucial
observation due to Andrews and Bibel is that a quantifier-free formula (in nnf)
is unsatisfiable iff certain sets of literals occurring in A (called vertical paths)
are unsatisfiable. Matings come up as a convenient method for checking that
vertical paths are unsatisfiable. Roughly speaking, a mating is a set of pairs of
literals of opposite signs (mated pairs) such that all these (unsigned) pairs are
globally unified by some substitution. The importance of matings stems from
the fact that a quantifier-free formula A4 has a mating iff there is a ground
substitution 6 such that 0(.A4) is unsatisfiable.

The extension to equational matings is nontrivial, and requires proving a
generalization of Andrews’s version of the Skolem—Herbrand—Gddel theorem
[1, 2]. It also requires extending the concept of a mating so that an equational
mating is a set of sets of literals (mated sets), where a mated set consists of
several positive equations and a single negated equation (rather than pairs of
literals, as in Andrews and Bibel’s case), and a form of unification modulo
equational theories (E-unification) first studied by Plotkin [39]. A related
extension is sketched (without proofs) in Bibel [9, Sect. V.3, pp. 234-242].
However, Bibel’s method and ours differ significantly. This is because standard
unification is used in Bibel’s method, and so, it is usually necessary to include
extra literals arising from instances of the equality axioms to the mated sets.
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On the other hand, our method uses a form of FE-unification, and we never
include any extra literals (arising from equality axioms) in our mated sets. For a
detailed comparison of our method with others, see Section 5.4.

Checking that a family of mated sets is unsatisfiable, that is, an equational
mating, leads to an interesting and nontrivial problem. This problem, which is
central to this method, is a restricted version of E-unification.

Problem 1. Given E = {£,11 <i < n} afamily of » finite sets of equations
and S = {{u,,v,) |1 <i < n} asetof n pairs of terms, is there a substitution
such that, treating each set #(FE,) as a set of ground equations (i.e., holding the
variables in 6(E,) “rigid”), 6(x,) and 0(v,) are provably equal from 6(E,) for
1=1,...,n?

Equivalently, is there a substitution 6 such that 6(x,) and 6(v,) can be
shown congruent from 6(E,) by the congruence closure method fori = 1,..., n
(Kozen [30, 31]. Nelson and Oppen [36], Downey et al. [13])?

A\ substitution 6 solving problem 1 is called a rigid E—zmzﬁer of §, and a pair
(E,S) such that S has some rigid E-unifier is called an equational premating.
It will be shown in Section 12 that deciding whether a pair (E,S) is an
equational premating is an NP-complete problem. Since the problem of decid-
ing whether a family of mated sets forms an equational mating is equivalent to
the problem of finding whether a pair (E,S) is an equational premating, the
former problem is also NP-complete. Actually, this result is an easy extension
of a simpler problem.

Problem 2. Given a finite set £ = {u; = v,...,u, = vy,} of equations and a
pair {u, v) of terms, is there a substitution 6 such that. treating 0(E) as a set
of ground equations, 6(u) =, ,, 6(v), that is, 6(u) and 6(v) are congruent
modulo 6(E) (by congruence closure)?

The substitution 6 is called a rigid E-unifier of u and v.

Example 1.1. Let £ = {fa = a, ggx = fa}, and {u,v) = {gggx, x). Then, the
substitution @ = [ga/x]is a rigid E-unifier of « and v. Indeed, 6(E) = {fa =
a, ggga = fa}, and 6(gggx) and 6(x) are congruent modulo §(E), since

0(8ggx) = gggga — gfa  using ggga = fa
—ga = O(shng fa =a.

Note that 6 is not the only rigid E-unifier of « and v. For example, [ gfa /x] or
more generally [gf*a /x] is a rigid E-unifier of u and v. However, @ is more
general than all of these rigid E-unifiers (in a sense to be made precise later).
It will be shown in Section 10 that there is always a finite set of most general
rigid E-unifiers called a complete set of rigid E-unifiers.

Note that any substitution 6 satisfying the above problem is an E-unifier of
u and v. However, the equations in £ are used in a restricted fashion. Contrary
to E-unification, in which there is no bound on the number of instances of the
equations in F used to show that 6(u) <. 0(v), in our situation, only the m
instances in 6(E) can be used (any number of times, m < n).

The solution to problem (2) is a significant extension of a result of Kozen,
who has shown that the problem is NP-complete when all equations in E are
ground [31]. We also show that even when u, v are ground, and all equations in
E except one regular equation are ground, the problem is NP-complete.
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Rigid E-unification is exciting because it eliminates one of the two aspects of
undecidability associated with the method of equational matings; namely, that
of E-unification. This is particularly important here, since even if E-unification
is decidable for the set of all equations occurring in a formula in nnf, it is
necessary to consider subsets of this set of equations, and the FE-unification
problem for any subset can be undecidable.

The paper is organized as follows: Section 2 reviews the main concepts used
in this paper. In Section 3, the method of equational matings is presented
informally by means of examples. In Section 4, the central concept of an
equational mating is introduced, and some important results about them are
established. Section 5 is devoted to a version of the Skolem—Herbrand—Gdodel
theorem for first-order languages with equality (Theorem 5.2). In order to state
this theorem, we need the notion of a compound instance (see Andrews [1] and
Bibel [7-9]). The connection with equational matings is made via the notion of
amplification, and the completeness of the method is shown (Theorem 5.5). It
is also shown that the method remains complete if outermost amplifications
are performed, and the section ends with a comparison with other methods.
Sections 6-12 are devoted to rigid FE-unification. Basic definitions about
complete sets of rigid E-unifiers are given in Section 6. Minimal rigid E-uni-
fiers are studied in Section 7. A method for reducing a set of ground rewrite
rules is reviewed in Section 8. The method for finding complete sets of rigid
E-unifiers is given in Section 9. The soundness, completeness and decidability
of the method are shown in Section 10. In Section 11, it is shown that rigid
E-unification is NP-complete. The application of rigid E-unification to equa-
tional matings is presented in Section 12. A refutation procedure based on
equational matings is presented in Section 13. Section 14 contains the conclu-
sion. The appendix provides a semantic proof of the Skolem-
Herbrand—-Godel theorem, in the line of Andrews’s proof for the case without
equality.

Readers who want to find out quickly about the main results (provided some
familiarity with the matings/connections method) are advised to skim Section
3, then jump to Section 6, then to Section 8, Section 9, Section 12, and finally
Section 13. Example 9.4 offers a simple illustration of the new method.

2. Preliminaries

This section contains a brief review of the main concepts used in this paper. As
much as possible, we stick to the definitions used in the literature on the
subject. More specifically, we follow Huet and Oppen [28], and Gallier [17].
The purpose of this section is mainly to establish the terminology and the
notation, and it can be omitted by readers familiar with the literature. First, we
review the basics of many-sorted languages.

Definition 2.1. A set S of sorts (or types) is any nonempty set. Typically, S
consists of types in a programming language (such as integer, real, boolean,
character, etc.). An S-ranked alphabet is a pair (5, p) consisting of a set 3
together with a function p: 3 — §* X § assigning a rank (u, s) to each symbol
fin 3. The string u in S* is the arity of f and s is the sort (or type) of f. If
u=s, s, (n=1), a symbol f of rank (u,s) is to be interpreted as an
operation taking arguments, the ith argument being of type s, and yielding a
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result of type s. A symbol of rank (e, s) (when u is the empty string) is called
a constant of sort s. For simplicity, a ranked alphabet (3, p) is often denoted
by 2.

Next, we review the definition of tree domains and trees (or terms). Let N
denote the set of natural numbers. and N, the set of positive natural numbers.

Definition 2.2. A tree domain D is a nonempty subset of strings in N*
satisfying the conditions:

(1) For all u,ve N* if uve D, then u € D.
(2) For all u € N*, for every i € N_, if ui € D then, for every j, 1 <j <1,
uj € D. Forevery n € N, let [n] ={1,2,...,n}, and [0] = &.

Definition 2.3.  Given an S-sorted ranked alphabet 3, a X-tree (or term) of
sort s is any function £: D — X, where D is a tree domain denoted by dom(i),
and ¢ satisfies the following conditions:

(1) The root of ¢ is labeled with a symbol t(e) in ¥ of sort s.

(2) For every node u € dom(t), if {i|ui € dom(t)} = [n], then if n > 0, for
each ui, i € [n], if t(ui) is a symbol of sort v, then #(u) has rank (v, s"),
with v = v, --- y,, else if n = 0, then #«(u) has rank (e, s'), for some s’ € S.

Given a tree ¢ and some tree address u € dom(t), the subtree of t rooted at u
is the tree f/u whose domain is the set {v|uv € dom(t)} and such that
t/ulv) = t(uv) for all v in dom(s/u).

Given two tree addresses a, 8 € dom(t) in a tree ¢, « is an ancestor of S iff
a is a prefix of B,” and « is a proper ancestor of B iff it is an ancestor of g
and a # B. Addresses « and B are independent iff neither one is an ancestor
of the other. The set of all finite trees of sort s is denoted by T%, and the
S-indexed family (75), s of all finite trees by 7.

In this paper, it is assumed that for every S-sorted alphabet I, there is a
distinguished sort bool € S. Symbols of sort bool are called predicate symbols.
Terms of sort bool will be interpreted as logical formulas.

The operation of tree replacement (or tree substitution) will be needed.

Definition 2.4.  Given two trees ¢, and ¢, and a tree address u in ¢,, the
result of replacing t, at u in t,, denoted by #,[u < ¢,], is the function whose
graph is the set of pairs

{(v,t,(v)) v & dom(1,), u is not a prefix of v)
U{(uv, 1,(v)) lv e dom(t,)},

and it is only defined provided that the sort of the root of ¢, is equal to the sort
of #,(u).

Let X = (X,),cs be an S-indexed family of countable sets of variables. We
can form the S-indexed family 7.(X) obtained by adjoining the S-indexed
family (X)), . 5 to the S-indexed family of sets of constants in 3. To prevent
free algebras from having empty carriers (so that the Herbrand-Skolem—Godel
theorem holds), we assume that every sort is nonvoid. We say that a sort s is
nonvoid iff either there is some constant of sort s, or there is some function
symbol f of rank p(f) = (s,...,s,,s) such that s,...,s, are nonvoid. Then,

* That is. g = ay, for some y € N%.
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for every sort s, the set 7¢ is nonempty, and it is well known that for every set
X, Ts(X) is the free 3-algebra generated by X (see Gallier [17]). This allows
us to define substitutions.

Definition 2.5. Given a term ¢, the set of variables occurring in ¢ is the set
{x € X |3u € dom(t), t(u) = x}, and it is denoted by Var(¢).

Definition 2.6. A substitution is any (S-sorted) function o: X — Ty(X),
such that, o(x) # x for only finitely many x € X. Since Tw(X) is the free
S-algebra generated by X, every substitution o: X — T5(X) has a unique
homomorphic extension &: Ts(X) — Ts(X). In the sequel, we identify o and
its homomorphic extension 4.

Definition 2.7. Given a substitution o, the support (or domain) of o is the
set of variables D(o) = {x | o(x) # x}. The set of variables introduced by o is
the set of variables I(0') = U ¢ p(, Var(o(x)). Given a substitution o, if its
support is the set {x,,...,x,}, and if ¢, = o(x,), 1 <i <n, then o is also
denoted by [¢, /%, ..., t,/x,]. Given a term (or formula) r, we also denote o (r)
as rlt, /xq,....1,/%,].

Given a substitution ¢ and a set W of variables, the restriction of o to W,
denoted by o |, is the substitution 6 defined such that, (x) = o (x) for all
x € W,and 0(x) =x for all x & W.

Definition 2.8. Given two substitutions o and 6, their composition is the
substitution denoted by o; 8, such that, for every variable x,o; 6(x) =
(o (x)) (the composition of the functions o and 6).

A substitution o is idempotent if o; o= o. It is easily seen that o is
idempotent iff D(o) N I(o) = T

We also quickly review formulas in negation normal form. For details, see
Gallier [17].

Definition 2.9. An atomic formula is a term of the form either Pt; -~ 1,
where P is a predicate symbol of rank (s, ..., s,, bool) and each ¢, is a term of
sort s, (s; # bool), or a term of the form (¢, = ¢,), where ¢, and ¢, are terms of
some identical sort s (s # bool). An atomic formula of the form (7, = t,) is
called an equation of sort s. It is assumed that bool never occurs in the arity of
any symbol. A literal is either an atomic formula or the negation of an atomic
formula.

Definition 2.10. Formulas in negation normal form (for short, formulas in
nnf) are defined inductively as follows: A formula A is in nnf iff either

(1) A is a literal, or

(2) A =(B vV C), where B and C are in nnf, or
(3) A = (B A C), where B and C are in nnf, or
(4) A = V¥xB, where B is in nnf, or

(5) A = 3xB, where B is in nnf,

A quantifier-free formula in nnf is obtained by applying only clauses (1)—(3),
and a universal formula in nnf by applying only clauses (1)—(4).

Definition 2.11. Given a formula A4 (resp., a term ¢), the set of variables
occurring free in A (resp., t) is denoted by Var(A) (resp., Var(t)). A ground
term ¢ is a term such that Var(t) = &, and similarly a ground formula A is a
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quantifier-free formula such that Var(A4) = &. A ground substitution o is a
substitution such that o(x) is a ground term for every variable x in the
support of o.

Finally, we review some concepts related to term rewriting.

Definition 2.12. let — be a binary relation — CA X A4 on a set 4. The
transitive closure of — is denoted by —» and the reflexive and transitive
closure of — by . The converse (or inverse) of the relation — is the
relation denoted as — ! or <, defined such that u <« v iff v— u. The
symmetric closure of — , denoted by < . is the relation — U« .

Definition 2.13. A relation > on a set 4 is Noetherian or well founded ift
there are no infinite sequences {ay,...,a,,d,,...., of elements in A such
that a, > a,., forall n > 0.

Definition 2.14. A preorder < on aset A is a binary relation < € 4 X 4
that is reflexive and transitive. A partial order < on a set A is a preorder that
is also antisymmetric. The converse of a preorder (or partial order) =< is
denoted as > . A strict ordering (or strict order) < on a set A4 is a transitive
and irreflexive relation. Given a preorder (or partial order) < on a set A4, the
strict ordering < associated with < is defined such that s < ¢ iff s < ¢ and
t % 5. Conversely, given a strict ordering < , the partial ordering < associated
with < is defined such that s < ¢ iff s < ¢ or s = ¢t. The converse of a strict
ordering < is denoted as > . Given a preorder (or partial order) <, we say
that =< is well founded iff > is well founded.*

Definition 2.15. Let — be a binary relation — C Ts(X) X T5(X) on
terms. The relation — is monotonic iff for every two terms s, ¢ and every
function symbol f, if s — ¢ then f(...,s,...) = f(...,¢,...). The relation —
is stable (under substitution) if s — ¢ implies o (s) = o (¢) for every substitu-
tion o.

Definition 2.16. A strict ordering < has the subterm property iff s <
fC...,s,...) for every term f(...,s,...) (since we are considering symbols
having a fixed rank, the deletion property is superfluous, as noted in Der-
showitz [11]). A simplification ordering < is a strict ordering that is monotonic
and has the subterm property. A reduction ordering < is a strict ordering that
is monotonic, stable, and such that > is well founded. With a slight abuse of
language, we also say that the converse > of a strict ordering < is a
simplification ordering (or a reduction ordering). It is shown in Dershowitz [11]
that there are simplification orderings that are total on ground terms.

Definition 2.17. Let E € T,(X) X Ty(X) be a binary relation on terms, We
define the relation <, over Ty(X) as the smallest symmetric, stable, and

> We warn the readers that this is not the usual way of defining a well-founded relation in set
theory, as for example in Levy [32]. In set theory, the condition is stated in the form a,,, <a,
for all » = 0, where < = > ~1 It is the dual of the condition we have used, but since < => "1,
the two definitions are equivalent. When using well-founded relations in the context of rewriting
systems, we are usually interested in the reduction relation = and the fact that there are no
infinite sequences {ay....,d,.4,,1,...) such that a, = a, ., for all n > 0. Thus, following
g)ther authors, including Dershowitz, we adopt the dual of the standard set theoretic definition.

Again, we caution our readers that in standard set theory it is < that is well founded! However,
our definition is equivalent to the standard set-theoretic definition of a well-founded partial
ordering.
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monotonic relation that contains £. This relation is defined explicitly as
follows: Given any two terms ¢, ¢, € Ts(X), then 7, &, 1, iff there is some
variant® (s,¢) of a pair in E U E™!, some tree address « in ¢,, and some
substitution o, such that

t/a=c(s) and t,=tla < o(t)].

(In this case, we say that o is a matching substitution of s onto t,/«. The
term ¢, /a is called a redex.) Note that the pair (s,¢) is used as a two-way
rewrite rule (that is, nonoriented). In such a case, we denote the pair (s, ¢) as
s =t and call it an equation. When ¢, ©, t,, we say that we have an equality
step. It is well known that the reflexive and transitive closure <, of <. is
the smallest stable congruence on 75(X) containing E. When we want to fully
specify an equality step, we use the notation

t o t

[a,s=t,0]

(where some of the arguments may be omitted). A sequence of equality steps

U=Uy g Uy ©p " @p U, ©Cp U, =V

is called a proof of u &, w.

Definition 2.18. Given a finite set E of equations (ground or not) and any
- two terms u, v (ground or not), we use the notation u = ; v to express the fact
that, treating F as a set of ground equations, u <, v. Equivalently, u % . v iff
u and v can be shown congruent from E by congruence closure (Kozen [30, 31],
Nelson and Oppen [36], Downey et al. [13]) again, treating all variables as
constants—they are considered rigid.

Definition 2.19. When a pair (s,t) € E is used as an oriented equation
(from left to right), we call it a rule and denote it as s — t. The reduction
relation —p is the smallest stable and monotonic relation that contains E. We
can define 7, - t, explicitly as in Definition 2.17, the only difference being
that (s, ¢) is a variant of a pair in E (and not in E U E~'). When ¢, - £,, we
say that ¢, rewrites to t,, or that we have a rewrite step. When we want to fully
specify a rewrite step, we use the notation

Iy Pla,s o) b2

(where some of the arguments may be omitted).

When Var(r) € Var(l), then a rule [ — r is called a rewrite rule; a set of such
rules is called a rewrite system. A degenerate equation is an equation of the form
x = t, where x is a variable and x & Var(t), and a nondegenerate equation is an
equation that is not degenerate.

Definition 2.20. Let — < T5(X) X T5(X) be a binary relation on T5(X).
We say that — is Church—Rosser iff for all ¢, 1, € Ty(X), if
t, & t,, then there is some ¢, € T<(X) such that ¢, > ¢, and t, - t;. We say
that — is confluent iff for all t,2),t, € T5(X), if + = ¢, and ¢z > t,, then

> In what follows, we shall assume that before a pair (ie., an equation) is used it has been
renamed apart from all variables in current use. This is essential to prevent clashes among the
variables. Thus, we shall always state that a varant of an equation is being used.
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there is some #; € T5(X) such that ¢, = ¢, and 1, - ;. A term s is irreducible
with respect to — iff there is no term ¢ such that s — .

It is well known that a relation is confluent iff it is Church~Rosser [27]. We
say that a rewrite system R is Noetherian, Church—Rosser, or confluent, iff the
relation —, associated with R given in Definition 2.19 has the corresponding
property. We say that R is canonical iff it is Noetherian and confluent.

3. Review of the Method

In this section, we present the method of equational matings informally. Given
a rectified® universal sentence A4, in nnf, the method works in an incremental
fashion as follows. The formula A, will evolve in steps called quantifier
duplication steps, and we denote this evolvmg formula by 4. We also need to
refer to the quantifier-free formula A obtained from A by deleting the
quantifiers, called an amplification of A,,.

Initially, A:= A,

Step 1. Construct a set vp(A) of sets of literals called vertical paths,
associated with A. The set vp(A) is defined inductively as follows:

If A is a literal, then vp(A ) = {A));
If A =(B A C) then vp(A) ={m, U m, |7 € vp(B),m, € vp(C);
If A=(BV C), then vp(A) = vp(B) U vp(C).

Step 2. Find whether there is a substitution o such that for every vertical
path 7 € vp(A) o() is unsatisfiable. If Step 2 succeeds, go to Step 4.
Otherwise, go to Step 3.

Step 3. Choose some universal subformula VxB of the current A, and
replace it by (VxB A YxB). Then, rectify variables in this new formula, obtain-
ing A'. Let A:= A'. This step is called a quantifier duplication step. Go back to
Step 1.

Step 4. Stop, A, is unsatisfiable (and so are A and A).

If A4, is unsatisfiable, this procedure will stop after a finite number of
quantifier duplication steps when it succeeds in finding some substitution
closing all vertical paths in Step 2. Roughly speaking, a set consisting of certain
subsets of vertical paths, such that these subsets are unsatisfiable under some
substitution and span all vertical paths, is called an equational mating. The
heart of the method of matings is to find such equational matings.

The difficult step in the presence of equality is Step 2. What is difficult is not
to check that a substitution closes all vertical paths—this can be done using
the congruence closure algorithm—but to determine whether such a substitu-
tion exists at all. This problem is indeed decidable, but NP-
complete. For languages without equality, the checking is reduced to the
existence of a standard unifier, which is easy. Unfortunately, whether or not

®A formula A is rectified iff no variable occurs both free and bound in A, and distinct
occurrences of quantifiers bind distinct variables. It is well known that every formula is equivalent
to a rectified formula. It is also well known that for every formula A, one can construct a
universal formula B, a Skolem form of A, such that A is unsatisfiable iff B is unsatisfiable (see
Gallier [17]).
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equality is present, the number of vertical paths to be checked may be
exponential. The following example illustrates the method.

Example 3.1. Let
A= (Vx(x2 =Xx) A ((Pa®> A = Pa) V (Pb*> A = Pb))).
There are two vertical paths
{(x2 =x), Pa’, — Pa}
and
{(x* =x), Pb?, - Pb}

depicted as follows:

(x> =x)
3/ \ 2
Pa P‘b
— Pa - Pb

It is clear that there is no substitution that closes both paths. However, the
substitution [a /x] closes the first path, and the substitution [b/x] closes the
second path. Hence, we perform an amplification step. We obtain

A" = ((Vx,(x} = 2,) A Vas(a3 =3,)) A (P& A = Pa) V (P> A = Pb))).
There are two vertical paths

{(x} =x)), (x2 £ x,), Pa®, = Pa)
and

{(x3 = x,), (23 = x,), Pb?, = Pb)

depicted as follows:

(32 1,)
Pa? \PI‘DZ
- Pa —le

This time, it is easy to see that the substitution o = [a/x, b/x,] closes both
vertical paths, using the fact that Pa® rewrites to Pa in two steps using the
equation a? = a, and that Pb> rewrites to Pb in one step using the equation
b? = b. Hence, A is unsatisfiable.

It should be noted that our method does not require the inclusion of extra
literals corresponding to instances of equational axioms during the amplifica-
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tion process, contrary to Bibel's method [9]. In this sense, equality is “built in”.
In the following sections, we shall define the method precisely and prove its
completeness rigorously.

4. Equational Matings

In order to generalize matings to equational languages, it is necessary to
consider sets of literals rather than pairs, as in Andrews and Bibel’s case. Let
us first consider the case of quantifier-free formulas in negation normal form.
The general case will be lifted from the quantifier-free case via the
Skolem-Herbrand—Godel theorem, and using rigid E-unification.

Let 4 be a quantifier-free formula, and let {x,,...,x,} be the set of
variables occurring in A. The universal closure of A is the sentence
Vx; -Vx,A4. It is also denoted as VA. Testing the unsatisfiability of a
quantifier-free formula A4 is much easier than testing the unsatisfiability of its
universal closure VA. In the former case, the congruence closure method gives
a decision procedure, whereas in the latter case, unsatisfiability is undecidable.

The crucial observation due to Andrews and Bibel is that a quantifier-free
formula in nnf is satisfiable iff some conjunction of literals occurring in A4 is
satisfiable [1, 7, 8, 9].

Definition 4.1. Given a quantifier-free formula A in nnf, the set vp(A) of
vertical paths in A is the set of sets of literals defined inductively as follows:

If A is a literal, then vp(A) = {{A4)}};
If A=(BAC),then vp(A) ={m, U m, |7, €vp(B), 7, €vp(Cl;
If A =(BV C(C),then vp(A) = vp(B) U vp(C).

Let us say that a vertical path 7 is satisfiable iff the conjunction of the
literals in 7 is satisfiable. The following simple lemma shows the crucial role
played by vertical paths.

LemMA 4.2, Given a quantifier-free formula A in nnf, A is unsatisfiable iff
every vertical path in A is unsatisfiable.

ProoOF. Straightforward induction on the structure of 4. O

A criterion for the unsatisfiability of a conjunction of literals based on the
concept of congruence closure is known. In order to explain this criterion, it is
convenient to represent every atomic formula as an equation. This can be done
by adding to our language (which already contains the special sort bool) the
constant T of sort bool, interpreted as true. Then, every atomic formula

Pt,,...,t, of sort bool can be expressed as the equation (Pry,...,1, =T).
Hence, we can assume that all atomic formulas are equations. The notations
Pt ....t,and (Pr,... 1, = T) will be used interchangeably for atomic formu-

las of sort bool.
Given a vertical path 7, let us arrange the literals in 7 by grouping positive
and negative literals together, to form a conjunction C_ of the form

($1=0) A A sy =0,) A (i =) A A (s =1).

v

Let =, be the congruence closure [17, 29, 30] on the graph G(C,) of the
relation

F = {(S1> tl)s--"(sm7tm)}‘
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The following result is well known (see [17], [29], and [30]).

LEMMA 4.3. 7 is unsatisfiable iff for some j, 1 <j <n, s/ = 1.

The concept of an E-unifier will be needed later.

Definition 44. Let E be a finite set of (universally quantified) equations.
Given two terms # and v, we say that a substitution o is a unifier of u and v
modulo E, for short, an E-unifier of u and v, iff a(u) <5 o(v).

The definition of an equational mating is motivated by Lemma 4.3, the
Skolem-Herbrand—Gdodel theorem (Theorem 5.2), and Lemma 5.4. Indeed,
combining Theorem 5.2 and Lemma 5.4, we have that a universal sentence A
in nnf is unsatisfiable iff there is some quantifier-free formula D (an amplifica-
tion of A) and some substitution o such that o(D) is unsatisfiable. The
concept of an equational mating is designed so that we have a criterion
expressed in terms of vertical paths for testing whether given a quantifier-free
formula D, there is some substitution o such that (D) is unsatisfiable (see
Lemma 4.6).

Definition 4.5. Let A be a quantifier-free formula in nnf. An equational
mating # for A is a pair (MS, o), where MS is a set of sets of literals called
mated sets and o is a substitution, such that, each mated set is a subset of some
vertical path 7 € vp(4) and is of the form

&= {(Sl = tl))'--a(sm = tm)? *‘1(5 = t)} &,

where m > 0,7 and, for every mated set {(s, = ¢,),...,(s,, =¢,), 7(s = 1)} €
MS, the set of literals {a (s, = ¢)),..., o(s,, =t,), 7 o(s = 1)} is unsatisfiable.
The substitution associated with the mating .# is also denoted as o,. We also
commit a slight abuse of language (and notation) and say that a mated set
belongs to ..

An equational mating .# is a refutation mating iff o,(A4) is unsatisfiable.

An equational mating .# is path acceptable® (for short, p-acceptable),
iff, for every path 7 € vp(A), there is some mated set {(s; =¢),...,
(s,, =t,), 7(s = t)} € #, such that

{(Sl = tl)?"'>(srn = tm)? —1(‘9 = t)} Q .
A number of remarks are in order:

(1) Given the substitution o, the mating condition can be tested using the
congruence closure method. As mentioned in the introduction, it is decid-
able whether a mating substitution exists, but this is an NP-
complete problem. .

(2) Given a family MS of mated sets, let E = (E,.)s« ys be the family of sets
of equations of the form E., = {(s, =¢),...,(s, =1,)} and S =
{{s,t) |5 € MS} the set of pairs where E,. and (s, ) are associated with
the mated sets . = {(s, = ¢t,),...,(s,, = t,), 7(s = 1)} € MS. Observe that
A = (MS, o) is a mating iff o _is a solution of problem 1 (discussed in the
introduction) for (E, $), iff (E,S) is an equational premating. This key
observation will be used in searching for the substitutions associated with
matings. They are the rigid E-unifiers of S.

" The case m = 0 is indeed possible when o (s) = o(¢), that is, when o is a unifier of 5 and ¢.
8 A path acceptable mating is also called a spanning mating by Miller [35].
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(3) It is obviously desirable to choose p-acceptable matings as small as
possible. One can define a preorder on matings as follows. Given two
matings .#, and .#,,.#, C .#, iff for every mated set §, € .#), there is
some mated set §, € .#,, such that, §, € §,. A mating .# is minimal iff it
is minimal with respect to the preorder T , that is, for any mating .#', if
A T4, then #' =.#. It is obvious that if a p-acceptable mating exists,
then a minimal p-acceptable mating also exists, but it may be difficult to
find it efficiently. In order to find matings as small as possible, one can
look for overlapping vertical paths that are spanned by some common
mated set. It should be pointed out that there may be many incomparable
matings that are all minimal. We leave the problem of discovering strate-
gies for finding minimal matings as a topic for further research.

(4) If A does not contain equations, each mated set contains some atom that
unifies with the negated atom. Let P, --- ¢, be the negated atom in a
mated set. Any mated set for a formula without equational atoms is of
the form {(A4, =7T),...,(A4,, =T), 7(Pr, -+ 1, = T)} where A,,..., 4,
are nonequational atoms. Since the set {o(A4, =T),...,0(A4, =T),
- o(Pt; -+ t, = T)} is unsatisfiable, there is some atom A, = Ps; - s,,
such that, o(Pt; - t,) = o(Ps, -+ s,). Hence, o is a unifier of Pz, - ¢
and Ps, - s

n

n-

Hence, when A does not contain equality, a mating can be defined as a set
of pairs (L, = L") of literals of opposite signs, such that o(L) = ¢(L’). as in
Andrews [1] and Bibel [7-9]. The following theorem is a straightforward
generalization of a result of Andrews [1] to languages with equality.

LEMMA 4.6. Given a quantifier-free formula A in nnf, the following properties
hold:

(1) Given a substitution 6, if 6(A) is unsatisfiable, then there is a p-acceptable
mating A for A.

(2) A p-acceptable mating .# for A is a refutation mating for A, that is, o ,(A) is
unsatisfiable.

Proor

(1) Assume that 6(A) is unsatisfiable. By Lemma 4.2, every vertical path in
vp(0(A)) is unsatisfiable. Note that every vertical path 7' & vp(6(A))
is of the form (), for some vertical path 7 € vp(A4). Since every path
7' € vp((A4)) is unsatisfiable, by Lemma 4.3, there is some subset

{(s; =1]),....0s,, =1,), ~(s" =1¢)} C 7’ of literals in «' that is unsatisfiable.
For every vertical path o € vp(A4), since 7' = 6(sr) is a vertical path in
vp(6(A)), we can choose a set of literals {(s; = 7;),...,(s, =¢), =(s =)} C

a, such that,
{0(s; =¢t),...,0(s, =1,), 7 0(s =1)}
={(s7 =10}, (s = 15), (5" = 1)} (*)
is unsatisfiable. We form a mating .# = (MS, 6) for A by choosing MS as the
set of sets of literals defined in (+). Clearly, .# is a p-acceptable mating for A.
(2) Assume that .# = (MS, o) is a p-acceptable mating for 4. We prove

that every vertical path 77’ &€ vp(o(.4)) is unsatisfiable. Indeed, every vertical
path 7' € vp(o(A)) is of the form o (), for some vertical path 7 € vp(A).
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Since .# is p-acceptable, for every vertical path 7 € vp(A4), there is some
mated set of literals {(s; = ¢)),...,(s, =1t,), 7(s = 1)} € .#, such that

{(s;=1),...,(5, =1,), (s =1} Cm.

Since .# is a mating, the set S, = {o(s; =#)),...,0(s,, =1¢,), "o(s =1)}is
unsatisfiable. Since S, is a subset of the vertical path 7' € vp(o(A4)), 7' is
unsatisfiable. But then, by Lemma 4.2, o-( 4) is unsatisfiable, which establishes
the fact that .# is a refutation mating. O

The previous lemma implies the following useful corollary.

CoROLLARY 4.7. Given a quantifier-free formula A in nnf, there is a substitu-
tion 0 such that 0(A) is unsatisfiable iff there is a p-acceptable mating # for A.

Let us give an example illustrating the use of the previous lemma.

Example 4.8.  Consider the following Horn formula A, where x, y, z denote
variables:
(a =b) A
(FPx=x) v (e =f)) A
(Qa vV = (fa = a)) A

(Foy=y)v =0y)A
(Ra Vv —(fa=a)V —Pfa) A
“ Rfz A
Pa

There are 24 vertical paths in A4. Let 0 = [a/x, a/y, a/z]. The substitution 6
closes all the paths in 6(A4), which is easy to see for the 21 vertical paths
containing the sets of literals {(f°a = a), = (f%a = @)}, {Qa, 7 Qa}, and
{(a = b), 7 (fa = fb)}. A p-acceptable mating for A is given by 6 and the
following set of 6 sets of literals:

(=), ~(ru = a).
{Qa, = Oy},
{(a=Db), 2 (fc =)},
{(fsy =y),(f’x =x), Ra, —erz} ,
{(Fy =) (3 =x), ~(fa = )},
{(fsy iy),(f3x = x), Pa, —'Pfa}} .

The above set is a mating because (fa = a) is equationally provable from
(f3a = a) and (f3a = a). Indeed, (f3a = a) implies (f*a = fa), which implies
(f3a = f*a), which, by transitivity, implies ( f2a = a). In turn, (f’a = a) implies
(fa = fa), and by one more application of transitivity, this implies (fa = a).
According to Lemma 4.6, 6( A) is unsatisfiable. Since = Vx Vy Vz4 D 6(A),
the universal closure VA4 of A is also unsatisfiable.
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Unfortunately, in general, a universal sentence VA may be unsatisfiable, but
there may not be any substitution @ such that 6(A) is unsatisfiable (see
Example 3.1). However, a version of the Skolem—Herbrand—Godel theorem for
first-order languages with equality ensures that some substitution instance of
an amplification of A (a formula obtained from A by duplicating some
universal subformulas of A4) is unsatisfiable. It is the notion of amplification
(see Andrews [1] and Bibel [7-9]), that will allow us to apply the method of
matings to arbitrary universal sentences in nnf.

5. A Skolem—Herbrand—Godel Theorem

First, we need the definition of a compound instance (see Andrews [1] and
Bibel [7-9]).

5.1 CoMPOUND INSTANCES. From now on, it is assumed that we are dealing
with rectified universal formulas in nnf. The standard statement of the
Skolem—Herbrand—Gddel theorem (as in Gallier [17]) says that given a univer-
sal prenex sentence A = Vx, ---Vx,B (where B is quantifier-free), A4 is
unsatisfiable iff there exist some ground substitutions o,..., o, such that
a(B) A -+ A a,(B) is unsatisfiable.

It would be nice if we could relax the condition that A4 is in prenex form, and
have a statement referring to a single substitution. This can be achieved by
introducing the ingenious concepts of a compound instance and of an amplifi-
cation (see Andrews [1] and Bibel [7-9]).

Definition 5.1. Let A be a rectified universal sentence in nnf (Every
variable occurring in A is universally quantified). The set of compound
instances (for short, c-instances) of A is defined inductively as follows:

(i) If A is either a ground atomic formula B or the negation — B of a ground
atomic formula, then A is its only c-instance;
(it) If A is of the form (B = C), where + € {V, A }, for any c-instance H of B
and c-instance K of C, (H +K) is a c-instance of A;
(iii) If A is of the form VxB, for any k > 1 ground terms ¢,,...,¢,, if H,
is a c-instance of Blr,/x] for i=1,...,k, then H, A - ANH, is a
c-instance of A.

The importance of c-instances lies in the following version of the
Skolem—Herbrand—Godel theorem, which is a generalization of a theorem of
Andrews to first-order languages with equality [I, 2]. For stating this theorem,
we assume (without loss of generality) that there is a least one constant symbol
in the language.

THEOREM 5.2 (Skolem—Herbrand—Gdodel theorem). Given a universal sen-
tence A in nnf (with or without equality), A is unsatisfiable iff some c-instance C
of A is unsatisfiable.

Proor. It is nontrivial. A proof is given in Gallier [17, Theorem 7.6.1, page
364]. Showing that if some compound instance C is unsatisfiable implies that 4
is unsatisfiable is straightforward, because it is easily shown that = 4 > C [17,
Theorem 7.6.1]. The proof of the converse is much harder. In Gallier [17], this
is derived proof-theoretically as a consequence of a sharpened Gentzen-like
Hauptsatz [17, Theorem 7.4.1, page 334, Theorem 7.4.2, page 337, and Lemma
7.6.2, page 360]. For the sake of completeness, a semantic proof in the line of
Andrews’s proof can be found in the appendix. O
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The connection between matings and compound instances is established
through the notion of amplification (see Andrews [1] and Bibel [7-9)).

5.2 AMPLIFICATIONS AND COMPOUND INSTANCES. Let A4, B, C, and D be
universal sentences in nnf.

Definition 5.3. We say that a sentence C is obtained from a sentence B by
quantifier duplication iff C results from B by replacing some subformula of B
of the form VxM by (VxM A VxM). If there is a sequence (C,,...,C ), n > 1,
of formulas, such that, B=C;, C =C,, and C,,, is obtained from C, by
quantifier duplication, for every i,1 < i < n, we say that C is obtained from B
by some sequence of quantifier duplications.

If B is obtained from 4 by some sequence of quantifier duplications, C is a
rectified sentence equivalent to B, and D is obtained from C by deleting the
quantifiers in C, we say that D is an amplification of A. The following result
can be shown easily.

LeMMa 5.4, Given a universal sentence A in nnf, C is a c-instance of A iff
there is some amplification D of A and some (ground) substitution 0 such that
C = 6(D).

Proor. The proof is by induction on the structure of A. The only case
worth mentioning is the case in which 4 = VxB. In this case, there are &
ground terms f,...,#;, and k formulas H,,..., H,, such that, each H, is a
c-instance of Bl¢,/x], and C = H, A --- A H,. By the induction hypothesis, for
each I, 1 <i < k, there is some amplification D, of Bl[t,/x] and a substitution
6,, such that, H, = 0,(D,). It can also be assumed (using renaming) that the
sets of variables occurring in these amplifications are disjoint. It is not difficult
to show by induction on the length of a quantifier duplication sequence that
for each B[t,/x] and D,, there is some renamed copy B, of B, some amplifica-
tion D/ of B, and a substitution o, such that, H, = 6(o,(D/)) (o, is a
substitution that substitutes ¢, for renamed occurrences of x). It can also be
assumed (using renaming) that the sets of variables occurring in these amplifi-
cations are disjoint. Then, note that D = D{ A -+ A D, is an amplification of
A that can be obtained by first applying k quantifier duplications, obtaining
VxB A --- A YxB (with k copies of YxB), and then by amplifying each copy of
VxB to D,. Furthermore, the substitution 6 = o; 0,;*; 0y; 8, is such that
C=06(D). O

We can now state one of the main theorems of this paper.

THEOREM 5.5.  Given a universal sentence A in nnf, A is unsatisfiable iff some
amplification of A has a p-acceptable mating.

PrOOF. First, assume that some amplification D of 4 has a p-acceptable
mating .#. Let B be obtained by some sequence of quantifier duplications
from A, C the rectified formula equivalent to B, and D the result of deleting
quantifiers from C. Let Vx,,...,Vx, be the quantifiers of C, in the left-to-right
order in which they occur in C. It is easy to show that =4 =B, £ B = C,
EC=Vx,...,Vx,D,and & Vx,,...,Vx,D D a,(D). Since .# is a p-accep-
table mating, by Lemma 4.6, it is a refutation mating, and so o, (D) is
unsatisfiable. Hence, A4 is also unsatisfiable.
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Now, suppose that A4 is unsatisfiable. By the Skolem—Herbrand—Gdodel
theorem (Theorem 5.2), there is some c-instance C of A which is unsatisfiable.
By Lemma 5.4, there is some amplification D of A4 and a substitution é such
that C = 6(D). By Lemma 4.6, since §(D) is unsatisfiable and D is quantifier
free, there is some p-acceptable mating .# for D. O

The following example illustrates Theorem 5.5.

Example 5.6. Let A be the following (equational) sentence:

Vx Vy Vz(x(x,*(y, z)) = «(+(¥.y),2))) (1)
AYu((u,1) =u) (2)
A Vu(#(1,v) = v) (3)
AVYw(s(w,w) = 1) (4)
A = (x(a,b) = (b, a)). (5)

The first three equations are the axioms for monoids (a binary operation =
which is associative and has an identity element 1), the fourth equation asserts
that the square of every element is the identity, and the fifth asserts the
negation of the commutativity of = (A4 is the result of a Skolemization). The
unsatisfiability of A4 asserts that any monoid such that the square of every
element is the identity is commutative.

Consider the following amplification D of A and the set MS consisting of
one set of literals:

D = («(u;, 1) = uy)
A Ge(wy,wp) = 1)
A (x(x1.%(¥1, 27)) = #(+(x1, ¥1), 21)))
A (#( X2, #( ¥, 23)) = «(+(X2,¥2), 23)))
A (x(wy.wa) = 1)
A (x(Lov) = vy)
A (x5, (V3. 73)) = #((X3.¥3), 23)))
A (e xg, =V, 24)) = #(2(X4, ¥4), 24)))
A (x(ws,ws3) = 1)
A 7 (x(a,b) = +(b,a)).

MS = {{(+(uy, 1) = uy),
(«(wi,wy) = 1),
(+(x, #(¥1> 21)) = #(+(x1.¥1), 21)))s
(52, x(y2,22)) = #(2(x3,¥2). 22))),
(x(wa,wy) = 1),
(1, v)) = vy),
(x(x3,2(¥3, 23)) = #(x(X3, y3), 23))),
(X4, #(¥ar 24)) = 2 (:(x4504), 24)))-
(x(w3,w3) = 1),
=(x(a.b) = =(h,a))}}.
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Let 6 be the substitution
[a/uy,(axb)/wy,a/x,,(axb)/y,(axb)/z,
a/xy,a/y3,b/25,a/ Wy, b/v,,
b/xs,(axb)/ys,b/z5,a/x4,b/y,,b/z4,b/ws].

We claim that (MS, ) is a mating for D. For simplicity of notation let us
adopt infix notation, and denote =(s, t) as s = t. Then, we have:

axb={ax1}+b by (2)
={ax[(axb)«(axb)]}=b by (4)
={[a*(a*b)]*(a*b)}*b by(l)
={[(axa)«b]+(axb)}+b by (1)
={[1=b]«(axb)} «b by (4)
={bx(axb)}=b by (3)
=bx+{(axb)=b} by (1)
=bx{ax(bxb)) by (1)
=bx{ax1} by (4)
=phxq, by (2)

which shows that (MS, 0) is a p-acceptable mating for D (there is a single
vertical path in D). Note that eq. (2) instantiated by the substitution [a /u,] is
used twice.

Theorem 5.5 suggests a procedure for showing that a universal sentence in
nnf is unsatisfiable: Compute incrementally amplifications of D, and at each
stage, test whether such an amplification has a p-acceptable mating. Such a
procedure is presented in a later section.

5.3 OUTERMOST QUANTIFIER DUPLICATION. Since the complexity of the
search for an acceptable mating grows exponentially as the number of occur-
rences of literals in the amplification D increases, it is important to keep this
number small.

A systematic scheme for duplicating quantifiers that guarantees complete-
ness, is to duplicate outermost quantifiers.

Definition 5.7. Given a universal formula A in nnf, a subformula occur-
rence VxB of A is a maximal quantified subformula of A iff there is no
quantified subformula occurrence VyC of A, such that VxB is a proper
subformula of VyC.° If VxB is a maximal quantified subformula occurrence of
A, the quantifier Vx is called an outermost quantifier occurrence.

LEMMA 5.8. Let A be a universal sentence in nnf. Then, A is unsatisfiable iff
there is a refutation mating for some amplification D of A, such that, in forming D
from A, only outermost quantifier duplications are performed.

Proor. It is enough to show that the Skolem~Herbrand—Gddel theorem
holds for c-instances obtained as substitution instances of formulas obtained
from A by outermost quantifier duplications only. This can be shown in at

® For an inductive definition of this concept, see Gallier [17].
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least two ways. The first proof is already essentially contained in the proof of
Lemma 7.6.2 of Gallier ([17, page 360]). Indeed, this lemma is obtained from
"Theorem 7.4.1 and Theorem 7.4.2 [17, pages 334 and 337], a Gentzen-like
Hauptsatz for a proof system in which quantifier rules apply only to outermost
quantifiers (the system G2™, [17, page 327)). One simply has to verify that the
induction in Lemma 7.6.2 yields the right kind of c-instances, and this is
straightforward. The other proof is obtained by observing that the proofs
of Lemma 5 and Theorem 2 in Andrews [1, page 208] go through unchang-
ed, as they do not depend on the fact that the language does not contain
equality. 0O

Hence, in searching for a mating, there is no loss of generality in duplicating
outermost quantifiers only. However, this is not always the best strategy, and it
would be useful to develop heuristics for duplicating quantifiers.

5.4 CoMPARISON WiTH OTHER METHODS. An extension of the method of
matings to first-order languages with equality is sketched (without proofs) in
Bibel [9, Sect. V.3, pp. 234-242] (under the name connection method with
equality). Bibel’s method uses mated sets similar to ours, except that they are
dual to ours, since Bibel’s method shows the validity rather than the unsatisfia-
bility of a (Skolemized) sentence. Hence, sets of literals are interpreted as
disjunctions. A set of the form

{=(si=0),... (s, =1,), (s = 1)}
is called an eg-literal, and a set of the form
{_|(S1 = [l)”"7 ﬁ(Sm = tm): _'L,»L,}

where L and L' are nonequational atoms, is called an eg-connection. In our
presentation, the use of a many-sorted language with the special sort bool
allows us to treat a nonequational literal as the special equation L = T, and
we only need the first kind of mated set, but this is an inessential detail.

Bibel’s method and ours differ significantly in the criterion used for testing
the validity (equivalency, unsatisfiability) of a mated set. Bibel defines an
eg-literal to be valid iff there is some substitution o such that o(s) = o(¢))
forall i,1 <i <m, and o(s) = o(t). An eg-connection is said to be comple-
mentary iff there is some substitution o such that o(s,)) = o(z,) for all i,
l<i<m, and o(L) = o(L").

It should be noted that the notion of a substitution used by Bibel is highly
nonstandard. Bibel [9, Sect. I11.1.6, page 66] defines a substitution ¢ as a set of
pairs {s,/f;,....s,/t,}, where each ¢, is a term to be substituted for s,, but
where s, itself can be a nonvariable term! Of course, substitutions are applied
in a homomorphic fashion, but with this definition, a substitution is not
necessarily defined on all terms.

To be completely accurate, with Bibel’s definition of a substitution, the
substitution ¢ mentioned in the definition of a valid eq-literal is such that it
consists of pairs of the form s,/¢, or t,/s,. Then, Theorem V.3.6.C (page 237)
states (in our language) that a formula F is valid iff for some amplification D
of F, there is a spanning set W of eq-literals and eq-connections and some
substitution o such that, for every eqg-literal w € W, o(w) is valid, and for
every eq-connection w € W, o(w) is complementary.
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This theorem does hold, provided that we allow eq-literals and eq-
connections in the set W to contain extra literals arising from instances of the
equality axioms. Hence, Bibel’s method uses standard unification, but the
mated sets may have to include extra literals corresponding to instances of the
equality axioms.

In our method, we require that there be some substitution ¢ such that

{o(s,=t),...,0(s, =t,), "o(u=v))

is unsatisfiable, or equivalently, treating the equations in o(E) as ground
equations, that o (u) <,z o(v) holds. Hence, o is a special kind of E-uni-
fier (a rigid E-unifier), but there is no need to include extra literals correspond-
ing to instances of the equality axioms to our mated sets. The following
example should illustrate this point clearly. Consider the eq-literal

<_'(f3a i“)’ —‘(fsa iCl),(fa ﬁa)}.

It is valid, but yet, there is no substitution in the sense of Bibel demonstrating
that it is valid. The only way to show validity is to add additional equality
axioms to show that fa and a are congruent modulo the set of equations
{(f3a = a),(f°a = a)}. Hence, in Bibel’s method, this mated set would have to
be expanded before it is shown to be valid. In our method, it would be found
valid immediately (actually, its negation would be found unsatisfiable).

Hence, Bibel’s method and ours differ in the type of unification and the
methods used to check the validity (or unsatisfiability) of mated sets.

In Chapter 4 of his Ph.D. dissertation, Pfenning [38] presents a method for
dealing with equality in a system of expansion proofs that involves matings.
Pfenning’s system applies to higher-order logic, and equality is treated as a
defined symbol ((A = B) is an abbreviation for VO(Q(.A) > Q(B)), where Q is
a predicate variable). As pointed out by Pfenning, it is theoretically possible to
derive the mated sets arising in our method from the mated sets used in his
method via the translation mentioned above. In some sense, our way of
checking mated sets is an optimization of Pfenning’s method restricted to the
first-order case. However, it does not seem possible to obtain the completeness
of our method in this fashion. Our method is also different in a more radical
sense, which is that Pfenning’s method uses higher-order unification, whereas
we use a special form of E-unification that is decidable. This suggests that
there may be a form of rigid higher-order unification, but we have not explored
this possibility.

6. Complete Sets of Rigid E-Unifiers

We have already noted in Remark (2) after Definition 4.5 that .# = (MS. o)
is an equational mating iff o is a rigid E-unifier of S, where E = (Eg)oc ms
and S = {(s,t) |. € MS}, the family of sets of equations and the set of pairs
associated with the mated sets % = {(s, = t,),...,(s,, = 1,), 7(s = 1)} € MS.
It is obviously crucial to show that there is an algorithm for testing whether a
family of mated sets forms a mating. From the above observation, this is
equivalent to deciding whether a pair (E,S) is an equanonal premating. In the
following sections, it will be shown that this problem is NP-complete. Actually,
this result is an easy extension of a simpler problem, and we now focus on this
problem.
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Problem. Given a finite set E = {4, = v,,...,u, = y,} of equations and a
pair {u,v) of terms, is there a substitution 6 such that, treating 6(FE) as a set
of ground equations, 6(u) = , ) 6(v), that is, 6(u) and 6(v) are congruent
modulo #(E) (by congruence closure)?

The substitution 6 is called a rigid E-unifier of u and v.

It is interesting to observe, as pointed out by Jean Yves Girard, that the
notion of rigid E-unification arises by bounding the resources, in this case, the
number of available instances of equations from E. To be precise, only a single
instance of each equation in E can be used, and in fact, these instances
6(u, = vy)...., 0(u, = v,) must arise from the same substitution 6. Also, once
these instances have been created, the remaining variables (if any) are consid-
ered rigid, that is, treated as constants, so that it is not possible to instantiate
these instances. This is in the spirit of linear logic [23]. The special case of rigid
E-unification where E is a set of ground equations has been investigated by
Kozen who has shown that this problem is NP-complete (Kozen [30, 31]). Thus.
rigid E-unification is NP-hard. We show that it is also in NP, and hence it is
NP-complete.

Suppose we want to find a rigid E-unifier 6 of u and v. Roughly, the idea is
to use a form of unfailing completion procedure (Knuth and Bendix [29], Huet
[27], Bachmair [4], Bachmair et al. [5, 6]). In order to clarify the differences
between our method and unfailing completion, especially for readers unfamil-
iar with this method, we briefly describe the use of unfailing completion as a
refutation procedure. For more details, the reader is referred to Bachmair [4].

Let E be a set of equations, and > a reduction ordering total on ground
terms. The central concept is that of E being ground Church—Rosser with
respect to > . The crucial observation is that every ground instance o (I) = o (r)
of an equation [ = r € E is orientable with respect to > , since > is total on
ground terms. Let £7 be the set of all instances o (/) = o(r) of equations
I=reEUE™" with o(l) > o(r) (the set of orientable instances). We say
that E is ground Church—Rosser with respect to > iff for every two ground
terms u, v, if u <> v, then there is some ground term w such that u - - W
and w < - v. Such a proof is called a rewrite proof.

An unfailing completion procedure attempts to produce a set E* equivalent
to E and such that E” is ground Church—Rosser with respect to > . In other
words, every ground equation provable from E has a rewrite proof in E*. The
main mechanism involved is the computation of critical pairs. Given two
equations /; = r; and /, = r, where [, is unifiable with a subterm /,/8 of [,
which is not a variable, the pair (o (/[ B < r,], 0(r,)) where o is a mgu of
l,/B and [, is a critical pair.

If we wish to use an unfailing completion procedure as a refutation proce-
dure, we add two new constants T and F and a new binary function symbol eq
to our language. In order to prove that E —u = v for a ground equation
u = v, we apply the unfailing completion procedure to the set E U {eg(u,v) =
F.eq(z, z) = T}, where z is a new variable. It can be shown that E — u = v iff
the unfailing completion procedure gencrates the equation F = T. Basically,
given any proof of F = T, the unfailing completion procedure extends E until
a rewrite proof is obtained. It can be shown that unfailing completion is a
complete refutation procedure, but of course, it is not a decision procedure. It
should also be noted that when unfailing completion is used as a refutation
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procedure, E” is actually never generated. It is generated “by need,” until
F =T turns up.

We now come back to our situation. Without loss of generality, it can be
assumed that we have a rigid E-unifier 8 of T and F such that #(E) is ground.
In this case, equations in §(E) are orientable instances. The crucial new idea is
that in trying to obtain a rewrite proof of F = T, we still compute critical pairs,
but we never rename variables. If 1, is equal to [, /B, then we get a critical pair
essentially by simplification. Otherwise, some variable in /, or in /, gets bound
to a term not containing this variable. Thus, the total number of variables in £
keeps decreasing. Therefore, after a polynomial number of steps (in fact, the
number of variables in E) we must stop or fail. So we get membership in NP.
Oversimplifying a bit, we can say that our method is a form of lazy unfailing
completion with no renaming of variables.

However, there are some significant departures from traditional Knuth—
Bendix completion procedures, and this is for two reasons. The first reason is
that we must ensure termination of the method. The second is that we want to
show that the problem is in NP, and this forces us to be much more concerned
about efficiency.

The proof that rigid E-unification is in NP requires quite a bit of machinery,
and since this paper is already long, we focus on the algorithmic aspect of the
result, leaving out most proofs. Full details can be found in Gallier et al. [22].

In order to show that our decision procedure is in NP, we need the fact that
if two terms u and v are unifiable, a most general unifier (mgu) of u and v can
be represented concisely in triangular form (the size of this system is linear in
the number of symbols in « and v). This result can be obtained from the fast
method using multiequations of Martelli and Montanari [33] or the fast
method using the graph unification closure of Paterson and Wegman [37].

Definition 6.1. A term pair (or pair) is just a pair of two terms, denoted by
(s,t), and a substitution 6 is called a unifier of a pair (s,¢) if 6(s) = 0(¢). A
term system (or system) is a set of such pairs, and a substitution 6 is a unifier of
a system if it unifies each pair. A substitution ¢ is an (idempotent) most general
unifier, or mgu, of a system S iff (i) D(o) < Var(S) and D(o) N I(0) = J (o
is idempotent); (ii) o is a unifier of S; (iii) For every unifier § of S, o < 6
(where o < 6 iff § = o; n for some 7).

Definition 6.2. Given an idempotent substitution o (i.e., Do) N o) =
@) with domain D(o) = {x,...,x,), a triangular form for o is a
finite set T of pairs {x, t) where x € D(¢ ) and ¢ is a term, such that this set T
can be sorted (possibly in more than one way) into a sequence
x,,t,0,...,{x,,1, ) satisfying the following properties: for every i, 1 <i < k,

(D) {xy,..., x} N Var(t,) = J, and
2 o=1[t;/x); 5[t /%, )

The set of variables {x,,..., x,} is called the domain of T. Note that in
particular x, & Var(z) for every i, 1 <i <k, but variables in the set
{X,,»...,X;} may occur in fy,..., . It is casily scen that ¢ is an (idempotent)

mgu of the term system 7.

Example 6.3. Consider the substitution o = [f(f(x3, x3), flx3, x3))/
x;, f(xs, x3) /%, 1. The system T = {{xq, f(x,, x,)), (x5, f(x3, x3))} is a triangu-
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lar form of o since it can be ordered as {{x, f(x,, x,)), {x,, f(x;, x3))) and

o= {f(xy, x) /%, L [f(x35, x3) /%, 1.

The triangular form 7T = {{xy,#,),....{x;, 1)} of a substitution o also
defines a substitution; namely, o, = [t,/x,...,t,/x,]. This substitution is
usually different from ¢ and not idempotent as can be seen from Example 6.3.
However, this substitution plays a crucial role in our decision procedure
because of the following property.

LEMMA 6.4. Given a triangular form T = {{x,t,),.. <x,\, )} for a substi-
tution o and the associated substitution o = [t,/x,,.. t,\ /X, 1, for every unifier
8ofT, 0= o0;;0.

Another important observation about o is that even though it is usually not
idempotent, at least one variable in {x,...,x,} does not belong to I(o;)
(otherwise, condition (1) of the triangular form fails). We assume that a
procedure TU is available, which, given any unifiable term system S, returns a
triangular form for an idempotent mgu of S, denoted by TU(S). When §
consists of a single pair {(u,v), TU(S) is also denoted by TU(u, v).

Recall that we write u =, v to express that u < v, treating the equations
in E as ground equations.

Definition 6.5. Let E ={(s, =1),....(s,, =1,)} be a finite set of equa-
tions, and let Var(E) = Ui ;e g Var(s = 1) denote the set of variables occur-
ring in E." Given a substitution 6, we let 0(E) = {6(s, = 1)|s, =t € E, 6(s,)
+ 0(t,)}. Given any two terms u and v,'' a substltutlon 0 is a rigid umﬁer of u
and v modulo E (for short, a rigid E-unifier of u and v) iff

0(u) =4, 6(v), that is, 6(u) and 6(v) are congruent modulo the set 6(E)
considered as a set of ground equations.

Definition 6.6. Let E be a (finite) set of equations, and W a (finite) set of
variables. For any two substitutions o and 6, o = O[W]iff o(x) =, 6(x) for
every x € W. The relation . is defined as follows. For any two substitutions
o and 6, o Cp OIW]iff o=, . The set W is omitted when W =X
(where X is the set of Varlabless and 31mllarly E is omitted when F = (.

Intuitively speaking, o . 8 iff o can be generated from 6 using the
equations in 6(E). Clearly, ; is reflexive. However, it is not symmetric as
shown by the following example.

Example 6.7. Let E ={fx =x}, o =[fa/x] and 6 = [a/x]. Then,
0(E) = {fa =a} and o(x) = fa %, a = 8(x),and so o C; 6. On the other

hand, o(E) = {ffa = fa}, but a and fa are not congruent from {ffa = fa}.
Thus, 0 =, o does nor hold.

It is not difficult to show that T, is also transitive. We also need an
extension of T, defined as follows.

Definition 6.8. Let E be a (finite) set of equations, and W a (finite) set of
variables. The relation <, is defined as follows: for any two substitutions o
and 0, o<z O[W] iff o;n Ty 6[W] for some substitution # (that is,
oM =, 0 for some 7).

It is possible that equations have variables in common.
' It is possible that u and v have variables in common with the equations in E.
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Intuitively speaking, o <, 6 iff o is more general than some substitution
that can be generated from 6 using 6(E). Clearly, < is reflexive. The
transitivity of <, is also shown easily. When o <, 6[W], we say that o is
(rigid) more general than 6 over W. It can be shown that if o is a rigid
E-unifier of 1 and v and o <; 6, then 0 is a rigid E-unifier of u and v. The
converse is false.

Definition 6.9. Given a (finite) set E of equations, for any two terms u and
v, letting V' = Var(u) U Var(v) U Var(E), a set U of substitutions is a complete
set of rigid E-unifiers for u and v iff: For every o € U,

() D(o) €V and D(o) N I(o) = & (idempotence),
(ii) o is a rigid E-unifier of u and v,
(iii) For every rigid E-unifier 6 of u and v, there is some o € U, such that,
o<p 6[V]

It is very useful to observe that if a procedure P for finding sets of rigid
E-unifiers satisfies the property stated in Definition 6.10 given next, then in
order to show that this procedure yields complete sets, there is no loss of
generality in showing completeness with respect to ground rigid E-unifiers
whose domains contain V (i.e., in clause (iii) of Definition 6.9, 6(x) is a ground
term for every x € D(0), and V C D(6)).

Definition 6.10. A procedure P for finding sets of rigid E-unifiers is pure iff
the following condition holds: For every ranked alphabet 3, every finite set E
of equations over Ty(X) and every u,v e Ty(X), if U= P(E,u,v) is the set
of rigid E-unifiers for u and v given by procedure P, then for every o € U, for
every x € D(o), every constant or function symbol occurring in o (x) occurs
either in some equation in £ or in u or in v.

In other words, P(E, u, v) does not contain constant or function symbols that
do not already occur in the input (E,u,v). To prove what we claimed, we
proceed as follows. We add countably infinitely many new (distinct) constants
¢, to 2, each constant ¢, being associated with the variable x. The resulting
alphabet is denoted by Zg.. If 6 is not ground, we create the Skolemized
version of 6, that is, the substitution 6 obtained by replacing the variables in
the terms 0(x) by new (distinct) constants.'?

LemMA 6.11. Given a rigid E-unification procedure P satisfying the prop-
erty of Definition 6.10, assume that for every ranked alphabet X, every finite
set E of equations over T(X) and every u,v € Tx(X), the set U = P(E, u, v)
of rigid E-unifiers of u and v given by P satisfies conditions (i) and (ii) of
Definition 6.9, and the new condition (iii'): for every rigid E-unifier 6 of i and
v such that V'€ D(6) and 6(x) € Ty for every x € D(8), there is some o € U
such that o < 0[V] (where V = Var(E) U Var(u, v)). Then every set U =
P(E,u,v) is a complete set of rigid E-unifiers for u and v.

7. Minimal Rigid E-Unifiers

One of the reasons for the decidability of rigid E-unification is that if a pair
{u,v) has some rigid E-unifier, then it has a rigid E-unifier that is minimal in
a sense made precise in the sequel. Given a finite or countably infinite ranked

2 That is, 6 is obtained from 6 by replacing every variable y in each term 6(x) by the
corresponding Skolem constant c,, for each x € D(6).



402 J. GALLIER ET AL.

alphabet 2, it is always possible to define a total simplification ordering < on
Ts (the set of all ground terms) [11]. We use the total simplification ordering
< on Ty to define a well-founded partial order << on ground substitutions.
For this, it is assumed that the set of variables X is totally ordered as
X = (X X0y ey Xy e v )

Definition 7.1. The partial order <<is defined on ground substitutions as
follows. Given any two ground substitutions ¢ and 6 such that D(o) = D(6),
letting (y,,...,y,)> be the sequence obtained by ordering the variables in
D( o) according to their order in X, then o <<§ iff

<O-(y1)7"" a(yn)> jlex<0(y1)""> e(yn)>7

where <, is the lexicographic ordering on tuples induced by < .

Since < is well-founded and <<is induced by the lexicographic ordering
= 1o Which is well-founded, << is also well-founded. In fact, given any finite set
I” of variables, note that <<is a total well-founded ordering for the set of
ground substitutions with domain V.

Given a set E of equations and a total simplification ordering < on ground
terms, for any ground substitution 6, we let 6(E) denote the set {6(/) =
0(r)| 6(1) > 0(r), ] = r € E U E™'} of oriented instances of E. Thus, we can
also view 6(E) as a set of rewrite rules.

The reason for considering the well-founded ordering << on ground substitu-
tions is that minimal rigid F-unifiers exist. This is one of the reasons for the
decidability of rigid E-unification. The example below gives some motivation
for the next definition and lemma.

Lxample 7.2. Let E ={fa = a,x = fa}, and {u,v) = {gx, x). It is obvious
that there is a simplification ordering total on ground terms such that a < f < g
(for instance, a recursive path ordering, see Dershowitz [11]). The main point of
this example is the fact that some rigid F-unifiers of gx and x are redundant,
in the sense that they are subsumed by rigid E-unifiers that are smaller with
respect to <, . For instance, 6 = [gf"a /x] is a rigid E-unifier of gx and x,
but sois o = [ga/x], and o C, 0.

An illustration of the redundancy of 6 is the fact that 0(x) = gf'%a is
reducible by the rule fa — a. The fact that some term 6(x) may be reducible
by some oriented instance (/) — 6(r) of an equation [ =r € E U E~" turns
out to be a problem for the completeness of the method. In order to avoid such
redundancies, for every rigid E-unifier § of u and v, we consider the set
S u,v,0 Of all ground rigid E-unifiers p of u and v such that p=, 6. The
crucial fact is that the set S;,,, has a smallest element o under the
ordering <<, and that this least substitution is nicely reduced with respect to
o (E). Intuitively speaking, we find the least ground rigid E-unifier o of u and
v constructible from 6 and 6(E) (least with respect to <<). Referring back to
0 = [gf°a/x], the substitution o = [ga/x] is the smallest element of S, , , ,.
It is not sufficient to simply consider all ground substitutions p such that
p T 0, because some of them may not be rigid E-unifiers of u and v. For
instance, we have p Cp 0 for p = [a/x], but p is not a rigid E-unifier of ga
and a since p(E) = {fa = a}. Thus, we have to consider rigid E-unifiers of u
and v such that p C, 6.
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The least element o of the set S, , , enjoys some nice reduction proper-
ties with respect to o (E). These properties stated in the forthcoming lemma
will be used in the proof that the method is complete.

Definition 7.3. Let E be a set of equations (over T5(X)) and u,v € Tu(X)
any two terms. For any ground rigid E-unifier 6 of u and v, let

St uwo={p1D(p) = D(6), p(t) =,z p(v), p Ty 0.and p ground) .

Obviously, 6 € Sy, , ¢, 50 Sz, , 4 is not empty. Since << is total and well-
founded on ground substitutions with domain D(#), the set S , , , contains
some least element o (with respect to <<).

We shall now prove the following crucial result: For this, recall that a
degenerate equation is of the form x = ¢, where x is a variable and x & Var(t),
and that a nondegenerate equation is an equation that is not degenerate.

LEMMA 7.4. Let E be a set of equations (over Ts(X)) and u,v € T5(X) any
two terms. For any ground rigid E-unifier 0 of u and v, if o is the least element of
the set Sy ., o of Definition 7.3, then the following properties hold:

(1) Every term of the form o (x) is irreducible by every oriented instance o (1) —
o (r) of a nondegenerate equation | =r € E U E™', and

(2) Every proper subterm of a term of the form o(x) is irreducible by every
oriented 1 instance o(l) — o(r) of a degenerate equation | =r €
EUE™.

8. The Reduction Procedure

One of the major components of the decision procedure for rigid E-unification
is a procedure for creating a reduced set of rewrite rules equivalent to a given
(finite) set of ground equations. This procedure first presented in Gallier et al.
[19] runs in polynomial time. However, due to the possibility that variables may
occur in the equations, we have to make some changes to this procedure.
Roughly speaking, given a “guess” @ (which we call an order assignment) of the
ordering among all subterms of the terms in a set of equations E, we can run
the reduction procedure R on E and & to produce a reduced rewrite system
R(E, @) equivalent to E, and whose orientation is dictated by the ordering &.

Definition 8.1. Given a set R of rewrite rules, we say that R is rigid reduced
iff

(1) No lefthand side of any rewrite rule / — r € R is reducible by any rewrite
rule in R — {I — r} treated as a ground rule;

(2) No righthand side of any rewrite rule / — r € R is reducible by any rewrite
rule in R treated as a ground rule.

Definition 8.2. Given two sets E and E' of equations, we say that E and E'
are rigid equivalent iff for every two terms u and v, u = v iff u =5 v
(treating E and E' as sets of ground equations).

For technical reasons, it will be convenient to view the problem of rigid
E-unification as the problem of deciding whether two fixed constants are rigid
E-unifiable. This can be achieved as follows (the idea is borrowed from
Dershowitz). Let eg be a new binary function symbol not occurring in X, and T
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and F two new constants not occurring in . The following simple but useful
lemma holds.

LemMA 8.3, Given a set E of equations and any two terms u and v, a
substitution 6 over T<(X) is a rigid E-unifier of u and v iff there is some
substitution 0' over Ts(X) such that 0 = 0'|p-(y and T =4, | F, where
E,, =FE Ulequ,v) = F.eq(z,z) =T}, and z is a new variable not in

U.v

Var(E) U Var(u, v).
The total simplification ordering < can be extended to the set
Ty U (T, F} U (equ,v) lu,v € Ty).

For details, see [22]. We need to show that in searching for rigid FE-unifiers, it
is always possible to deal with sets of equations that are rigid reduced. The
proof of this fact uses the result shown elsewhere that every finite set E of
ground equations is equivalent to a reduced set R(E) of rewrite rules. We now
review the procedure first presented in Gallier et al. [19], which, given a total
simplification ordering < on ground terms and a finite set £ of ground
equations returns a reduced rewrite system R(E) equivalent to E.

Definition 8.4 ( Basic reduction procedure). Let E be a finite set of ground
equations, and < a simplification ordering total on ground terms. The basic
reduction procedure generates a finite sequence of triples (&), I1,, %,) where
&, is a finite set of ground equations, I, is a partition (associated with &), and
&, 1s a set of ground rewrite rules. Given a triple (&, 11, %,), we let 7, be the
set of all subterms of terms occurring in equations in &, or in rewrite rules in
#%,. The procedure makes use of the congruence closure of a finite set of ground
equations (Kozen [30, 31], Nelson and Oppen [36], Downey et al. [13]).
Congruence closures are represented by their associated partition II. Given an
equivalence relation represented by its partition II, the equivalence class of ¢
is denoted by [¢];, or [7]. Recall that s, ¢ are in the same equivalence class of II
iff s and ¢ are subterms of the terms occurring in E and s <, ¢ (for details,
see Gallier [17]). The congruence closure algorithm will only be run once on E
to obtain I1,, but the partition 11, may change due to further steps (simplifica-
tion steps).

begin algorithm

Initially, we set &, = E, #, = J, and run a congruence closure algorithm on the ground
set E to obtain II,. i := 0;

while I, has some nontrivial equivalence class'® do {Simplification steps}
Let p,,, be the smallest element'* of the set

U C

cell,.|C|=2

of terms belonging to nontrivial classes in I1,.'* Let C,,, be the nontrivial class that
contains p,, ;, and write C,,; = {p,, . Aly (...  Akey), where k., = 1, since C,,, is
nontrivial. Let &, ={A.| = popr. o Ay = p

{Next, we use the rewrite rules in %, to simplify the rewrite rules in %, U.%, |, the
partition IT,, and the equations in &,.}

" That is, a class containing at least two elements, in which case &, has at least one nontrivial
equation.

"In the ordering < .

¥ Where | C | denotes the cardinality of the set C.



Theorem Proving with Equational Matings and Rigid E-Unification 405

To get %, ,, first, we get a canonical system equivalent to ., ;. For this, for every
lefthand side A of a rule in . |, replace every maximal redex of A of the form A’ by p,
where M — p €%, — {A — ph1® Let &, | be the set of simplified rules. Also, let #. |
be the set obtained by simplifying the lefthand sides of rules in %, using .;, | (reducing
maximal redexes only), and let

‘%H-l =‘%zr+1 U‘%’-&—l

Finally, use %, , to simplify all terms in II, and &, using the simplification process
described earlier, to obtain II,, ; and &, |.

p=1i+1
endwhile

{All classes of II, are trivial, and the set 4%, is a canonical system equivalent to E.}
end algorithm

It is shown in [19] that the above procedure always terminates with a system
%, equivalent to E that is reduced (and hence, canonical).

However, in order to show later that our decision method is in NP, it turns
out that we need a sharpening of the above result. We need to show that given
a set E of ground equations, the term DAG associated with any equivalent
reduced system R is of size no greater than the size of the term DAG
associated with E itself, and that the number of rules in R is no greater than
the number of equations in E. This is not at all obvious for our algorithm, but
fortunately true. To be more specific, the ferm DAG associated with a finite set
&% of terms is the labeled directed graph whose set of nodes is the set of all
subterms occurring in terms in ., where every constant symbol ¢ or variable x
is a terminal node labeled with ¢ or x, and where every node f(¢,...,%) is
labeled with f and has exactly the k nodes #,..., ¢, as immediate successors.
In the case of a set of equations (or rewrite rules), the set of terms under
consideration is the set of subterms occurring in lefthand or righthand sides of
equations (or rules). If a term DAG has m edges and n nodes, we define its
size as (m, n).

The quickest way to prove this sharper result is to appeal to two facts:

The first one is due to Metivier [34] and Dershowitz et al. [12] (in fact, a
direct proof is quite short).

LEMMA 8.5. If R and R’ are two equivalent reduced rewriting systems con-
tained in some reduction ordering > , then R = R'.

The second fact is that given a set E of p ground equations with term DAG
of size (m, n), a reduced equivalent system R of p’ rules with term DAG of
size (m', n’) such that m’ <m, n' <n, and p’ < p, is produced by a reduction
process that is essentially just a Knuth—Bendix procedure restricted to ground
terms.

Definition 8.6. Let > be a reduction ordering total on ground terms. Let R
be a multiset of oriented pairs (s, ¢) that we may denote by s — ¢ of 5 > ¢ and
s <t if 5 <t Finally, let —; denote the rewriting relation induced by the

'* By a maximal redex of A, we mean a redex of A that is not a proper subterm of any other redex
of A. The simplified term is rrreducible with respect to %, |, so these replacements are only done
once, and they can be done in parallel because they apply to independent subterms of A.
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nontrivial pairs. The first transformation simply removes trivial pairs from R:

{(u,u)} UR=R. (6)
The second orients rules:
{s >t} UR= {t > s} UR. (7)
Next, if r =, r’, then
{{f>r}UR={l—->r'} UR, (8)
and finally, if / —, [, then
{{=>r} UR={(I',r)} UR. (9)

It should be noted that U denotes multiset union, which implies that when a
transformation is applied, the occurrence of the rule to which it is applied on
the lefthand side (for instance, s « ¢ in (7)) no longer exists on the righthand
side.

We now show that our reduction method always produces reduced systems
whose associated term DAG is no greater than the term DAG associated with
the input.

THEOREM 8.7.  Let > be a simplification ordering total on ground terms. If E
is a set of p ground equations, R an equivalent reduced set of p' ground rewrite
rules contained in > . and (m,n) and (m’,n') are the sizes of the term DAGs
associated with E and R respectively, then m' < m, n' <n, and p’ < p.

Proor. We prove this by showing that every sequence of transformations
issuing from E must eventually terminate with the set R, and that the size
inequality stated above holds. Let

E=R,=R,=>R,= -

be any sequence of transformations starting with E and using the given
ordering > . It is tedious but not hard to show that the transformations
produce equivalent sets of rules, and we leave this to the reader. Similarly, it is
not hard to show that any set that cannot be transformed must be a reduced
set of rules contained in >, since otherwise some transformation would apply.
Now, by Lemma 8.5, if such a terminal set exists, it must be unique, and so it
will be identical with R. Thus, we next show that the relation = is noethe-
rian.

For any R, let w(R) = (M, k), where M is the multiset of all terms
occurring in pairs in R and k is the number of pairs of the form s < ¢. Let the
ordering associated with this measure use the multiset extension of > for the
first component and the standard ordering on the natural numbers for the
second. Clearly this ordering is well-founded, since > is. But then, each
transformation reduces the measure of the set of pairs, since (6), (8), and (9)
reduce M, and (7) reduces k without changing M. Thus, any sequence of
transformations must eventually terminate in the set R.

Finally, for any transformation R, = R,, |, note that the size of the current
term DAG cannot increase, since (6) deletes nodes and possibly edges, (7) does
not change the size, and (8) and (9) possibly decrease the number of nodes and
preserve the number of edges. As a matter of fact, these transformations can
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be implemented by moving pointers. It is also obvious that each transformation
either preserves or decreases the total number of rules. Thus, the claim follows
by induction on the length of the transformation sequence. O

Another useful fact needed later is that the time complexity of the reduction
procedure is in fact bounded by O((m + n + p)®), where (m, n) is the size of
the term DAG associated with the input E, and p is the number of equations
in E.

Unfortunately, given a nonground set E of equations, the reduction proce-
dure just presented may not be applicable since some of the equivalence
classes may contain terms involving variables and the ordering < may no
longer be total on such a partition. We need to guess how terms containing
variables compare to other terms in the partition in order to reduce the
equations. However, it is useful to observe that the reduction algorithm
applies, as long as at every stage of the algorithm, it is possible to determine
the least element of each nontrivial equivalence class and to sort these least
elements. This observation shows that in extending a simplification ordering <
total on ground terms to terms containing variables, it is sufficient to require
this extension to have a least element in each nontrivial equivalence class and
to be total on the set of least elements of these classes. Definition 8.10 will
make use of this fact.

The key to extending ground orderings is that if some ground rigid E-unifier
6 exists, since the ordering < is total on ground terms, 6 induces a preorder
on the terms occurring in the congruence closure II of E. For example, if
E={fa=a,fa=x}, u=g v=x, and 6= [ga/x], then Il has a single
nontrivial class {fa, a, x}, and considering the recursive path ordering such that
a < f < g (see Dershowitz [11]), we have a < fa < ga = 6(x). Hence, we can
extend < so that fa < x. This way, the equations can be oriented as fa — a,
x = fa.

We shall define the concept of an order assignment in order to formalize the
above intuition. First, we define some relations induced by a ground substitu-
tion on a finite set of terms.

Definition 8.8. Given a finite set S of terms, let ST(S) be the set of all
subterms of terms in S (including the terms in S). Let < be a total
simplification ordering on ground terms, and 6 a ground substitution such that
Var(S) < D(9). The relations =, and <, on ST(S) are defined as
follows: For every u,v € ST(S),

u<,g v iff 0(u) < 6(v),
and
u=, v iff 6(u) = 0(v).
When we have a partition IT induced by the congruence closure of a finite
set E of equations treated as ground, S consists of the lefthand sides and
righthand sides of equations in E, and we denote <, ¢ as <, and =, ¢ as

=o.n - .As the next example shows, the equivalence relation =,y may be
nontrivial.

Example 89. Let E = {fr=fgy,fey =g, hgz =gz}, u=k(fx,gb), v=
k(ga, hgb), and 0 = [ga /x,a/y,b/z]. The nontrivial equivalence classes of the
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congruence closure Il of E are {fx, fgy, gv}, and {hgz, gz}. Then, since 6(x) =
0(gy) = ga, we have x =, ; gy and fx =, 1 fgy. Thus, =, ; has two nontrivial
equivalence classes {x, gy} and { fx, fgy}. Assuming that we have a total simplifi-
cation ordering on ground terms such that ¢ < b < f < g < h (for instance, a
recursive path ordering, see Dershowitz [11]), we also have

Y=onZ=on¥*<gon&u& <enfX=<,nf8 <,nheg.

The other pairs in <, ; are obtained by reflexivity and transitivity from =
and the above pairs.

This time, it is not obvious how to orient the equation fx = fgy. This is
because (fx) = 6(fgy). One might think that this is a problem, but it can be
overcome. Observe that since the ground equation 6( fx) = 6(fgy) is trivial, it
does not help in any way in proving that () and 6(v) are congruent modulo
6(E). In [22], the problem was solved by factoring out the preorder <, by
the equivalence relation =, | . It was also shown that as far as the complete-
ness of the method is concerned, we can restrict our attention to partial orders
rather than preorders. For the sake of simplicity, we present this solution,
referring the reader to [22] for a more complete solution.

The key point is that it is always possible to choose an orientation of the
equations which is compatible with <, ; . For example, we can define the
partial order <, onf{x,y, z, fx. gv. gz. fgy. hgz} such that, gy <, gz, &v <. fav.
J& =, fx,and gz <, hgz (other pairs in <, are obtained by transitivity and
reflexivity). It is clear that <, <<, . With this orientation, the set E of
Example 8.9 is equivalent to the following rigid reduced set of rewrite rules:
R={fx > g, foy > gy, hgz — gz}.

The above discussion leads to the following definition that makes use of the
fact noted before Definition 8.8.

Definition 8.10. Let < be a total simplification ordering on ground terms.
Given a finite set § of terms and a partition IT on ST(S), a partial order @ on
ST(S) (also denoted as <,) is an order assignment for 11 iff the following
properties hold:

(1) =<, has the subterm property and is monotonic on S7(S), that is, for all
Up ooty vy, € ST(S), i u, <, v fori=1,...,nand flu,...,u,)
and f(v;,...,y) € ST(S), then flu,....u,) <, flv,...,v);

(2) The restriction of <. to ground terms agrees with < (on ST(S)), every
nontrivial equivalence class C of II has a least element, and < » Is total
on this set of least elements.

Given a finite set E of equations, if II is the partition associated with the
congruence closure of E, by an order assignment for E we mean an order
assignment for I1.

The following lemma shows why order assignments can be chosen to be
partial orders.

LeMMA 8.11.  Given a finite set S of terms and a partition T1 on ST(S). given
any ground substitution 0 such that Var(I1) € D(8), there exists an order assign-
ment =<, for Il such that <, C <, and <, is a total ordering.

PROOF. For every nontrivial equivalence class C modulo =, ; , we extend
the simplification ordering < as follows: Whenever such a class contains some
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variable, say C = {x,,...,x.,t,...,¢,} where x,...,x, are variables, we
extend < to a relation <’ such that x; <'x, <"+ <'x, and x, <t for all i, j,
1<i<k, 1 <j<m. It is clear that <’ is a partial ordering contained
in <, 1 - Now, we define <, recursively as follows: u <, v iff either

(1 0(u) < 6(v), or
(2) 6(u) = 0(v), and either

(2a) u is a variable and u <'v, or
2b) u =f(u1,...,.un), v=f(v1,...,vn), and {uy,...,u,) <'v,,...,v,),
where <! is the lexicographic extension of <,

We define <, as the reflexive closure of <, , and we claim that <, isa
total ordering which is an order assignment contained in <, . The only
problem is in showing that < , is a total ordering, as the other conditions are
then easily verified. To prove that <, is a total ordering, due to clause (1) of
the definition of =<, , it is enough to show that for any two distinct elements
u, v in some nontrivial class C modulo =, ; , either u < ;v or v < .u, but not
both. Note that the set of classes modulo =, ; is totally ordered: C < C” iff
6(C) < 6(C"), where 6(C) denotes the common value of all terms 6(z) where
t € C. We proceed by induction on this well-ordering of the classes. Clearly,
the least class contains some variable and at most one constant. But then, it is
already totally ordered by <’. Given any other nontrivial class C, if u and v
are both variables, we already know by (2a) that either u <'v or v <'u, but not
both. If u is a variable and v is not, by (2a) we can only have u <'v. If both u
and v are not variables, then they must be of the form u = f(u,,...,u,) and
v=f(v,,...,v,), since C is unified by 6. Since u # v, there is a least i such
that u, # v, and since 0 unifies u and v, 6 unifies u, and v,. But then, because
< has the subterm property, u,, v, belong to some class C, such that ¢, << C.
Therefore, either u, < , v, or v, < , u,, but not both, and thus by (2b), either
u=<,vorv=<,u,butnotboth. O

In view of Lemma 8.11, the following definition is justified.

Definition 8.12. Given a finite set of terms S, an order assignment <, for
a partition IT on ST(S) is realized by a ground substitution 6 such that
Var(I) < D(0) iff <, C <, .

Given two order assignments & on a partition II for ST(S) and #’ on a
partition T1’ for ST(S’), we say that & and @' are compatible iff they coincide
on ST(S) N ST(S’).

Example 8.13. Let E = {fx = fgy, fgy = gv, hgz = gz}, as in Example 8.9.
The nontrivial equivalence classes of the congruence closure Il of E are

{fx, fev, &}, and {hgz, gz}.

Let @ be the partial order on {x, y, z, fx, g, gz, fgy, hgz} such that gy <, gz,
< . fay, foy < of¢, and gz <, hgz (other paire in <, are obtained by
transmVlty and reflexivity). It 1s immediately verified that @ is an order
assignment realized by 6 = [ga/x,a/y, b/z], since < ,C <, .
The next example arises from the problem of proving that every monoid such
that x -x = 1 (for all x) is commutative.
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Example 8.14. Let & be the set of equations

E={u,-1=u
wyow, =1
X0 (yyozy) = (x0y) 5
Xy (¥2723) = (x30y;) 2,
Wy w, =1
1-v, =y
X3 (y3723) = (X3°¥3) " 23
Xy (Yar2q) = (X4°Yy) 24
Wi wy =1
eq(a-b,b-a) =F
eq(z,z) =T}.

The nontrivial equivalence classes of the congruence closure IT of & are:
{T,eq(z.2)},
{F,eq(a-b,b-a)},
{Lwy-wy,wy-wywy -wil,
{wy,uy -1},
{v;,1-v},
{x2°(y2:22),(x2°y,) " 2,}
{x vy z0)s (x4 20) " 24},
{x3-(y3-23), (x5 -93) " 23},
{xp (o2 (o p0) 24

We define the order assignment @ on II by the order in which the elements in
each class of I1 are listed, and for the least elements in these classes, the order
in which the classes are listed. All other pairs in <, are determined by
reflexivity and transitivity. It is easily seen that there is a total simplification
ordering on ground terms such that 1 < a < b < -, and one can verify that <,
is an order assignment, and that < . is realized by the substitution

0=1a/uy.a/x,.a/x..a/va.a/ws,a/x,.
b/zy,b/v,b/x5.b/25.b/y,,b/z4,b/w,,
ab/wy,a-b/y,a-b/z,,a-b/y;,a-b/z].
We can now modify the procedure of Definition 8.4 in order to accommo-

date variables.

Definition 8.15 (Reduction procedure R). Let < be a total simplification
ordering on ground terms. Let & = &, U {eq(u,v) = F,eq(z,z) = T} be a
finite set of equations, where & is a set of equations over T+(X), and
u,v € Ty(X). Given any order assignment ¢ on &, the procedure R returns a
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rigid reduced rewrite system R(&, @#). To form the system R(&, @), since <.
is a simplification ordering such that every nontrivial equivalence class of TI
has a least element and =<, is total on this set of least elements, we apply to
& and II the procedure described in Definition 8.4, except that at the end of
every round, it may be necessary to extend & since new terms may arise due to
simplification. If at every round an extension of @ can be found so that the
next step can be performed, R succeeds and returns a rigid reduced rewrite
system denoted as R(&, ). Otherwise, R returns failure.

It is useful to remark that since the reduction procedure deals with sets of
equations of the form & = & U {eq(u,v) = F, eq(z, z) = T}, in the congru-
ence closure I of &, the classes of T and F are always {eg(u,v), F} and
{eq(z,2),T}. From the way we have extended < to take care of T, F, and
terms involving eq, it will be shown as a corollary of Theorem 10.2 that there is
no loss of generality in choosing order assignments such that T'< . F < . s
< o eq{u,v) for all s5,u,ve T5(X). We can show the following crucial result.

LEMMA 8.16. Let & = &5 U {eq(u,v) = F,eq(z,z) = T} be a finite set of
equations, where &5 is a set of equations over T<(X), u,v € T(X), and < a
total simplification ordering on ground terms. Given an order assignment & on &,
if R does not fail, then R(&, @) is rigid equivalent to &.

We are now ready to define a procedure for finding rigid E-unifiers.

9. A Method for Finding Complete Sets of Rigid E-Unifiers

This method uses the reduction procedure of Section 8 and a single transfor-
mation on certain systems defined next. First, the following definition is
needed.

Definition 9.1. Given a set E of equations and some equation / = r, the set
of equations obtained from E by deleting / = r and r = [ from £ is denoted
by (E = {l =r})". Formally, we let (E —{{ =) ={u=viu=veE u=v
#l=r,andu =v#r=I}.

Definition 92. Let < be a total simplification ordering on ground terms.
We shall be considering finite sets of equations of the form & = & U
{eq(u,v) = F,eq(z, z) = T}, where & is a set of equations over T<(X), and
u,v e Ty(X). We define a transformation on systems of the form (%, &, @),
where &7 is a term system, & a set of equations as above and & an order
assignment:

<y0,é”0,ﬁ0> = <ylvg17@)1>7
where |, =r,l, =r, € & U&, ", either | /B is not a variable or [, =r,
is degenerate, [,/B #1,,TU(l,/B,1,) represents a mgu of [,/B and [,

in triangular form,"” o = [¢,/x,...,t,/x,] where TU(,/B,1,) =
{xp,t0,..,{x,, 1,0},

&Y =0'((go— {4 é’”l})Jr U{lL[B < 1] é”1})~

@, is an order assignment on &, compatible with @, %, =.%, U TU(l,/B,1,).
and &, = R(&/, @)).

'7 Note that we are requiring that /, /B8 and /, have a nontrivial unifier. The triangular form of
mgus important for the NP-completeness of this method.
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Observe that o (/[ B < r,] = r)) looks like a critical pair of equations in
&, U &', but it is not. This is because a critical pair is formed by applying the
mgu of I, /B and [, to L[ B « ry] =ry, but [¢,/x,,....1,/x,1is usually not a
mgu of /,/B and /,. It is the composition [, /x,]; -~ ;[¢,/x,] that is a mgu of
l,/B and I,. The reason for not applying the mgu is that by repeated
applications of this step, exponential size terms could be formed, and it would
not be clear that the decision procedure is in NP. We have chosen an approach
of “lazy” (or delayed) unification. Also note that we use the rigid reduced
system R(&/, @) rather than &/, and so, a transformation step is defined only
if R does not fail. The method then is the following:

Definition 9.3 (Method). Let E, = E U{eq(u,v) = F,eq(z,2z) =T}, &,

u,v
an order assignment on E, ,.% =, &, = R(E, ,,J,), m the total number

of variables in &, and V' = Var(E) U Var(u,v). For any sequence
(F:&4:Oy) =" (S, &, )

consisting of at most m transformation steps, if .%%, is unifiable and k < m is
the first integer in the sequence such that F = T € &, return the substitution
0, |y, where 0. is the mgu of 7 (over T4(X)).

Example 9.4. Let E be the set of equations F = {fa = a, ggx = fa}, and
(u,v) = {ggex, x). We have

E,,={fa=a g =fa.eq(ggge.x) = F,eq(z,2) = T}.

The congruence closure II of E,  has three nontrivial classes {a, fa, ggt},
{eq(gggx, x), F}, and {eq(z, z), T}. Let &, be the order assignment on E, , such
that ’

T <,, eq(ggex. x),
F <. eq(z,z),
a <y, fa =g, 8§%,

the least elements of classes being ordered in the order of listing of the classes.
We have ¥, = (J, and the reduced system &, = R(E, ,, @,) is

& =1{fa=a.ggx=a,eq(ga,x) =F,eq(z,z) = T}.

Note that there is an overlap between eq(ga,x) = F and eq(z,z) =T at
address € in eq(ga, x), and we obtain the triangular system {{x, ga), {z, ga)}
and the new equation ¥ = T. Thus, we have

<<5p0,g()7ﬁ0> = <3717g17@’1>,
where & = {{x, ga),{z, ga)}
& ={fa=a,ggea =a,eq(ga,ga) =F,F =T},

and @, is the restriction of &, to the subterms in &,. After reducing &/, we
have

& ={fa=a ,ggga =a,eq(ga,ga) =T,F=T}.
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Since F=T € &, and .%, is unifiable, the restriction [ga/x] of the mgu
lga/x, ga/z] of # to Var(E) U Var(u,v) = {x} is a rigid E-unifier of gggx
and x.

10. Soundness, Completeness, and Decidability of the Rigid E-Unification Method
The main properties of the method are given in this section.

THEOREM 10.1 (SOUNDNESS). Let E be a set of equations over T<(X), u,v
two terms in Ty(X), E, ,=E Uleq(z,z) = T, eq(u,v) = F}, @, an order as-
signmenton E, ,, %, = 0, & = R(E, ,, @,), m the total number of variables in
&y, and V = Var(E) U Var(u,v). If

<L9/)()7g()7(¢(]> :>+ <‘>72»7gk7(¢k>7

where 7 is unifiable, F =T €&, and F=T & &, forall i, 0 <i <k <m,
then 0, |, is a rigid E-unifier of u and v, where 0; is the mgu of 7
(over T<(X)).

The proof of Theorem 10.1 does not use the fact that the systems R(&), @)
are rigid reduced, but only the fact that 6'(&) and 0'(R(&/, 7)) are rigid
equivalent. However, the fact that the systems R(&/, @) are rigid reduced
plays a crucial role in the proof of the completeness theorem. The #,’s are only
needed for the completeness of the method, and to make sure that the
reduction procedure terminates. We now turn to the completeness part. The
main technique is roughly the removal of peaks by the use of critical pairs
(Bachmair [4], Bachmair et al. [5, 6]).

THEOREM 10.2 (COMPLETENESS).  Let E be a set of equations over Ts(X) and
u,v two terms in T<(X). If 0 is any rigid E-unifier of u and v, then there is an
order assignment @, on E, ,, and letting &, =0, &, =R(E, ,,), m the
number of variables in R(E, ,,@,), and V = Var(E) U Var(u,v), there is a
sequence of transformations

(F6, &0, 0y) =" (S, &, 0,

where k < m,.%, is unifiable, F =T € &, F=T & &, foralli,0 <i <k, and
0 |y <p OV, where 6, is the mgu of &, over Ty(X). Further-
more, 0. | v is a rigid E-unifier of u and v.

CoRroLLARY 10.3. If ' is the mgu produced by a sequence of steps as in the

soundness theorem, there is a ground substitution 6, such that V < D(6,) and a
sequence of steps

<=5ﬂ0>g()7ﬁ0> :>+ <yk7 gkyﬁk>7
such that 0, Cp 0, 0, is a unifier of %, and 0, realizes all the @;s in the above

sequence. In particular, the method is still complete if we restrict ourselves to order
assignments @ such that T < , F < . 5 < , eq(u,v) for all s,u,ve Ts(X).

Theorem 10.2 also shows that rigid E-unification is decidable.
COROLLARY 10.4. Rigid E-unification is decidable.

Combining the results of Theorem 10.1 and 10.2, we also obtain the fact that
for any F, u, v, there is always a finite complete set of rigid E-unifiers.
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THEOREM 10.5. Let E be a set of equations over T(X),u,v two terms in
T(X), m the number of variables in E U {u,v}, and V = Var(E) U Var(u,v).
There is a finite complete set of rigid E-unifiers for 1 and v given by the set

{Qy}\ |V |<L9)0>g()7 ﬁ0> :>+ <<§ﬂk7gk>ﬁk>a k < m}>

for any order assignment @, on E, ,, with %, = &, &, = R(E, ,, @,), and where
i s unifiable, F =T € &, F =T & &, foralli,0 <i <k, and 0, is the mgu
of %, over Ts(X).

11. NP-Completeness of Rigid E-Unification

First, recall that rigid E-unification is NP-hard. This holds even for ground sets
of equations, as shown by Kozen [30, 31]. Using an idea of Kozen [30], we show
that rigid FE-unification is NP-hard even when all equations in E are regular,
all ground except one, and u and v are ground.

Definition 11.1.  An equation ([ = r) is regular iff Var(l) = Var(r).

THEOREM 11.2.  Rigid E-unification is NP-hard when all equations in E are
regular, all ground except one, and u and v are ground.

Proor. The satisfiability problem is reduced to rigid E-unification as
follows. Let the set of function symbols consist of A, Vv, —, and the constants
T and L . Write down the set £, ,,, of 10 ground equations corresponding to
the truth tables for A, vV, —. Given any clause A, if Var(A4) = {x,..., x,], let

B,=(x; Ax, A Ax, A L).

Finally, let E, =E,,,, V{4 =B}, u=T and v= L. Clearly, 4 =B, is
regular, and it is easy to see that a substitution o such that T and L are
congruent modulo o(kE,) exists iff A4 is satisfiable, since B, is false
for every truth assignment. Hence, satisfiability is reduced to rigid E-
unification. O

We now show that rigid E-unification is in NP.
THEOREM 11.3.  Rigid E-unification is NP-complete.

ProoF. We already know that rigid E-unification is NP-hard. By Corollary
10.4, the problem is decidable. It remains to show that it is in NP. From
Corollary 10.4, u and v have some rigid E-unifier iff there is some sequence of
transformations

<<5/Z)7 goa é\0> =+ <<§/}(,%k7é’k>

of at most k < m steps where m is the number of variables in &, and such
that %, is unifiable (over T4(X)), F=T €&, and F=T & & for all i,
0 <i <k. We need to verify that it is possible to check these conditions in
polynomial time. First, observe that a triangular form can be computed in
polynomial time, applying the substitutions associated with triangular forms
can also be done in polynomial time, and checking that a preorder is an order
assignment can be done in polynomial time. Finally, we need to show that the
total cost of producing reduced systems is polynomial. This is a crucial point
that had been overlooked in a previous version of this paper, and we thank Leo
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Bachmair for pointing out this subtlety to us. We use two facts that have to do
with implementing the steps of the algorithm using term DAGs.

(1) We have already noted (see Theorem 8.7) that the size of the term DAG
associated with a reduced system equivalent to an input set of equations is
no greater than the size of the input term DAG, the number of rules no
greater than the number of input equations, and that the reduction
procedure runs in O((m + n + p)*), where (m, n) is the size of the input
term DAG and p the number of equations in E.

(2) The term DAG associated with the system &/, obtained from & by a
transformation step can be obtained from the term DAG associated with
&, by moving pointers, and if (m’, n') and (m, n) are the sizes of the term
DAGs of the systems &/, , and &, respectlvely, and p’ and P the numbers
of equations in these systems, then m’ <m, n' <n, and p' <p.

The reason why (2) holds is that the terms occurring in the triangular form of
the substitution o associated with the transformation step all belong to the
term DAG associated with &,. For instance, this is easily seen if one uses
Paterson and Wegman’s method [37]. Now, forming [,[ 8 < r,] only involves
pointer redirection, and so does the application of ¢. Thus, the size of the
resulting term DAG cannot increase. By the definition of the transformations,
it is also obvious that p’ < p.

Because the number of steps is at most the number of variables in &, the
total cost of producing reduced systems is indeed polynomial in the size of the
input.

It is interesting to note the analogy of this part of our proof with Kozen’s
proof that his method is in NP [31]. Both use the term DAG representation in
a crucial way. In this way, we avoid the potential exponential explosion that can
take place during reductions if identical subterms are not shared. 0O

If £ is a set of ground equations, the &s are useless and the reduction
procedure R needs only be applied once at the beginning of E. Thus, Theorem
11.3 provides another proof of a result first established by Kozen [30, 31].

12. Applications of Rigid E-Unification to Equational Matings

The method developed for one set of equations and one pair can be easily
generalized to tackle problem (1). In fact, an algorithm to decide whether a
family of mated sets is an equational (pre)matlng is obtained. The method of
Definition 9.3 can be generalized to pairs (E, S) (as defined in problem 1 in
the introduction) by considering triples (%%, &, &), where .% is a term system,
and & is an n-tuple of sets of equations. The definition of a rigid E-unifier of
a set of pairs is generalized as follows:

Definition 12.1. Let E = {E, |1 < i < n} be a family of n sets of equations
(over T5(X)) and S = {(ul,v) |1 <i<n} aset of n pairs of terms (over
T(X)). "A substitution 6 (over T5(X)) is a rigid E-unifier of § iff

0(u,) = “H(E) 0(v,)

for every i, 1 <i < n. A pair (E,S) such that S has some rigid E-unifier is
called an equational premating.
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The suitable generalization of the preorder <z to a family E = {E |1 <i
< n} of n sets of equations turns out to be the following:

Definition 12.2. Given a family E = {E, |1 < i < n} of n sets of equations,
for any (finite) set of variables V, for any two substitutions o and 6, o <z 0
iff there is some 7 such that o; nCp 6[V]for every i, 1 <i <n.

Note that this condition is stronger than the condition o <, 6[V] for
every i, 1 <i < n, because with this second condition we only know that there
are substitutions 7,,.... 7, such that o: n, Cp 6[Viforevery i, 1 <i<n.In
Definition 12.2, it is required that n, = --- = n,. It is straightforward to verify
that the generahzatlon of Theorem 10.2 holds with the stronger Definition
12.2.

Complete sets of rigid E-unifiers for § are defined as follows:

Definition 12.3. Let E = {E//l <i<n}and S = {{u,v) |1l <i<n}asin
Definition 12.1, and let V= Vai(E ) U Var(S). A set U of substitutions is a
complete set of rigid E- -unifiers for S iff: For every o € U,

G Do) cV and D(o) N I(0) = & (idempotence),
(ii) o is a rigid E- unifier of S,

(iii) For every rigid E-unifier 6 of S, there is some o € U such that o < i
o[V .

Minimal rigid E-unifiers also exist and are defined as follows:

Definition 12.4. Let E be a family of sets of equations and S a term system
as in Definition 12.1. For any ground rigid E-unifier 6 of S, let

SE.s.e
= {pID( p) =D(8), p(u,) =,5, p(v,),pCg, 0,1<i<n,and p ground} .

Since << is total and well-founded on ground substitutions with domain D(8),
the set Sz 5 , contains some least element o (with respect to <<).
It is easy to see that Lemma 7.4 can be generalized as follows:

LEMMA 12.5. Let E be a family of sets of equations and S a term system
as in Definition 12.1. For any ground rigid E-unifier 0 of S, if o is the least
element of the set Sg g , of Definition 12.4, then the following properties hold:

(1) o=y 6 foreveryi,1<i<n,

(2) every term of the form o(x) is irreducible by every orlented instance
o(l) = o(r) of a nondegenerate equation [ =r € E U E~!, and

(3) every proper subterm of a term of the form o (x) is lrreduCIble by evcry
oriented instance o (/) — o (r) of a degenerate equation I =r € E U E~

Lemma 8.3 is easily generalized as follows: We let eq,,...,eq, be n new
distinct binary function symbols not in ¥ (and distinct from 7 and F).

LEMMA 12.6. Let E be a family of sets of equatlons and S a term system as in
Definition 12.1. A substitution 8 over Ts(X) is a rigid E-unifier of S iff there is
some substitution 8" over T5(X) such that 6 = 6| p(y = { o zyand T &g p F
for every i, 1 <i <n, where E' = E, U {eq,(ul,vl) F, eq,(z,,z) T}, and

{z),..., 2,} is a set of new variables not in Var(E) U Var(S).
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The total simplification ordering < is extended to the set
l=n
TE v {T!F} U U {eqz(u’v) |u7v€ TE}
i=1
as follows:
For any terms s,t,u,v € Ty,

() T<F<u<eq(st),

() eq,(s,t) < eqlu,v) iff {s,t} <, {u,v}, where <,  is the lexicographic
extension of < to pairs;

(©) eq(s, 1) <equ,v)iff 1 <i<j<n.

Clearly, this extension of < is a total simplification ordering. We define a
transformation on systems as follows: We shall be considering n-tuples & =
(£',...,&") of finite sets of equations of the form &' = &5 U {eq,(u,v) =
F,eq(z,z) =T}, where &; is a set of equations over Ty(X) and u,ve
Ty(X). We define a transformation on systems of the form (7, &, &), where
& is a term system, & an n-tuple of sets of equations as above, and & an order
assignment:

<%7g09ﬁ0> = <ylyg17@,l>7

where [, =r,, 1, =r, € &L U (&) for some i, 1 <i < n, either [,/ is not
a variable or [, = r, is degenerate, [, /B # [,, TU(l, /B, [,) represents a mgu of
I,/B and I, in triangular form, o = [#,/x,,...,t,/x,] where TU(l,/B, 1) =
{<x17 t1>a cery <xp> tp>}7

g =a((&— (1, =) V{LI[B <r]=n})
and &'[=o0(&f) forevery j#i,

@, is an order assignment on &/ compatible with @,, 7, =%, U TU(, /B, 1,),
and &, = (&},..., &), where & = R(&'{,7) forall j,1 <j <n.
The method for finding rigid E-unifiers of § is the following:

Definition 12.7 (Method). Let E ={E;|1 <i <n} and S = {{u,v) |1 <i

< n} as in Definition 12.1, let E = E; U {eq,(u;,v,) = F, eq(z,, z;) = T} for
every i, 1 <i <n, &, an order assignment on (E',...,E"), %, =0, & =
R(E',@,) for every i, 1 <i<n, & = (&),..., &), m the total number of

variables in &, and V' = Var(E) U Var(S). For any sequence
<y()7 g(h ﬁ0> =>+ <L%(7 gk7 ﬁk)

consisting of at most m transformation steps, if .%; is unifiable and k& < m is
the first integer in the sequence such that F =T € &, forevery i, 1 <i <n,
return the substitution 6., |, where 6, is the mgu of % (over T5(X ).

The proofs of Theorem 10.1 and Theorem 10.2 can be easily adapted to
prove that the finite set of all substitutions returned by the method of
Definition 12.7 forms a complete set of rigid E-unifiers for .. In particular,
the method provides a decision procedure for deciding whether a family of
mated sets is an equational premating that is in NP.

THEOREM 12.8 (SOUNDNESS). Let E = {E;|1 <i<n} and S = {{u;, v |1
< i < n} as in Definition 12.1, let E' = E, U {eq,(u;,v,) = F, eq(z,,z,) = T} for
every i, 1 <i <n, @, an order assignment on {E',...,E"), % =, & =
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R(E', @) for every i, 1 <i<n, & =(&},...,&r>, m the total number of
variables in &,, and V = Var(E) U Var(S) If

<%>g07@’0> :+ <%vgkvﬁk>
where .7 is unifiable, F = T € &l and F =T &€ &/ foralliandj, 0 <i <k <

m, 1 <j<n, then 0, |, is a rigid E- -unifier of S, where . is the mgu of .7,
(over TE(X))

THEOREM 12.9 (COMPLETENESS). Let E = {E, |1 <i <n} and S =
{Ku,v) 11 <i<n} as in Definition 12.1, and let E' = E, U {eq(u,,v) =
F,eq(z,.z) =T} for every i, 1 <i<n. If 0 is any rigid E-unifier of S,
then there is an order assignment &, on (E',...,E™), and letting &, = &,

=R(E',@,) for every i, | <i<n, & = <é”1,.. &;), m the total num-
ber of variables in &,, and V = Var(E) U Var($), there is a sequence of transfor-
mations
(0, &y, Tg) =" (S &> O,
where k < m, .7, isunifiable, F = T € &, F = T & &/ foralliandj.0 <i < k,
1<j=<mn, and 6. IV H[V], where Oy, is the mgu of % over Ty(X).
Furthermore, 0, |V is a llgld E-unifier of S,

Actually, Theorem 12.9 can be sharpened. Examination of the induction
proof reveals that for any rigid E-unifier 6 of S, a rigid E-unifier more general
than @ can be found, even if the transformations are applied in a certain order.

Definition 12.10. We say that a derivation

<yo’go’ﬁo> =" <‘§ﬂm7gm’ﬁm>
is an lr-derivation iff for every subderivation
(96,%0,é’o>=>*<§/’ W) =S L8, G0,

in the step fromitoi+1(0<i< m) the equations /, = r, and /, = r, are
chosen in the set &’ such that j > 1 is the least index such that F Te&
forevery I <jand F=T & &/.

In some sense, such derivations compute rigid E-unifiers incrementally from
left to right.

TaeorEM 12.11 (INCREMENTAL COMPLETENESS). Theorem 12.9 holds with
Ir-derivations instead of arbitrary derivations.

This sharpening of Theorem 12.9 is very useful in practice, because it yields
an incremental way of finding rigid E-unifiers. From Theorem 12. 9, 1t is
obvious that Theorem 10.5 also holds for a family of sets of equations E and a
term system ..

THEOREM 12.12. LetE = {E 1 <i<n}andS ={{u,v)|1 <i<n}asin
Definition 12.1, E' = E, U {eql(ul,vl) = F,eq(z, zl) =T} foreveryi,1 <i < n,
m the number of variables in EUS, and V = Var(E) U Var(S). There is a finite
complete set of rigid E- -unifiers for S given by the set

0 v (A &80, 0)) =" (7, 8.0,  k<m).

for any order assignment @, on {E',... E"), with %, = &, &} = R(E', @) for
every i, | <i<n, & = ={(&,..., & > and where% is unifiable, F = Te &,
F=Tre¢gl forallzand],() <i <k I <j <n.and 0, is the mgu of 7, over
T5(X).
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Finally, it is obvious that Theorem 12.9 yields a generalization of Theorem
11.3 to equational prematings.

THEOREM 12.13.  Finding whether a pair {E, S) (as in Definition 12.1) is an
equational premating is NP-complete.

As a consequence, since the problem of deciding whether a family of mated
sets forms an equational mating is equivalent to the problem of finding
whether a pair (E,S) is an equational premating, the former problem is also
NP-complete.

In the next section, we present a procedure based on the method of
equational matings. The basic idea of such a procedure is straightforward, as
suggested by Theorem 5.5: Compute incrementally amplifications of a formula
in nnf, and at each stage, test whether such an amplification has a p-acceptable
mating. The efficiency related issues here are the same as in Andrews’s
nonequational case, except that they are harder: In addition to efficient data
structures that save information between stages, we must identify mated sets
instead of mated pairs, and use rigid E-unification instead of standard unifica-
tion.

Although implementation issues are of importance for a practical procedure,
we do not feel they are as new as the ideas of equational matings and rigid
E-unification, and thus, we only give a high-level description of the procedure.

13. A Refutation Procedure

We now consider defining a refutation procedure based on equational matings
and rigid E-unification. As mentioned in Section 5, such a procedure is
suggested by Theorem 5.5: compute incrementally amphfrcatrons of a formula
in nnf, and at each stage, test whether such an amplification has a p-acceptable
mating. This idea can be formalized in the following nondeterministic defini-
tion, which uses the incremental rigid E-unification algorithm E_UNIF given
by Theorem 12.11.

Definition 13.1. Let A be a rectified universal sentence in nnf and D
an amplification of A. An EQ-derivation R is a sequence of tuples
((Dy, Iy, MSy, 0,),...,(D,, 11, MS,, 0,)), such that for 0 <i <p, D, is an
amplification of A, H is a set of Vertrcal paths 1n D,, MS, is a set of mated
sets, each such set of the form {(s;, =1),....,(s, =1,), —|(s =)}, and 6, is a
substitution, such that

(1) D, is the quantifier-free form of A, I1; = vp(D,), MS, = J, and 6, = Id,
and
(2) For every i, 0 <i <p,if MS, ={S,,...,S,,), then either

(i) There is some vertical path 7, ; in I1,, some subset S,, | of 7, ; such
that S, , = {(s, =1)),...,(s, =t,), 7(s = 1)}, and some rigid E-uni-
fier o, +1 for S, . grven by the procedure E_UNIF (where E =
{(s;,=1),...,(s, =t)). Then D,,, =D, I, = o, (II, = {7, }),
MS, ., =MS U {Sz+1} and 6., = 6 0, Or

(i) If D, is obtained from the rectified form of a sentence C, by deleting
quantrfrers where C, is a sentence in a sequence (C|, .. C Yix=1of
formulas resulting from quantifier duplications, then D, . Is obtained
from the rectified form of a sentence C,,,, obtained by quantifier
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duplication from C,, by deleting quantifiers. Then, I,,, = vp(D,, ),
MS,,, =, and 6, | = Id.

If in addition, (MS,, 6, is a p-acceptable mating, we say that R is an
EQ-refutation.

Since the method outlined in Definition 13.1 nondeterministically enumer-
ates all equational matings for potentially all amplifications of A, it is immedi-
ate from Theorem 5.5, that since A is unsatisfiable iff some amplification of A
has a p-acceptable mating, 4 is unsatisfiable iff there is an EQ-refutation for
A.

There are a number of implementation problems with Definition 13.1 as the
basis for a practical method for showing the unsatisfiability of a formula in nnf:

(1) The p-acceptable mating found is maximal, since no attempt is made to
identify overlapping vertical paths that are spanned by common mated sets.

(2) Every time a subformula of A is amplified, the entire computation up until
that point is discarded.

(3) No effort is made to use any failure in any step as a source of information
for the next step.

These points are closely related to the acceptability criteria given by An-
drews in Section 2.3 of [1], where he defines a procedure for finding (nonequa-
tional) p-acceptable matings. We tried to adapt the notion of a connection
graph used by Andrews in Section 3 of [1], but unfortunately with no success.
The difficulty in the presence of equality is that a vertical path  is closed iff it
contains some mated set {(s; =1,),...,(s, =1¢,), 7(s = 1)} such that s and ¢
have some rigid E-unifier (where E = {(s; = 1,),...,(s, = £,)}), but there is no
guarantee that n < 1. For languages without equality, a mated set is of the
form {L, = L'} where L and L’ are unifiable. In order to determine which
pairs of literals are unifiable it is necessary to examine O(n?) pairs, where 7 is
the total number of literals in D. Hence, for languages without equality, it is
advantageous to precompute a connection graph recording the pairs of literals
{L, - L'} where L and L' are unifiable, since every closed path must contain
such a pair. However, for languages with equality, if D contains n =g + r
literals where g literals are positive and r literals are negative (r > 1), to form
a mated set there are r choices for the negative literal and for ecach such
choice, any subset of the positive literals can be chosen. Thus, there are
potentially 29 mated sets, that is, an exponential number of mated sets. In
addition, rigid E-unification is NP-complete.

Thus, the cost of determining which sets of literals are mated sets is
exponential and there does not seem to be any advantage in computing such
sets. Since our investigations on this subject are still very preliminary, we shall
not elaborate any further. However, this is a very interesting topic that clearly
requires more work.

We conclude this section with a naive procedure written in pseudocode
implementing the method of equational matings. We have made no efforts
towards improving efficiency of the basic method. This aspect should be
addressed in further work.

Let us now turn our attention to identifying mated sets in the set vp(D)
of vertical paths in D. Since mated sets are of the form {(sy =2),...,
(s, =1,), 7(s = 1)}, the search is organized around the negative literals. Ob-
serve that if some path = € vp(D) does not contain a negated literal, it cannot
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contain an unsatisfiable mated set and D is satisfiable. In this case, the
procedure stops with failure. Suppose now that for some vertical path , there
is a mated set S of the form {(s, =1,),...,(s, = 1,), 7(s = ¢)} but it has no
rigid E-unifier. Then, we must perform an amplification step. We would like
this step to supply information that was missing in the attempt to find an
unsatisfiable mated set. Unfortunately, any arbitrary duplication may fail to do
this, and may even introduce new vertical paths. As Andrews says in discussing
this problem in the context of looking for nonequational p-acceptable matings,
“One would like to develop a set of heuristics for duplicating quantifiers.”
However, it is beyond the scope of this paper to consider this issue in detail (as
it was beyond the scope of Andrews and Bibel’s papers), and we use a
straightforward breadth-first outermost duplication strategy: In the lexical
order of occurrences of subformulas in A, perform an outermost duplication of
the first nonground subformula, then the second, and so on until the last
nonground subformula in the lexical order has been duplicated, and then start
again from the top. A breadth-first strategy clearly generates a complete search
space lgf outermost duplications; however, it can clearly result in superfluous
paths.™

Example 13.2. Consider the following formula A, formed from the union of
Examples 4.8 and 5.6, where £, 9, Z,u, v,w, x, y, z denote variables:

(a =b) vV ~1(x(a,b) = =(b,a)) (10)
AVE((f2 = %) v S (f éfb)) (11)
A (Qa\/ —|(f3aéa)) (12)
AV3((F9 =9) v ~05) (13)
A(RaV —(fa=a)Vv - Pfa) (14)
AVYE-RE (15)
A Pa (16)
ANVx Yy Vz(=(x,#(y,2)) = =(+(x,),2))) (17)
A Vu((u,1) = u) (18)
A Yo(=(1,v) = v) (19)
AVw(=(w,w) =1). (20)

The problem is to find the right sequence of duplications for 4. We know from
Example 5.6 that 3 duplications of subformula (17) and 2 duplications of
subformula (20) are necessary for the existence of a p-acceptable mating. But
an obvious breadth-first outermost sequence of duplications results in 21
duplications before these duplications are generated. Subformulas (10), (12),
(14), and (16) are ground and thus not subject to duplication.

Let A be a rectified universal formula in nnf. A breadth-first outermost
amplification sequence {D,...., D;) (i = 1) for 4 is a sequence such that D
is obtained from the rectified form of a sentence C, by deleting quantifiers,
where C, is a sentence in a sequence {Cy,...,C,) (i = 1) of formulas resulting

¥ Andrews and Bibel have shown that outermost duplication itself can generate superfluous
literals.
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from quantifier duplications (1 < k <i). The C,’s are defined such that
C, =4, and C,,, is obtained by quantifier duplication of an outermost
universal subformula of C, using a breadth-first strategy (1 <k <i — 1).
Given a counter k > 1, a call amplify(k + 1. A, D) to the procedure amplify
returns the amplification D = D, obtained from C, as explained above. For
k =0, it is assumed that amplify(1, A, D) returns the quantifier-free formula
D, obtained by deleting quantifiers from A. We are assuming that the
E-unification algorithm E_UNIF (given by Theorem 12.11) takes as input a
mated set § = {(s, =1)),...,(s, =1,), 7(s = 1)} and returns a finite complete
set of rigid E-unifiers of s and ¢ where E = {(s; =¢,),....(s, =1}, in the
form of a set of triangular forms, where each triangular form T represents a
substitution o . For presenting the refutation procedure, we also assume that
a mating ./ is represented by a pair (MS,U), where MS is a collection of
mated sets, and U is the triangular representation of a substitution. Also, given
a set of paths Il and a substitution o, let

appy(o, 1) ={7'lm={P,.....P} €lland 7’ = {a(P)),..., 0 (P)}}.

We assume that the application of ¢ to Il is done intelligently, that is, since o
is the identity substitution on almost all literals in =, some table lookup
mechanism is available to identify the literals that have variables in the domain
of o.

We collect the information discussed in this section into the following
pseudo-code version of a refutation procedure for formulas in nnf that uses the
following variables and procedures: A is a rectified universal sentence in nnf;
is a counter for vertical paths in an amplification; j is a counter for negative
literals in a vertical path; & is an amplification counter; .# is an equational
mating; p_acceptable is a Boolean value which is true iff .7 is p_acceptable;
found is a Boolean value that is true if an unsatisfiable mated set is identified
in some path; select_path(i, vp(D)) returns the ith path associated with ampli-
fication D; select_negative_literal(j, ) returns the jth negative literal in ;
choose_positive..subset(s) returns the set of positive literals for some path .
This procedure must be understood as a nondeterministic procedure. A deter-
ministic version can be written by implementing explicitly the backtracking
needed to handle the choice of literal, path, etc. However, we feel that it would
not be as clear as the present version.

A Refutation Procedure

procedure equational_refutation( 4),
begin
k<« 1;
amplifi(k, A, D); (D is thus the quantifier-free form of A)
M — D, D
i_limit < #paths(up(D)); [ < 1,
p_acceptable « L ;
while i < i_limit A = p_acceptable do
7 < select_path(i, vp(D))
J_limit <« #negative_literals(7); found « L ;
if j_limit # 0 then
[j <1
while j <;_limit A = found do
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N « select_negative_literal(§j, m);
S « choose_positive_subset(m) U {N};
if 3T € E_UNIF(S) then
[found « T ;
if i = i_limit then p_acceptable < T else i < i+ 1;
let {MS,U) =&; # < {MSUS,UUT);
vp(D) « apply(or, vp(D))]
else j «j+1
endwhile]
else return; {4 is satisfiable}
if — found then
k< k+1;
amplify(k, A, D,
i limit < #paths(vp(D)); i < 1]
endwhile;
return(.# )
end;

14. Conclusion and Further Work

We have generalized Andrews and Bibel’s method of matings to first-order
languages with equality. This new method is sound and complete, and uses a
decidable form of E-unification, rigid E- unification. We have shown that both
ngld E-unification and finding whether a pair (E,S) is an equational premat-
ing are NP-complete problems. We also have shown that finite complete sets of
I‘lgld E-unifiers always exist. Theorem 12.13 has 1mp0rtant implications regard-
ing the computational complexity of theorem proving for first-order languages
with equality using the method of matings. It shows that there is an algorithm
for finding equational matings, but not only is the problem of deciding whether
an equational mating is p-acceptable co-NP-complete, the problem of deciding
that a family of mated sets is an equational mating is NP-complete. For
languages without equality, the first problem is still co-NP-complete, but the
second can be solved in polynomial time using standard unification, and in fact
in linear time.

It is essential to find ways of trimming the search space of order assignments
if we want the method to be practical. When a reduction ordering =< is
available and all subterms in &’ are ordered by <, ¢, is completely deter-
mined. It would be interesting to investigate subcases where order assignments
can be found quickly. An actual implementation of the refutation procedure
would also be interesting, as well as a comparison with other methods, those
based on Knuth—Bendix completions in particular. The above questions are
left for further research.

Appendix. Proof of the Skolem—Herbrand—Gédel Theorem

In this section, we give a semantic proof of the Skolem—Herbrand—-Godel
theorem, in the line of Andrews’s proof [1,2]. The proof relies on two
properties:

(1) If every c-instance of a universal sentence A4 in nnf is satisfiable, then the
set of all c-instances of A is satisfiable. This follows from an easy
application of the compactness theorem, as in Andrews [1, 2].

(2) If a universal sentence in nnf (with equahty) is valid in some model M, then
it is valid in some model ;% whose domain is the quotient of the Herbrand
universe by some congruence.
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For languages without equality, property (2) is simpler. If a sentence is valid
in some model, then it is valid in some Herbrand model, and there is no need
for a quotient construction. We now proceed with the proofs.

LEMMA Al. Let A be a universal sentence in nnf. If every c-instance of A is
satisfiable, then the set of all c-instances of A is satisfiable.

Proor. First, we use the fact proved in Andrews [1, Lemma 1] or Gallier
[17, Lemma 7.6.1], that for any two c-instances K and L of A, there is some
c-instance D of A such that =D D (K A L). Then, assume that every
c-instance of A is satisfiable. For every finite set {Ky,..., K,} of c-instances of
A, using the above property n — 1 times, we have some c-instance K of A,
such that, = K D (K, A - A K,). Since every c-instance of A is satisfiable,
the set {K,,..., K,} is satisfiable. By the compactness theorem, the set of all
c-instances of A is satisfiable. O

LEMMA A2. Consider a first-order language with equality having at least one
constant. Given a sentence A in negation normal form and not containing
existential quantifiers, if A is satisfied in some structure, then A is satisfied in some
structure whose domain is the quotient of the Herbrand universe HT by some
congruence = .

ProOF (SKXETCH). Assume that M &= A, for some structure M. Let %9 be
the initial algebra' generated by the constant and function symbols in the
language (whose domain is the Herbrand universe HT). Let & be the unique
algebra homomorphism 4: .79 — M defined such that:

For every constant ¢, #(c) = cy;
For every function symbol f of rank » > 0, for any n terms ¢,...,t
€ HT,

n

A ftrs..ost,) = fu(h(8), - 1(2,)).

It is immediate by the definition of A that for every term ¢ € HT, 1y, = h(¢).
Let = be the kernel of the homomorphism #4, that is, the relation on HT
defined such that, for all s,r € HT, s = ¢ iff h(s) = h(¢). It is well known
that = is a congruence on #7. Observe that s = ¢ iff M = (s = ), since
sw = h(s) and ry = h(t). Let # be the quotient algebra #9/ = . Since
:kemel(h), there is a unique homomorphism #: # — M, such that
h(t)= h(t), for every t € HT/ = .

We make /# into a structure as follows: For each predicate symbol P of rank #,
for any n equivalence classes of term ¢,,...,t, € HT/ =,

Po(ty,....1,) =true  iff Py(h(t,),..., h(t,)) = true.

Note that for every + € HT, we have

tM = ?l(l:)>
since A(1) = h(t) and ty, = h(z).
Given a formula A4 with set of free variables {x|,..., x,}, and a structure M,
for any n-tuple (m,...,m,) € M", M = Alm,,...,m,] means that M =

Als] for any assignment s such that s(x,) =m,, for 1 <i <n. (It is well

" For details on algebras and homomorphisms, see Gallier [17).
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known Gallier [17] that A,[s] only depends on the restriction of s to
{x,,...,x,)). The following properties can be proved by induction on terms
and formulas:

(1) For every term t with free variables {x;,...,x,}, for every n-tuple,
t,....1, € HT/ =,

T R e D2 A

(2) For every atomic formula B (including the case of an equation) with free
variables {x;, ..., x,}, for every n-tuple, t,...,t, € HT/ =

ZEBlt,....1,| it ZE=Blt/x,....t,/%,].

Using induction on formulas, we shall establish the following claim:

Claim. For every formula X in negation normal form and not containing
any existential quantifiers, for every assignment a: 7'— HT/=, if M =
X[aoh], then # = X[al. The proof is similar to that in Gallier [17].

Proof of claim. We proceed by induction on formulas.

() First, assume that X is an equation (s = ¢), with set of free variables
{x,,...,x,)}, and that for some n-tuple (¢,...,t,) € HT", we have

ME (s = t)[ﬁ(ﬂ),...,_fz(t_n)].
Since for every t € HT, t,; = h(t), we have
su (A6, 2(5,)) = st ()
= (s[t /x4y, t,/x,)m and
ta(A(11), - () =t ((E)as 5 (1))
= (t[ty /x5 1 /% Dy
Hence, the hypothesis M &= (s = [A(t,), ..., A(t,)] is equivalent to
M E (s[t, /%5 st /%, ] =t /x, ot /%],
By the definition of =, this shows that
s[tl/xl,...,tn/xn] = t[tl/xl,...,tn/x”]. (%)
Since for every ¢,...,t, € HT /=, we have
Se(tine.osty) = s[m] and
(irennnin) = [ ),

by (+), we have shown that

ME (s = 0)[h(R)..... k(1) iff #ZE(s=0[h,..0]
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(i) If X = Ps,...s,,, with set of free variables {x,..., x,}, we have

XM(E(E) ..... 71(;,:))
= Xu((t)p- -+ (8)w)
= (X[t;/x+ - 1,/%, Du
= (Ps/[ti/%1, st /X oo e s Sl /X0s o 6 /% D
= Py((silty/xps ot /%, Do oo (il /%00 /%, D)
= Py(h(silti/x st /%005 (st /%y, /5, 1)),

and
Xl’(a>’;;) = (X[tl/xlr"'7fn/xn]);7
= (Ps[ti/x;,. .ot /%, ) ospult /X 6 /x,])
:R«?((Sl[tl/xl """ [n/xn])%"‘“(Sm[[]/xl""’[n/xn])i/)

Since for any 7 terms r,,...,r, € HT /=,
Py(ry,....r,) = true  iff Py(h(r,),...,h(r,)) = true,
then
ZEX[t,.. 0] it MeX[h(),....0(,)].
(i) If X = — B, where B is an atomic formula, the result holds because we

have shown equivalences in (i) and (ii). B
(iv) If X is of the form (B A C), then M = X[aoh] implies that

M Blach]  and M= Clach].
By the induction hypothesis,
Z = Bla] and Z# = Clal,

that is, %7 &= X{al.

(v) If X is of the form (B Vv C), then the proof is similar to case (iv).

(vi) X is of the form JxB. This case is not possible since X does not contain
existential quantifiers. B

(vii) X is of the form VxB. If M &= X[ach], then for every m € M,

ME B[(a oiz)[x:z m]].

(Given an assignment a, the notation al[x:= m] denotes the assignment a’
such that a'(x) = m, and a’(y) = a(y) for all y # x). Now, since h: 7 — M,
for every t € H, h(f) € M, and so, for every € H,

ME B[(a ol_z)[x = fz(i)”, thatis, M k& B[(a[x:-—— ) 071].

By the induction hypothesis, .7 = Blalx :

= f]] for all f € H, that is, # = X[al.
This concludes the proof of the claim. O
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From the claim, since M is a model of A, we have shown that /#’ is a model
of A. O

It is clear that Lemma A2 also holds for sets of universal sentences in nnf.
Finally, we prove the Skolem—Herbrand—Gddel theorem.

THEOREM 5.2.  Given a universal sentence A in nnf, A is unsatisfiable iff some
c-instance C of A is unsatisfiable.

ProOF. First, assume that some compound instance C is unsatisfiable. It is
straightforward to show that = A O C (see Gallier [17, Theorem 7.6.1].
Hence, A is unsatisfiable.

To establish the converse, we prove its contrapositive: If every c-instance of
A is satisfiable, then A is satisfiable.

Since every c-instance of A is satisfiable, by Lemma Al, the set of all
c-instance of A is satisfiable. By Lemma A2 (extended to sets of sentences),
the set of all c-instances is valid in some structure # whose domain is the
quotient of the Herbrand universe HT by some congruence = . We prove by
induction on the structure of A that A is valid in Z

Case 1. A is a literal. Then, A4 is the only c-instance of A, and the result
holds since % is a model of all c-instances of A.

Case 2. A= (B A C).Let K be a c-instance of B, and L be a c-instance
of C. Then, (K A L) is a c-instance of A. Since % is a model of all c-instances
of A, we have 7 &= (K A L), that is, since K and L are ground formulas,
# & K and # E L. By the induction hypothesis, 7 = B and # = C, which,
since A is a sentence, implies that 7 = A.

Case 3. A=(BV C). We claim that either .# is a model of all c-
instances of B, or that .# is a model of all c-instances of C. Indeed, if this was
not the case, there would be some c-instance K of B and some c-instance L of
C such that % # B and .7 ¥ C. However, since (K Vv L) is a c-instance of A,
we would have .7 # (K V L), contradicting the fact that /7 is a model of all
c-instances of A. Thus, by the induction hypothesis, either 7' = B or 7" = C,
which, since A is a sentence, implies that .7 = 4.

Case 4. A = VYxB. Let t be any (ground) term in HT. Every c-instance of
B[t /x]is a c-instance of A, and since 7 is a model of every c-instance of A, by
the induction hypothesis, we have .# & Blr/x]. However, in the proof of
Lemma A2, we have shown:

Fact. For every atomic formula B (including the case of an equation) with
free variables {x,,..., x,}, for every n-tuple, ¢,....1, € HT /=,

ZeBll,....1,] it ZEBlt/x,....0,/%,]

By a straightforward induction on formulas almost identical to the proof of the
claim in Lemma A2, we can generalize the above fact to any universal formula
B in nnf. But then, .7 = Blt/x]iff # & B[t], where [¢] denotes any assignment
s[x := ] such that s(x) = 7. Hence, for every ¢ € HT, we have 2% & B[f], and
by the semantics of quantifiers, this means that .7 = VxB. Therefore, # = A,
as desired. O
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