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1. Introduction

In this paper we show that the method of matings due to Andrews [1] and Bibel

[7-10] can be extended to (first-order) languages with equality, and prove that

this extension is both sound and complete. 1A decidable version of E-unifica-

tion called rigid E-unification is introduced, and it is shown that the method of

equational matings remains complete when used in conjunction with rigid

E-unification. The results of this paper extend significantly those presented at

LICS ’87 [18]. In [18], it is conjectured that rigid E-unification is decidable.

Subsequently, we have shown that rigid E-unification is NP-complete (LICS’88

[20]), thus proving our conjecture. The main focus of this paper is the method
of equational matings, and we present a simplified version of the decidability of

rigid E-unification. Full details on the NP-completeness of rigid E-unification

can be found in [22].

At first glance, a generalization of the method of matings to first-order

languages with equality where equality is built-in in the sense of Plotkin [39]

(thus, it is not the naive method where explicit equality axioms are added which
is rejected for well-known inefficiency reasons) requires general E-unification

(Gallier and Snyder [21]). Hence, there are two factors contributing to the
undecidability of the method of matings for first-order languages with equality:

(1) the fact that one cannot predict how many disjuncts will occur in a

Herbrand expansion (which also holds for first-order languages without equal-

ity); (2) the undecidability of the kind of unification required (E-unification).
In this paper, we show that the completeness of the method of equational

matings is preserved if unrestricted &unification is replaced by rigid E-

unification. We also prove that rigid E-unification is decidable, which shows

that the second undecidability factor can be eliminated. The NP-completeness

of rigid E-unification shows clearly how the presence of equality influences the

complexity of theorem-proving methods. For languages without equality, one

can use standard unification whose time complexity is polynomial, and in fact
O(n). For languages with equality, the unification required is NP-complete.

When dealing with a fixed equational theory for which a practically tractable or

decidable unification algorithm is known, we recognize that it is unclear

whether our new method compares favorably with the method of matings using

this specialized unification algorithm. It seems unlikely that this question can

be settled at the theoretical level, and since our method has not yet been

implemented, we are unable to make any claims of practicality. Nevertheless, it

] One of the referees has pointed out that Bibel’s connection method appeared in print earlier

than Andrews’s method of matmgs.
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seems unquestionable that having a decidable unification procedure (preserv-

ing completeness) represents significant progress.

The method of matings applies to formulas in negation normal form, and

was introduced with two motivations in mind: to avoid breaking a formula into

parts, which can result in loss of information about the global structure, and to

avoid transforming it to clausal form, which can result in an exponential

increase in the number of literals due to the repeated use of the distributive

law (P v (Q A R)) = ((P v Q) A (P v R)). This method is an incremental

proof (or refutation) procedure that interleaves two steps: quantifier-duplica-

tion steps, and search for matings. It is an analytic proof procedure in the

sense of Smullyan [40], and, even though Andrews did not present it in terms of

Gentzen or Tableaux systems [17, 40, 41], it can easily be presented in any of

these formalisms. In fact, this is the approach followed in Bibel and Schreiber

[101, and thoroughly investigated in Eder [14, 15]. Fitting’s method of tableaux

[16] is also close in spirit to matings.

The method of matings has been implemented at CMU in the system TPS

designed by Andrews and his collaborators [3]. A large number of nontrivial

theorems have been proved by the system TPS, and this system is also used as

an effective teaching tool. Since TPS uses a version of Huet’s higher-order

unification procedure [25, 26], it is capable of performing higher-order reason-

ing. For example, the TPS system [3] can prove Cantor’s Theorem (that there is

no subjection from a set to its powerset) without any assistance (the higher-order

unification procedure finds a term that corresponds to the diagonal set {a G

A I a @f(a)} used in the standard proof). Equality reasoning can be dealt with

indirectly by defining equality using second-order quantifiers (see Section 5.4),

but this is very inefficient, and there are no other facilities in TPS to deal

directly with equality.

The method of matings exploits the fundamental property given by the

Skolem–Herbrand–Godel theorem [1, 2, 17]. In short, the unsatisfiability of a

(universally) quantified sentence can be reduced to the unsatisfiability of a

quantifier-flee formula, modulo guessing a ground substitution. The crucial

observation due to Andrews and Bibel is that a quantifier-free formula (in nnf)

is unsatisfiable iff certain sets of literals occurring in A (called L]ertical paths)

are unsatisfiable. Matings come up as a convenient method for checking that

vertical paths are unsatisfiable. Roughly speaking, a mating is a set of pairs of

literals of opposite signs (mated pairs) such that all these (unsigned) pairs are

globally unified by some substitution. The importance of matings stems from

the fact that a quantifier-free formula A has a mating iff there is a ground

substitution 9 such that 6(A) is unsatisfiable.
The extension to equational matings is nontrivial, and requires proving a

generalization of Andrews’s version of the Skolem–Herbrand–Godel theorem

[1, 2]. It also requires extending the concept of a mating so that an equational

mating is a set of sets of literals (mated sets), where a mated set consists of

several positive equations and a single negated equation (rather than pairs of

literals, as in Andrews and Bibel’s case), and a form of unification modulo

equational theories (E-unification) first studied by Plotkin [39]. A related

extension is sketched (without proofs) in Bibel [9, Sect. V.3, pp. 234–242].

However, Bibel’s method and ours differ significantly. This is because standard

unification is used in Bibel’s method, and so, it is usually necessary to include

extra literals arising from instances of the equality axioms to the mated sets.
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On the other hand, our method uses a form of E-unification, and we never

include any extra Iiterals (arising from equality axioms) in our mated sets. For a

detailed comparison of our method with others, see Section 5.4.

Checking that a family of mated sets is unsatisfiable, that is, an equational

mating, leads to an interesting and nontrivial problem. This problem, which is

central to this method. is a restricted version of 13-unification.

Problem 1. Given ~ = {~, 11 s i < n} a family of n finite sets of equations

and S = {(u,, v,) 11 s i < n} a set of n pairs of terms, is there a substitution 6

such that, treating each set 6(E1 ) as a set of ground equations (i.e., holding the

variables in 6( E,) “rigid”), O(ul) and 19(v,) are provably equal from 6( E,) for
i=l ,. ... n?

Equivalently, is there a substitution 6 such that 0( u, ) and O(V, ) can be

shown congruent from 0( E, ) by the congruence closure method for i = 1, . . . . n

(Kozen [30, 31]. Nelson and Oppen [36], Downey et al. [13])?

~ substitution 0 solving problem ~ is called a rigid &nij’ier of S, and a pair

(E, S) such that S has some rigid E-unifier is called an equationol~remating.

It will be shown in Section 12 that deciding whether a pair (E, S) is an

equational premating is an NP-complete problem. Since the problem of decid-

ing whether a family of mated sets forms an equational mating is equivalent to

the problem of finding whether a pair (~, S ) is an equational premating, the

former problem is also NP-complete. Actually, this result is an easy extension

of a simpler problem.

Problem 2. Given a finite set E = {ul ~ u,,..., Un ~ v.} of equations and a

pair (u, u) of terms, is there a substitution /3 such that. treating (3(E) as a set

of ground equations, d(u) ~e( ~ ~ 6(v), that is, t!)(u) and 6(v) are congruent

modulo 6(E) (by congruence closure)?

The substitution (3 is called a rigid E-unifier of u and u.

Example 1.1. Let E = {fa ~ a, ggx ~ fa}, and (u, u) = (gggx, x). Then, the

substitution 0 = [ga/x] is a rigid E-unifier of u and u. Indeed, /3(E) = {fa +

a! ggga + fa}~ and ~(gga ) and O(X) are congruent modulo 6(E), since

0( gggx ) = gggga ~ ,@a using ggga ~ fa

-ga = t)(ux~g fa +a.

Note that d is not the only rigid E-unifier of u and v. For example, [~a/x] or

more generally [gf~a/x] is a rigid E-unifier of u and v. However, @ is more

general than all of these rigid E-unifiers (in a sense to be made precise later).
It will be shown in Section 10 that there is always a finite set of most general

rigid E-unifiers called a complete set of rigid E-unifiers.

Note that any substitution 6 satis~ing the above problem is an E-unifier of

L1 and u. However, the equations in E are used in a restricted fashion. Contrary

to E-unification, in which there is no bound on the number of instances of the

equations in E used to show that 19(LL) GE /3(v), in our situation, only the m

instances in (3(E) can be used (any number of times, m < n).

The solution to problem (2) is a significant extension of a result of Kozen,

who has shown that the problem is NP-complete when all equations in E are

ground [31]. We also show that even when u, u are ground, and all equations in

E except one regular equation are ground, the problem is NP-complete.
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Rigid E-unification is exciting because it eliminates one of the two aspects of

undecidability associated with the method of equational matings; namely, that

of E-unification. This is particularly important here, since even if E-unification

is decidable for the set of all equations occurring in a formula in nnf, it is

necessary to consider subsets of this set of equations, and the E-unification

problem for any subset can be undecidable.

The paper is organized as follows: Section 2 reviews the main concepts used

in this paper. In Section 3, the method of equational matings is presented

informally by means of examples. In Section 4, the central concept of an

equational mating is introduced, and some important results about them are

established. Section 5 is devoted to a version of the Skolem–Herbrand–Godel

theorem for first-order languages with equality (Theorem 5.2). In order to state

this theorem, we need the notion of a compound instance (see Andrews [1] and

Bibel [7–9]). The connection with equational matings is made via the notion of

amplification, and the completeness of the method is shown (Theorem 5.5). It

is also shown that the method remains complete if outermost amplifications

are performed, and the section ends with a comparison with other methods.

Sections 6–12 are devoted to rigid E-unification. Basic definitions about

complete sets of rigid E-unifiers are given in Section 6. Minimal rigid E-uni-

fiers are studied in Section 7. A method for reducing a set of ground rewrite

rules is reviewed in Section 8. The method for finding complete sets of rigid

E-unifiers is given in Section 9. The soundness, completeness and decidability

of the method are shown in Section 10. In Section 11, it is shown that rigid

E-unification is NP-complete. The application of rigid E-unification to equa-

tional matings is presented in Section 12. A refutation procedure based on

equational matings is presented in Section 13. Section 14 contains the conclu-

sion. The appendix provides a semantic proof of the Skolem–

Herbrand–Godel theorem, in the line of Andrews’s proof for the case without

equality.

Readers who want to find out quickly about the main results (provided some

familiarity with the matings/connections method) are advised to skim Section

3, then jump to Section 6, then to Section 8, Section 9, Section 12, and finally

Section 13. Example 9.4 offers a simple illustration of the new method.

2. Preliminaries

This section contains a brief review of the main concepts used in this paper. As

much as possible, we stick to the definitions used in the literature on the

subject. More specifically, we follow Huet and Oppen [28], and Gallier [17].
The purpose of this section is mainly to establish the terminology and the

notation, and it can be omitted by readers familiar with the literature. First, we

review the basics of many-sorted languages.

Dejlnition 2.1. A set S of sorts (or @pes) is any nonempty set. Typically, S

consists of types in a programming language (such as integer, real, boolean,

character, etc.). k S-ranked alphabet is a pair (2, p) consisting of a set z

together with a function p: Z - S* x S assigning a rank (u, s) to each symbol

f in X. The string u in S* is the arity of ~ and s is the sort (or @pe) off. If

u =sl ““” S,l, (n > 1), a symbol f of rank (u,s) is to be interpreted as an
operation taking arguments, the ith argument being of type s, and yielding a
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result of type s. A symbol of rank (e, s) (when u is the empty string) is called

a constant of sort s. For simplicity, a ranked alphabet (2, p) is often denoted

by 2.

Next, we review the definition of tree domains and trees (or terms). Let N

denote the set of natural numbers. and N+ the set of positive natural numbers.

Definition 2.2. A tree domain D is a nonempty subset of strings in N:

satisfying the conditions:

(1) For all U,U= N:, if uu E D, then u = D.

(2) For all u 6 N:, for every i = N+, if ui = D then, for every j, 1 s j s i,

uj = D. For every n e N, let [~t] = {1,2, . . .. n}. and [0] = @.

Definition 2.3. Given an S-sorted ranked alphabet 2, a ~-tree (or tenm ) of

sort ~ is any function t:D - Z, where D is a tree domain denoted by dorn( t ),

and t satisfies the following conditions:

(1) The root of t is labeled with a symbol t(e) in 2 of sort s.
(2) For every node u G dorn(t), if {i I ui ● dorn(t)} = [n], then if rz >0, for

each ui, i ● [n], if t(ui) is a symbol of sort v,, then t(u)has rank (u, s ‘),

withv= u, -.. v,,, else if n = O, then t(u)has rank (e, s’), for some s‘ = S.

Given a tree t and some tree address u E dorn(t), the subtree oft rooted at u

is the tree t/u whose domain is the set {v I L[V G dorn( t)} and such that

t\u(v) = t(uv) for all v in dorn(t/u),

Given two tree addresses a, ~ ● dom(t ) in a tree t, a is an ancestor of ~ iff

LY is a prefix of ~ ,Z and a is a proper ancestor of P iff it is an ancestor of /3

and a # ~. Addresses a and ~ are independent iff neither one is an ancestor

of the other. The set of all finite trees of sort s is denoted by T:, and the

S-indexed family (T;), ● ~ of all finite trees by T>.

In this paper, it is assumed that for every S-sorted alphabet 2, there is a

distinguished sort bool ● S. Symbols of sort bool are called predicate symbols.

Terms of sort bool will be interpreted as logical formulas.

The operation of tree replacement (or tree substitution) will be needed.

Definition 2.4. Given two trees tl and t2 and a tree address Lt in t,,the
result of replacing tz at u in t,,denoted by t,[u + t2],is the function whose

graph is the set of pairs

{(v, f,(v)) Iv= dom(tl), u isnot aprefixof v}

U{(uv, tz(v)) IVG dom(tz)},

and it is only defined provided that the sort of the root of t2 is equal to the sort

of tl(u).

Let X = (X,),=$ be an S-indexed family of countable sets of variables. We

can form the S-indexed family TX(X) obtained by adjoining the S-indexed

family (X, ), ~s to the S-indexed family of sets of constants in Z. To prevent

free algebras from having empty carriers (so that the Herbrand–Skolem–Godel

theorem holds), we assume that every sort is norruoid. We say that a sort s is

nonuoid iff either there is some constant of sort s, or there is some function

symbol f of rank p(f) = (sl, . . . . s., s) such that S1, . . . . s,, are nonvoid. Then,

2 That 1s, ~ = ay, for some y c N~.
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for every sort s, the set T: is nonempty, and it is well known that for every set

X, TX(X) is the free Z-algebra generated by X (see Gallier [17]). This allows

us to define substitutions.

Definition 2.5. Given a term t,the set of variables occurring in t is the set

{x E X 13U E dom(t), t(u) = x}, and it is denoted by Var(t).

Definition 2.6. A substitution is any (S-sorted) function v: X ~ TX(X),

such that, u(x) + x for only finitely many x = X. Since TL(X) is the free

X-algebra generated by X, every substitution a: X ~ TZ(X) has a unique

homomorphic extension &: TX(X) ~ TX(X). In the sequel, we identify m and

its homomorphic extension 6.

Definition 2.7. Given a substitution u, the suppoti (or domain) of v is the

set of variables D(~) = {.x I o(x) # x}. The set of variables introduced by u is

the set of variables 1(u) = U. ~ ~(m) Var( ~(x)). Given a substitution O, if its

support is the set {xl, ..., x.}, and if t, = U(xl), 1 s i s n, then u is also
denoted by [tI/xl,. ... t,,/x,l ]. Given a term (or formula) r, we also denote u(r)

as r[tl\xl, ..., tn/xnl.
Given a substitution u and a set W of variables, the restriction of o to W’,

denoted by o I ~, is the substitution O defined such that, O(x) = m(x) for all
x = W’, and t)(x) = x for all x @ W.

Definition 2.8. Given two substitutions v and 0, their composition is the

substitution denoted by o; 0, such that, for every variable x, u; d(x) =

6( CT(X)) (the composition of the functions m and 8).

A substitution a is idempotent if ~; u = o. It is easily seen that o is

idempotent iff D(~) n 1(a) = 0.

We also quickly review formulas in negation normal form. For details, see

Gallier [17].

Definition 2.9. An atomic formula is a term of the form either Ptl o.” t.,

where P is a predicate symbol of rank (sl, ..., s., bool) and each t,is a term of

sort St (S1 + bool), or a term of the form (tl ~ t2 ), where tl and t? are terms of

some identical sort s (s + bool). An atomic formula of the form (tl + t2) is
called an equation of sorts. It is assumed that bool never occurs in the arity of

any symbol. A literal is either an atomic formula or the negation of an atomic

formula.

Definition 2.10. Formulas in negation normal form (for short, formulas in

nnf) are defined inductively as follows: A formula A is in nnf iff either

(1) A is a literal, or

(2) A = (1? v C), where B and C are in nnf, or

(3) A = (B A C), where B and C are in nnf, or

(4) A = VXB, where B is in nnf, or

(5) A = 2xB, where B is in nnf.

A quantifier-free formula in nnf is obtained by applying only clauses (1)-(3),

and a uniuersal formula in nnf by applying only clauses (1)–(4).

Definition 2.11. Given a formula A (resp., a term t),the set of variables

occurring free in A (resp., t) is denoted by Var(A) (resp., ~ar(t)). A ~o~nd

term t is a term such that Var(t) = 0, and similarly a ground formula A is a
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quantifier-free formula such that Viir( A) = 0. A ground substitution u is a

substitution such that o (.x) is a ground term for every variable .x in the

support of m.

Finally, we review some concepts related to term rewriting.

Definition 2.12. Let ~ be a binary relation ~ G A X xl on a set A. The

transitive closure of ~ is denoted by 4 and the reflexive and transitive

closure of ~ by ~ . The coruerse (or inuerse ) of the relation e is the

relation denoted as ~ – 1 or ~ , defined such that u + v iff u - u. The

symmetric closure of ~ , denoted by ~ , is the relation - U + .

De@lition 2.13. A relation > on a set A is Noetherian or well founded iff

there are no infinite sequences (au, ..., an, a,, +,,... ) of elements in A such

that a,, > a,, + ~ for all n > 0.3

Definition 2.14. A preorder s on a set A is a binary relation s ~ A X A

that is reflexive and transitive. A partial order ~ on a set A is a preorder that

is also antisymmetric. The converse of a preorder (or partial order) < is

denoted as 2. A strict ordering (or strict order) < on a set A is a transitive

and irreflexive relation. Given a preorder (or partial order) < on a set A, the

strict ordering < associated with ~ is defined such that s < t iff s s t and

t ~ s. Conversely, given a strict orde~ng <, the partial ordering < associated

with < is defined such that s < t iff s + t or s = t.The converse of a strict

ordering + is denoted as ~ . Given a preorder (or partial order) < , we say

that < is well founded iff > is well founded.4

Definition 2.15. Let ~ be a binary relation ~ g TX(X) X TX(X) on

terms. The relation -+ is monotonic iff for every two terms s, t and every

function symbol f, if s -+ t then f(..., s,... ) + f(..., t,... ). The relation ~

is stable (under substitution) if s - t implies LT(s ) ~ LT(t) for every substitu-

tion u.

Definition 2.16. A strict ordering < has the subterm property iff s <

f(..., s,... )for every term f(..., s,... ) (since we are considering symbols
having a fixed rank, the deletion property is superfluous, as noted in Der-

showitz [11]). A simplification orden”ng < is a strict ordering that is monotonic

and has the subterm property. A reduction ordering + is a strict ordering that

is monotonic, stable, and such that > is well founded. With a slight abuse of

language, we also say that the converse > of a strict ordering < is a

simplification ordering (or a reduction ordering). It is shown in Dershowitz [11]

that there are simplification orderings that are total on ground terms.

Definition 2.17. Let E c T>(X) X TX(X) be a binary relation on terms, We
define the relation -E over T2(X) as the smallest symmetric, stable, and

3 We warn the readers that this is not the usual way of defining a well-founded relation in set
theory, as for example m Levy [32]. In set theory, the condition is stated in the form a,, + ~ < an
for all n > 0, where + = > – 1. It is the dual of the condition we have used, but since + = > –‘,
the two definitions are equivalent. When using well-founded relations in the context of rewriting

systems, we are usually interested in the reduction relation + and the fact that there are no
infuute sequences (a,}, ..., Ufi. a,, + ~, . . . ) such that a,, = a.+ ~ for all n >0. Thus, following
other authors, including Dershowitz, we adopt the dual of the standard set theoretic defimtion.
4Again, we caution our readers that m standard set theory lt is < that is well founded! However,
our definition is equivalent to the standard set-theoretic definition of a well-founded partial
ordering.
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monotonic relation that contains E. This relation is defined explicitly as

follows: Given any two terms tl, tz = T1(X), then t, -H t2 iff there is some

variant 5 (,s, t) of a pair in E U E-1, some tree address a in tl,and some

substitution o, such that

t~/a = CT(S) and t*=tl[a - a(t)].

(In this case, we say that m is a matching substitution of s onto tl/a. The

term t ~/a is called a redex.) Note that the pair (s, t) is used as a two-way

rewrite rule (that is, nonoriented). In such a case, we denote the pair (s, t)as

s ~ t and call it an equation. When t ~ -~ tz, we say that we have an equality

step. It is well known that the reflexive and transitive closure ‘E of e~ is

the smallest stable congruence on TZ(X) containing E. When we want to fully

specify an equality step, we use the notation

t,fl ‘[a, s=t, m] .

(where some of the arguments maybe omitted). A sequence of equality steps

u = U. -E U1 HE ““” ~~ un_~ @~ lln = v

is called a proof of u ~~ u.

Definition 2.18. Given a finite set E of equations (ground or not) and any

two terms u, v (ground or not), we use the notation Li + ~ v to express the fact

that, treating E as a set of ground equations, u ~~ u. Equivalently, u ~ ~ u iff

u and v can be shown congruent from E by congruence closure (Kozen [30, 31],

Nelson and Oppen [36], Downey et al. [13]) again, treating all variables as

constants—they are considered rigid.

Definition 2.19. When a pair (s, t)G E is used as an oriented equation

(from left to right), we call it a rule and denote it as s ~ t.The reduction
relation ~~ is the smallest stable and monotonic relation that contains E. We

can define t,+E t2 explicitly as in Definition 2.17, the only difference being

that (s, t) is a variant of a pair in E (and not in E U E-l). When tl ‘E tz, we
say that tl rewrites to t2,or that we have a rewrite step. When we want to fully

specify a rewrite step, we use the notation

tl ‘[a, s+t, r] t2

(where some of the arguments maybe omitted).
When Var(r) c Var(l), then a rule 1 e r is called a rewrite rule; a set of such

rules is called a rewrite system. A degenerate equation is an equation of the form

x ~ t,where x is a variable and x @ Var(t ), and a nondegenerate equation is an

equation that is not degenerate.

Definition 2.20. Let ~ c TZ(X) x T2(X) be a binary relation on TZ(X).

We say that ~ is Church –Rosser iff for all tl,t2 G Tz( X), if

tl& t,,then there is some t3e T>(X) such that tl$ t3and t2$ f3.we say

that ~ is confluent iff for all t,tl,t2G TX(X), if t ~ tl and t ~ t2,then

5 In what follows, we shall assume that before a pair (i.e., an equation) is used it has been

renamed apart from all variables in current use. This is essential to prevent clashes among the
variables. Thus, we shall always state that a ~’anant of an equation is being used.
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there is some t3e TX(X) such that t~ ~ t3and t24 t3.A term s is irreducible

with respect to ~ iff there is no term t such that s - t.

It is well known that a relation is confluent iff it is Church-Rosser [27]. We

say that a rewrite system R is Noetherian, Church–Rosser, or confluent, iff the

relation -~ associated with R given in Definition 2.19 has the corresponding

property. We say that R is canonical iff it is Noetherian and confluent.

3. Reuiew of the Method

In this section, we present the method of equational matings informally. Given

a rectified universal sentence AO in nnf, the method works in an incremental

fashion as follows. The formula AO will evolve in steps called quantifier

duplication steps, and we denote this evo~ving formula by A. We also need to

refer to the quantifier-free formula A obtained from A by deleting the

quantifiers, called an amplification of AO.

Initially, xl: = AO.

Step 1. Const~uct a set vp(AAA) of sets of literals called vertical paths,

associated with A. The set vp( A) is defined inductively as follows:

If ~ is a literal, then up(~j = {{~}};
If A“ = (B A C), then up(q) = {ml U n~ I ml ~ UP(B), T2 ● VP(C)};

If A“ = (B V C), then up(A) = vp(B) U UP(C).

Step 2. FindA whether there is a substitution o- such that for every vertical

path n = up(A), ~(w) is unsatisfiable. If Step 2 succeeds, go to Step 4.

Otherwise, go to Step 3.

Step 3. Choose some universal subformula VXB of the current A, and

replace it by (VXB A ‘v’xB). Then, rectify variables in this new formula, obtain-

ing A‘. Let A: = A‘. This step is called a quantifier duplication step. Go back to

Step 1.

Step 4. Stop, A. is unsatisfiable (and so are A“ and A).

If ~:) is unsatisfiable, this procedure will stop after a finite number of

quantifier duplication steps when it succeeds in finding some substitution

closing all vertical paths in Step 2. Roughly speaking, a set consisting of certain

subsets of vertical paths, such that these subsets are unsatisfiable under some

substitution and span all vertical paths, is called an equational mating. The

heart of the method of matings is to find such equational matings.

The difficult step in the presence of equality is Step 2. What is difficult is not
to check that a substitution closes all vertical paths—this can be done using

the congruence closure algorithm—but to determine whether such a substitu-

tion exists at all. This problem is indeed decidable, but Np-
complete. For languages without equality, the checking is reduced to the

existence of a standard unifier, which is easy. Unfortunately, whether or not

“ A formula A is recttfted iff no variable occurs both free and bound m A, and distinct

occurrences of quantifiers bmd dlstmct variables. It is well known that every formula is equivalent
to a rectified formula. It is also well known that for every formula A, one can construct a
universal formula B, a Skolem firm of A, such that A is unsatisfiable iff B IS unsatisfiable (see
Gallier [17]).
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equality is present, the number of vertical paths to be checked may be

exponential. The following example illustrates the method.

Example 3.1. Let

A = (VX(X2 :x) A ((Pa3 A =Pa) V (Pb2 A -Pb))).

There are two vertical paths

{(X2 ‘x), Pa3, 7Pa}

and

{(X2 +X) Pb2 7 Pb}3>

depicted as follows:

(X2=X)

It is clear that there is no substitution that closes both paths. However, the

substitution [a/x] closes the first path, and the substitution [b/x] closes the

second path. Hence, we perform an amplification step. We obtain

There are two vertical paths

and

depicted as follows:

( 2 =Xl)x,

I

I

pa3Y‘X’<pb,
I I

This time, it is easy to see that the substitution u = [a/-~l, b/xZ 1 closes both

vertical paths, using the fact that Pa3 rewrites to Pa in two steps using the
equation a2 ~ a, and that Pbz rewrites to Pb in one step using the equation

b2 + b. Hence, A is unsatisfiable.

It should be noted that our method does not require the inclusion of extra

literals corresponding to instances of equational axioms during the amplifica-
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tion process, contra~ to Bibel’s method [9]. In this sense, equality is “built in”.

In the following sections, we shall define the method precisely and prove its

completeness rigorously.

4. Equational Matings

In order to generalize matings to equational languages, it is necessary to

consider sets of literals rather than pairs, as in Andrews and Bibel’s case. Let

us first consider the case of quantifier-free formulas in negation normal form.

The general case will be lifted from the quantifier-free case via the

Skolem–Herbrand–Godel theorem, and using rigid E-unification.

Let A be a quantifier-free formula, and let {xl,..., x.} be the set of

variables occurring in A. The uniLemal closure of A is the sentence

Vxl “”” Vx. A. It is also denoted as VA, Testing the unsatisfiability of a

quantifier-free formula A is much easier than testing the unsatisfiability of its

universal closure VA. In the former case, the congruence closure method gives

a decision procedure, whereas in the latter case, unsatisfiability is undecidable.

The crucial observation due to Andrews and Bibel is that a quantifier-free

formula in nnf is satisfiable iff some conjunction of literals occurring in A is

satisfiable [1, 7, 8, 9].

Definition 4.1. Given a quantifier-free formula A in nnf, the set vp(A) of

t)ertical paths in A is the set of sets of literals defined inductively as follows:

If A is a literal, then up(A) = {{A}};

If A = (B A C), then vp(A) = {ml U ~z I rrl G up(l?), Tz E vp(C)};

If A = (B V C), then vp(A) = up(n) U LJp(c).

Let us say that a vertical path T is satisfiable iff the conjunction of the

literals in m is satisfiable. The following simple lemma shows the crucial role

played by vertical paths.

LEMMA 4.2. Gilen a quantifier-free formula A in nnf, A is unsatisfiable iff

eue~y uertieal path in A is unsatisfiable.

PROOF. Straightforward induction on the structure of A. ❑

A criterion for the unsatisfiability of a conjunction of literals based on the

concept of congruence closure is known. In order to explain this criterion, it is

convenient to represent every atomic formula as an equation. This can be done

by adding to our language (which already contains the special sort bool) the

constant T of sort bool, interpreted as true. Then, every atomic formula

Ptl,....tn of sort bool can be expressed as the equation (R,, . . . . t,, ~ T).

Hence, we can assume that all atomic formulas are equations. The notations

Pt,,..., t~ and(Ptl, . . ..tn + T ) will be used interchangeably for atomic formu-

las of sort bool.

Given a vertical path m-, let us arrange the literals in m by grouping positive

and negative literals together, to form a conjunction C’w of the form

(s, At, ) A ““” A (,sm + t,n) A 7(S{ =t; ) A . . . A 7(S: = t;).

Let AE be the congruence closure [17, 29, 30] on the graph G(CW ) of the

relation

E={(sl, tl)>..., (s,~, t~)}.
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The following result is well known (see [17], [29], and [30]).

LEMMA 4.3. r is unsatisfiable iff for some j, 1 < j < n, s; ~~ t]’.

The concept of an E-unifier will be needed later.

Definition 4.4. Let E be a finite set of (universally quantified) equations.

Given two terms u and v, we say that a substitution m is a unifier of u and v

modulo E, for short, an E-unifier of u and u, iff CT(u) ~~ u(v).

The definition of an equational mating is motivated by Lemma 4.3, the

Skolem-Herbrand-Godel theorem (Theorem 5.2), and Lemma 5.4. Indeed,

combining Theorem 5.2 and Lemma 5.4, we have that a universal sentence A

in nnf is unsatisfiable iff there is some quantifier-free formula D (an amplifica-

tion of A) and some substitution o such that m(D) is unsatisfiable. The

concept of an equational mating is designed so that we have a criterion

expressed in terms of vertical paths for testing whether given a quantifier-free

formula D, there is some substitution m such that cr(D) is unsatisfiable (see

Lemma 4.6).

Definition 4.5. Let A be a quantifier-free formula in nnf. An equational
mating >/ for A is a pair (MS, u), where MS is a set of sets of literals called

mated sets and m is a substitution, such that, each mated set is a subset of some

vertical path m = VP(A) and is of the form

F= {(s, =tl),..., (s,,, =t,n), l(s= f)} Gm,

where m >0,7 and, for every mated set {(sI ~ tl), . . . ,(sn ~ t,.), 1(s = t)} E

MS, the set of literals {a(sl ~ tl),..., u(s~ ~ t~ ), 1 m (s ~ t)} is unsatisfiable.

The substitution associated with the mating W is also denoted as m~. We also

commit a slight abuse of language (and notation) and say that a mated set

belongs to W.

An equational mating A? is a recitation mating iff o~( A) is unsatisfiable.

An equational mating A?’ is path acceptable (for short, p-acceptable),
iff, for every path m = up(zl), there is some mated set {(s I ~ tl ), ...,

(s,,, = tn), T (S > t)} G J?, such that

{(s, =t, ),...,(S,n= t,.)>1(s < t)} c %-.

A number of remarks are in order:

(1) Given the substitution u, the mating condition can be tested using the
congruence closure method. As mentioned in the introduction, it is decid-

able whether a mating substitution exists, but this is an NP-

complete problem.

(2) Given a family MS of mated sets, let ~ = (EY)Y. ~~ be the family of sets
of equations of the form E& = {(s I ~ tl), . . . . (s,. ~ t,.)} and S =

{(s, t) I Y G MS} the set of pairs where EY and (s, t) are associated with
the mated sets Y= {(sI ~ t,),. . . . (s,,, + t~), T (s ~ t)}● MS. Observe that

A?’ = (MS, m ) is a m+ating iff w ~is a solution of problem 1 (discussed in the

introduction) for (E, S), iff (E, S) is an equational premating. This key
observation will be used in s:arching for the substitutions associated with

matings. They are the rigid E-unifiers of S.

7 The case m = O is indeed possible when w(s) = m(t), that is, when a is a unifier of s and f.
8A path acceptable mating is also called a spanning mating by Miller [35].
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(3) It is obviously desirable to choose p-acceptable matings as small as

possible. One can define a preorder on matings as follows. Given two

matings .#/l and z?’., .d’, E .zt?’z iff for every mated set SI = .ZYI, there is

some mated set S1 = .#/z, such that, S1 c Sz. A mating .4? is minimal iff it

is minimal with respect to the preorder c , that is, for any mating ,z<’, if

A“ E z, then .X’ = M’. It is obvious that if a p-acceptable mating exists,

then a minimal p-acceptable mating also exists, but it may be difficult to

find it efficiently. In order to find matings as small as possible, one can

look for overlapping vertical paths that are spanned by some common

mated set. It should be pointed out that there may be many incomparable

matings that are all minimal. We leave the problem of discovering strate-

gies for finding minimal matings as a topic for further research.

(4) If A does not contain equations, each mated set contains some atom that
unifies with the negated atom. Let Ptl . . . t,, be the negated atom in a

mated set. Any mated set for a formula without equational atoms is of

the form {(A1 ~ T) ,..., (Am, ‘T), m(ptl ““. t.~T)}. where xll,...,~~
are nonequational atoms. Since the set {U(A1 ~ T),..., cr(~,,, A T),

- o(Ptl .”” t. ~ T)} is unsatisfiable, there is some atom A, = PSI “”” s,,,

such that, U(Ptl . . . t.) = U(PSI “”. s,,). Hence, u is a unifier of Ptl o.c t.

and PSI ““” s..

Hence, when A does not contain equality, a mating can be defined as a set

of pairs (L, 1 L’) of literals of opposite signs, such that a(L) = m(L’), as in

Andrews [1] and Bibel [7–9]. The following theorem is a straightforward

generalization of a result of Andrews [1] to languages with equality.

LEMMA 4.6. Given a quantifier-free formula A in nnf, the following propej~ies

hold:

(1) Giuen a substitution 9, if 6(A) is unsatisfiable, then there is a p-acceptable
mating JE for A.

(2) A p-acceptable mating Z for A is a refutation mating for A, that is, mti(A) is

unsatisfiable.

PROOF

(1) Assume that O(A) is unsatisfiable. By Lemma 4.2, every vertical path in
vp( (3(A)) is unsatisfiable. Note that every vertical path n‘ ● up( 19(A))

is of the form 0(n), for some vertical path T = up(A). Since every path

n‘ = vp( (3(A)) is unsatisfiable, by Lemma 4.3, there is some subset

{(s; = t;),..., ( s~, ~ t:), m (s’ ~ t ‘)} c v‘ of literals in m‘ that is unsatisfiable.

For every vertical path T = vp( A), since n‘ = 6(T) is a vertical path in

uP(O(A)), we can choose a set of literals {(,sl ~ rl), ..., (s. ~ t,,), =(s = t)} G
m-, such that,

{6(s, =t, ),..., o(sn = tn),- 6(s ~ f)}

={(s; if;),..., (s;n =t;z), -(,s’ =tr)} (*)

is unsatisfiable. We form a mating & = ( MS, %) for A by choosing MS as the

set of sets of literals defined in (*). Clearly, Z is a p-acceptable mating for A.

(2) Assume that .fl = ( MS, u ) is a p-acceptable mating for A. We prove

that every vertical path m-’ G up( o (A)) is unsatisfiable. Indeed, every vertical

path T‘ = vp( m(A)) is of the form m(n), for some vertical path m = vp(A).
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Since W is p-acceptable, for every vertical path m = vp(A), there is some

mated set of literals {(s I ~ t,) >..., (~,n + t,,,), T(S < t)} G Y??,such that

{(s, =tl),..., (Sm = t,n), -7(s = t)} Q m.

Since Z is a mating, the set SW, = {O(Sl ~ tl),..., U(sn + tn), - U(S + t)}is

unsatisfiable. Since Sfi, is a subset of the vertical path n‘ e vp( u (A)), m‘ is

unsatisfiable. But then, by Lemma 4.2, u(A) is unsatisfiable, which establishes

the fact that Z is a refutation mating. ❑

The previous lemma implies the following useful corollary.

COROLLARY 4.7. Given a quantifier-j7ee formula A in nnf, there is a substitu-

tion 6 such that 13(A) is unsatisfiable if there is a p-acceptable mating & for A.

Let us give an example illustrating the use of the previous lemma.

Example 4.8. Consider the following Horn formula A, where x, y, z denote

variables:

(a~b)A

((f’++ v T(f@b)jA

(Qa V T(f’a +a)) A

[(f5Y ‘Y) V @ A

(Ra V m(fa~a) V -Pfa) A

~ Rfz A

Pa

There are 24 vertical paths in A. Let 6 = [a/x, a\y, a/z]. The substitution 6

closes all the paths in 6(A), which is easy to see for the 21 vertical paths

containing the sets of literals {(f 3a + a), T (f 3a ~ a)}, {Qa, T Qa}, and

{(a A b), 1 (fa = fb)}. A p-acceptable mating for A is given by @ and the
following set of 6 sets of literals:

{((f’x ‘x), =(f’a = a)) ,

{Qa, ~Qy},

{(a+ b), -( fi~fi)),

{(f’y ‘y), (f’x +x), Ra, lRfz),

((f’y ‘y), (f3x Ax), =(fa ‘a)],

((f5Y ‘Y), (f’x ‘~), pa, =Pfa)) .

The above set is a mating because (fa ~ a) is equationally provable from

(f’s ~ a) and (f5a ~ a). Indeed, (f3a ~ a) implies (f4a ~ fa), which implies

(f 5a + f 2a), which, by transitivity, implies ( f 2a ~ a). In turn, ( f 2a + a) implies

(f 3a + fa), and by one more application of transitivity, this implies ( fa A a).
According to Lemma 4.6, (3(A) is unsatisfiable. Since R Vx Vy VA > (3(A),

the universal closure VA of A is also unsatisfiable.
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Unfortunately, in general, a universal sentence VA may be unsatisfiable, but

there may not be any substitution 0 such that 6(A) is unsatisfiable (see

Example 3.1). However, a version of the Skolem–Herbrand–Godel theorem for

first-order languages with equality ensures that some substitution instance of

an amplification of A (a formula obtained from A by duplicating some

universal subformulas of A) is unsatisfiable. It is the notion of amplification

(see Andrews [11 and Bibel [7-9]), that will allow us to apply the method of
matings to arbitrary universal sentences in nnf.

5. A Skolem–Herbrand– Godel Theorem

First, we need the definition of a compound instance (see Andrews [I] and

Bibel [7-9]).

5.1 COMPOUND INSTANCES. From now on, it is assumed that we are dealing

with rectified uniL’emal formulas in nnf. The standard statement of the

Skolem–Herbrand–Godel theorem (as in Gallier [17]) says that given a univer-

sal prenex sentence A = V.xl .”. Vx~ B (where B is quantifier-free), A is

unsatisfiable iff there exist some ground substitutions ml, ..., cr~ such that

~l(B) A “o. A Uk( B) is unsatisfiable.

It would be nice if we could relax the condition that A is in prenex form, and

have a statement referring to a single substitution. This can be achieved by

introducing the ingenious concepts of a compound instance and of an amplifi-

cation (see Andrews [1] and Bibel [7–91).

Definition 5.1. Let A be a rectified universal sentence in nnf (Every

variable occurring in A is universally quantified). The set of compound

instances (for short, c-instances) of A is defined inductively as follows:

(i) If A is either a ground atomic formula B or the negation = B of a ground

atomic formula, then A is its only c-instance;

(ii) If A is of the form (B * C), where * ~ {V, A }, for any c-instance H of B
and c-instance K of C, (H *K) is a c-instance of A;

(iii) If A is of the form VXB, for any k >1 ground terms t,,...,tL,if H,

is a c-instance of B[r,/x] for i = 1, ..., k, then HI A ..- A H~ is a

c-instance of A.

The importance of c-instances lies in the following version of the

Skolem–Herbrand–Godel theorem, which is a generalization of a theorem of

Andrews to first-order languages with equality [1, 2]. For stating this theorem,

we assume (without loss of generality) that there is a least one constant symbol

in the language.

THEOREM 5.2 (Skolem–Herbrand–Godel theorem). GiLen a unit’ersal sen-
tence A in nnf (with or without equali~), A is unsatisfiable iff some c-instance C

of A is unsatisfiable.

PROOF. It is nontrivial. A proof is given in Gallier [17, Theorem 7.6.1, page

364]. Showing that if some compound instance c is unsatisfiable implies that A

is unsatisfiable is straightforward, because it is easily shown that K A > C [17,

Theorem 7.6.1]. The proof of the converse is much harder. In Gallier [17], this

is derived proof-theoretically as a consequence of a sharpened Gentzen-like

Hauptsatz [17, Theorem 7.4.1, page 334, Theorem 7.4.2, page 337, and Lemma

7.6.2, page 360]. For the sake of completeness, a semantic proof in the line of

Andrews’s proof can be found in the appendix. ❑
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The connection between matings and compound instances is established

through the notion of amplification (see Andrews [1] and Bibel [7-9]).

5.2 AMPLIFICATIONS AND COMPOUND INSTANCES. Let xl, B, C, and D be

universal sentences in nnf.

Definition 5.3. We say that a sentence C is obtained from a sentence B by

quantifier duplication iff C results from B by replacing some subformula of B

of the form VXM by (VXM A VXM). If there is a sequence (Cl, . . . . C,,), n > 1,

of formulas, such that, B = Cl, C = C,,, and C,+ ~ is obtained from Cl by

quantifier duplication, for every i, 1 s i < n, we say that C is obtained from B

by some sequence of quantifier duplications.

If B is obtained from A by some sequence of quantifier duplications, C is a

rectified sentence equivalent to B, and D is obtained from C by deleting the

quantifiers in C, we say that D is an amplification of A. The following result

can be shown easily.

LEMMA 5.4. Gilen a unilersa[ sentence A in nnf, C is a c-instance of A iff

there is some amplification D of A and some (ground) substitution (3 such that

C = 6(D).

PROOF. The proof is by induction on the structure of A. The only case

worth mentioning is the case in which A = VXB. In this case, there are k

ground terms t~,...,tk and k formulas HI, ..., HL, such that, each H, is a

c-instance of B[t,/x], and C = HI A .00 A HL. By the induction hypothesis, for

each i, 1 < i < k, there is some amplification Dl of B[ t,/x] and a substitution

(3,, such that, H, = O,(D,). It can also be assumed (using renaming) that the

sets of variables occurring in these amplifications are disjoint. It is not difficult

to show by induction on the length of a quantifier duplication sequence that

for each B[tl/x] and D,, there is some renamed copy B, of B, some amplifica-

tion D; of B,, and a substitution m,, such that, H, = 6,( m,( D: )) (ml is a

substitution that substitutes t,for renamed occurrences of x). It can also be

assumed (using renaming) that the sets of variables occurring in these amplifi-

cations are disjoint. Then, note that D = D; A .”0 A Dj is an amplification of

A that can be obtained by first applying k quantifier duplications, obtaining

VXB A . . . A VXB (with k copies of VXB), and then by amplifying each copy of

VXB to D,’. Furthermore, the substitution 6 = ml; 61; 0”0; o-k; 19k is such that

C = O(D). ❑

We can now state one of the main theorems of this paper.

THEOREM 5.5. Giuen a unilersal sentence A in nnf, A is unsatisfiable iff some

amplification of A has a p-acceptable mating.

PROOF. First, assume that some annplification D of A has a p-acceptable

mating A?’. Let B be obtained by some sequence of quantifier duplications

from A, C the rectified formula equivalent to B, and D the result of deleting

quantifiers from C. Let b’xl, . . . . Vx,l be the quantifiers of C, in the left-to-right

order in which they occur in C. It is easy to show that % A = B, 1= B - C,

> c = Vxl, . . .. VX., D, and % Vxl, . . . . Vx~D > qz(D). Since JZ? is a p-accep-

table mating, by Lemma 4.6, it is a refutation mating, and so qJD) is

unsatisfiable. Hence, A is also unsatisfiable.
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Now, suppose that A is unsatisfiable. By the Skolem–Herbrand-Godel

theorem (Theorem 5.2), there is some c-instance C of A which is unsatisfiable.

By Lemma 5.4, there is some amplification 1) of A and a substitution 0 such

that C = 0(n). By Lemma 4.6, since 0(~) & unsatisfiable and D is quantifier

free, there is some p-acceptable mating .%’ for D. ❑

The following example illustrates Theorem 5.5.

Exanlple 5.6. Let A be the following (equational) sentence:

vxvyvz(*(x, *(y, z)) + *(*(x, y), z))) (1)

A vL4(*(u,1) = u) (2)

A VV(*(l, V) = v) (3)

A VW(*(W, W) ~ 1) (4)

A l(*(a,~) + *(/3, ~)). (5)

The first three equations are the axioms for monoids (a binary operation *

which is associative and has an identity element 1), the fourth equation asserts

that the square of every element is the identity, and the fifth asserts the

negation of the commutativity of * (A is the result of a Skolemization). The

unsatisfiability of A asserts that any monoid such that the square of every

element is the identity is commutative.

Consider the following amplification D of A and the set MS consisting of

one set of literals:

D=( (u,, l)+LL1)

A (Z(Wl, W’l) = 1)

A (*( Xj, *( Vj, ZI)) > *( Y(JI>YI)>ZI)))

A (*( X2, *( Y2, Z~)) = .(=(XZ,YZ)>ZZ)))

A (*(w2, w2) = 1)

A (*(l, vl) = VI)

~ (~(~,, *(v,, Z,)) = *(*( X3. Y,), Z3)))

A (*( Y4,. (~4, Z4)) = *(*(14, ~4), Z4)))

A (.(w3, w7) = 1)

A m(x(a, b) = *(b, a)).

Ms = {{(*( U,, 1) = ul),

(*( W1,W1) = 1),

(*(~,)~(Y,>~,)) = *(*( A1. Y1)>Z1 )))>

(*(.x,, *(y, >Z,)) = *(*(l*, y,), z,)))>

(*(1’v2, w2) = 1),

(*( I, U,’) = v,),

(*(~3>*(Y3, z3)) = *(*(x, >Y,)> Z,))),

(*(~4, ”(Y4. z,)) = ‘(*( X,, Y,), Z,)))>

(*(~3,~3) + 1),

1(. (a, b) = .(17, C7))}}.
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Let 8 be the substitution

[a/~,, (a* b)/wl, a/x,, (a* b)/y,, (a* b)/zl,

a/x2, a/y2, b/zz, a/w2, b/vi,

b/x~, (a * b)/y~, b/zq, a/xJ, b/yJ, b/zJ, b/w~].

We claim that (MS, 6 ) is a mating far D. For simplicity of notation let us

adopt infix notation, and denote *(s, t) as s * t.Then, we have:

a* b={a*l}*b by (2)

={a*[(a*b) *(a* b)]}*b by (4)

={[a*(a*b)] *(a* b)}*b by (1)

={[(a*a) *b]*(a*b)}*b by (1)

={[l*b]*(a*b)}*b by (4)

={ b*(a*b)}*b by (3)

=b*{(a*b) *b} by (1)

=b. {ax(b*b)} by (1)

=b. {a.1} by (4)

=b*a, by (2)

which shows that (MS, 6 ) is a p-acceptable mating for D (there is a single

vertical path in D). Note that eq. (2) instantiated by the substitution [a/ul 1 is

used twice.

Theorem 5.5 suggests a procedure for showing that a universal sentence in

nnf is unsatisfiable: Compute incrementally amplifications of D, and at each

stage, test whether such an amplification has a p-acceptable mating. Such a

procedure is presented in a later section.

5.3 OUTERMOST QUANTIFIER DUPLICATION. Since the complexity of the

search for an acceptable mating grows exponentially as the number of occur-

rences of literals in the amplification D increases, it is important to keep this

number small.

A systematic scheme for duplicating quantifiers that guarantees complete-

ness, is to duplicate outermost quantifiers.

Definition 5.7. Given a universal formula A in nnf, a subformula occur-

rence VXB of A is a maximal quantified subfonnula of A iff there is no

quantified subformula occurrence VyC of A, such that b’xB is a proper

subformula of VyC.9 If VXB is a maximal quantified subformula occurrence of

A, the quantifier Vx is called an outermost quantifier occurrence.

LEMMA 5.8. Let A be a unioersal sentence in nnf. Then, A is unsatisfiable ijf

there is a refutation mating for some amplification D of A, such that, in forming D

from A, only outermost quantifier duplications are pe~ormed.

PROOF. It is enough to show that the Skolem–Herbrand–Godel theorem

holds for c-instances obtained as substitution instances of formulas obtained

from A by outermost quantifier duplications only. This can be shown in at

y For an inductive definition of this concept, see Gallier [17].
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least two ways. The first proof is already essentially contained in the proof of

Lemma 7.6.2 of Gallier ([17, page 360]). Indeed, this lemma is obtained from

Theorem 7.4.1 and Theorem 7.4.2 [17, pages 334 and 337], a Gentzen-like

Hauptsatz for a proof system in which quantifier rules apply only to outermost

quantifiers (the system G2nnf, [17, page 327]). One simply has to verify that the

induction in Lemma 7.6.2 yields the right kind of c-instances, and this is

straightforward. The other proof is obtained by observing that the proofs

of Lemma 5 and Theorem 2 in Andrews [1, page 208] go through unchang-

ed, as they do not depend on the fact that the language does not contain

equality. •l

Hence, in searching for a mating, there is no loss of generality in duplicating

outermost quantifiers only. However, this is not always the best strategy, and it

would be useful to develop heuristics for duplicating quantifiers.

5.4 COMPARISON WITH OTHER METHODS. An extension of the method of

matings to first-order languages with equality is sketched (without proofs) in

Bibel [9, Sect. V.3, pp. 234–242] (under the name connection method with

equality). Bibel’s method uses mated sets similar to ours, except that they are

dual to ours, since Bibel’s method shows the validity rather than the unsatisfia-

bility of a (Skolemized) sentence. Hence, sets of literals are interpreted as

disjunctions. A set of the form

{l(s, at,),...,~(sm~tm),(s~t)}

is called an eq-literal, and a set of the form

{l(s, ~tl),..., l(s,n=tm)L, L,)’)

where L and L‘ are nonequational atoms, is called an eq-co~mection. In our

presentation, the use of a many-sorted language with the special sort bool

allows us to treat a nonequational literal as the special equation L ~ T, and

we only need the first kind of mated set, but this is an unessential detail.

Bibel’s method and ours differ significantly in the criterion used for testing

the validity (equivalency, unsatisfiability) of a mated set. Bibel defines an

eq-literal to be valid iff there is some substitution u such that m (s, ) = m (t, )

for all i, 1 < i < m, and m(s) = o-(t). An eq-connection is said to be comple-

nzenta?y iff there is some substitution u such that u (s, ) = u (t,) for all i,

1 s i < m, and m(L) = u(L’).

It should be noted that the notion of a substitution used by Bibel is highly

nonstandard. Bibel [9, Sect. III. 1.6, page 66] defines a substitution u as a set of

pairs {sl /tl, . . . . s,Z/tfl}, where each f, is a term to be substituted for s,, but

where s, itself can be a nonvariable term! Of course, substitutions are applied

in a homomorphic fashion, but with this definition, a substitution is not

necessarily defined on all terms.

To be completely accurate, with Bibel’s definition of a substitution, the

substitution m mentioned in the definition of a valid eq-literal is such that it

consists of pairs of the form s,/t, or tL/s,. Then, Theorem V.3.6.C (page 237)

states (in our language) that a formula F is valid iff for some amplification D

of F, there is a spanning set W of eq-literals and eq-connections and some

substitution u such that, for every eq-literal w = W, u(w) is valid, and for

every eq-connection w = 1+’, ~(w) is complementary.
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This theorem does hold, provided that we allow eq-literals and eq-

connections in the set W to contain extra literals arising from instances of the

equality axioms. Hence, Bibel’s method uses standard unification, but the

mated sets may have to include extra literals corresponding to instances of the

equality axioms.

In our method, we require that there be some substitution u such that

{CT(sl:tl),...,U(sm = tin),ma(zd = u)}

is unsatisfiable, or equivalently, treating the equations in u(E) as ground

equations, that a(u) ~ ~(E) a(v) holds. Hence, o- is a special kind of E-uni-

fier (a rigid 13-unifier), but there is no need to include extra literals correspond-

ing to instances of the equality axioms to our mated sets. The following

example should illustrate this point clearly. Consider the eq-literal

{T(f3a + a), 1(f5a ~ a), (fi ~ a)) .

It is valid, but yet, there is no substitution in the sense of Bibel demonstrating

that it is valid. The only way to show validity is to add additional equality

axioms to show that @ and a are congruent modulo the set of equations

{(~3a + a), (~5a = a)}. Hence, in Bibel’s method, this mated set would have to
be expanded before it is shown to be valid. In our method, it would be found

valid immediately (actually, its negation would be found unsatisfiable).

Hence, Bibel’s method and ours differ in the type of unification and the

methods used to check the validity (or unsatisfiability) of mated sets.

In Chapter 4 of his Ph.D. dissertation, Pfenning [38] presents a method for

dealing with equality in a system of expansion proofs that involves matings.

Pfenning’s system applies to higher-order logic, and equality is treated as a

defined symbol ((A ~ 1?) is an abbreviation for VQ(Q(A) a Q( l?)), where Q is

a predicate variable). As pointed out by Pfenning, it is theoretically possible to

derive the mated sets arising in our method from the mated sets used in his

method via the translation mentioned above. In some sense, our way of

checking mated sets is an optimization of Pfenning’s method restricted to the

first-order case. However, it does not seem possible to obtain the completeness

of our method in this fashion. Our method is also different in a more radical

sense, which is that Pfenning’s method uses higher-order unification, whereas

we use a special form of E-unification that is decidable. This suggests that

there may be a form of rigid higher-order unification, but we have not explored

this possibility.

6. Complete Sets of Rigid E-Unifiers

We have already noted in Remark (2) af~r Definition 4.5 that ~Z = (MS, u )

is an equational mating iff CT is a rigid E-unifier of S, where E = ( EY)Y e Ms

and S = {(s, t ) ] Y e MS}, the family of sets of equations and the set of pairs

associated with the mated sets Y = {(sl > tl), ..., (~,,, A tn ), v (S = t)} ● MS.

It is obviously crucial to show that there is an algorithm for testing whether a

family of mated sets forms a mating.+From the above observation, this is

equivalent to deciding whether a pair (E, S ) is an equational premating. In the

following sections, it will be shown that this problem is NP-complete. Actually,

this result is an easy extension of a simpler problem, and we now focus on this

problem.
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Problenl. Given a finite set E = {Ul ~ VI, . . . . u. ~ v.} of equations and a

pair (u, v) of terms, is there a substitution O such that, treating O(E) as a set

of ground equations, 6(u) * ~(~) d(v), that is, tl(u) and 6(u) are congruent

modulo 0(E) (by congruence closure)?

The substitution 6 is called a rigid E-unifier of L1and v.

It is interesting to observe, as pointed out by Jean Yves Girard, that the

notion of rigid E-unification arises by bounding the resources, in this case, the

number of available instances of equations from E. To be precise, only a single

instance of each equation in E can be used, and in fact, these instances

6(L~l + Vi),..., /3(un ~ ~1 ) must arise from the same substitution 9. Also, once

these instances have been created, the remaining variables (if any) are consid-

ered rigid, that is, treated as constants, so that it is not possible to instantiate

these instances. This is in the spirit of linear logic [23]. The special case of rigid

E-unification where E is a set of ground equations has been investigated by

Kozen who has shown that this problem is NP-complete (Kozen [30, 3 l]). Thus.

rigid E-unification is NP-hard. We show that it is also in NP, and hence it is

NP-complete.

Suppose we want to find a rigid E-unifier 6 of u and u. Roughly, the idea is

to use a form of unfailing completion procedure (Knuth and Bendix [29], Huet

[27], Bachmair [4], Bachmair et al. [5, 6]). In order to clarify the differences

between our method and unfailing completion, especially for readers unfamil-

iar with this method, we briefly describe the use of unfailing completion as a

refutation procedure. For more details, the reader is referred to Bachmair [4].
Let E be a set of equations, and > a reduction ordering total on ground

terms. The central concept is that of E being ground Church-Rosser with

respect to > . The crucial observation is that every ground instance u(1) + o(r)

of an equation 1 + r = E is orientable with respect to > , since > is total on

ground terms. Let E > be the set of all instances m(l) + u(r) of equations

1 ~ r e E U E-1 with u(l) s o(r) (the set of orientable instances). We say

that E is ground Chlwch-Rosser with respect to > iff for every two ground
.>

terms u, u, If 24-E v, then there is some ground term w such that u ~~. w

and w e~. u. Such a proof is called a rewrite proof.

An unfailing completion procedure attempts to produce a set E= equivalent

to E and such that E“ is ground Church–Rosser with respect to > . In other

words, every ground equation provable from E has a rewrite proof in E“. The

main mechanism involved is the computation of critical pairs. Given two

equations 11 + rl and lZ + rz where lZ is unifiable with a subterm 11/~ of 11

which is not a variable, the pair ( ~(11[ ~ + rz ]), u(rl )) where u is a mgu of

11/~ and 12 is a critical pair.

If we wish to use an unfailing completion procedure as a refutation proce-

dure, we add two new constants T and F and a new binary function symbol eq

to our language. In order to prove that E + 24~ v for a ground equation

24~ v, we apply the unfailing completion procedure to the set E U {eq( u, v) ~

F, eq(z, z) ~ T}, where z is a new variable. It can be shown that E + u + v iff

the unfailing completion procedure generates the equation F + T. Basically,

given any proof of F ~ T, the unfailing completion procedure extends E until
a rewrite proof is obtained. It can be shown that unfailing completion is a

complete refutation procedure, but of course, it is not a decision procedure. It

should also be noted that when unfailing completion is used as a refutation
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procedure, Em is actually never generated. It is generated “by need,” until

F ~ T turns up.

We now come back to our situation. Without loss of generality, it can be

assumed that we have a rigid E-unifier 6 of T and F such that $(E) is ground.

In this case, equations in (3(E) are orientable instances. The crucial new idea is

that in trying to obtain a rewrite proof of F + T, we still compute critical pairs,

but we neL’er rename llariables. If lZ is equal to 11/~, then we get a critical pair

essentially by simplification. Otherwise, some variable in 11 or in lZ gets bound

to a term not containing this variable. Thus, the total number of variables in E

keeps decreasing. Therefore, after a polynomial number of steps (in fact, the

number of variables in E) we must stop or fail. So we get membership in NP.

Oversimplifying a bit, we can say that our method is a form of lazy unfailing

completion with no renaming of variables.

However, there are some significant departures from traditional Knuth–

Bendix completion procedures, and this is for two reasons. The first reason is

that we must ensure termination of the method. The second is that we want to

show that the problem is in NP, and this forces us to be much more concerned

about efficiency.

The proof that rigid E-unification is in NP requires quite a bit of machinery,

and since this paper is already long, we focus on the algorithmic aspect of the

result, leaving out most proofs. Full details can be found in Gallier et al. [22].

In order to show that our decision procedure is in NP, we need the fact that

if two terms u and u are unifiable, a most general unifier (mgu) of u and ~ can

be represented concisely in triangular form (the size of this system is linear in

the number of symbols in u and v). This result can be obtained from the fast

method using multiequations of Martelli and Montanari [33] or the fast

method using the graph unification closure of Paterson and Wegman [37].

Definition 6.1. A term pair (or pair) is just a pair of two terms, denoted by

(s, t), and a substitution 0 is called a unifier of a pair (s, t) if 0(s) = ~(t). A

te}m system (or system) is a set of such pairs, and a substitution 9 is a unifier of

a system if it unifies each pair. A substitution u is an ( idempotent) most general

unifier, or mgu, of a system S iff (i) D(m) c Var(S) and D(u) fl 1(a) = @ ( ~

is idempotent); (ii) m is a unifier of S; (iii) For every unifier 0 of S, u < 8

(where O-s f3 iff 0 = u; q for some q).

Definition 6.2. Given an idempotent substitution u (i.e., D(a) n 1(m) =

0) with domain D(u) = {xl, . . ., XA}, a triangular fo~ for ~ is a

finite set T of pairs (x, t) where x = D(o) and t is a term, such that this set T

can be sorted (possibly in more than one way) into a sequence

((x,, t,),..., (XL, tL )) satisfying the following properties: for every i, 1< i < k,

(1) {xl, . . . . x,} n Var(t, ) = 0, and

(2) u = [t~/x,l; ““”; [t~/xkl.

The set of variables {x,,..., x~} is called the domain of T. Note that in

particular x, ~ Var(t,) for every i, 1< i < k, but variables in the set

{X, +1,..., XL) may occur in tl, ..., t,.It is easily seen that m is an (idempotent)

mgu of the term system T.

Example 6.3. Consider the substitution a = [f(f(xj, x3), f(xj, xs))/

xl, f(x3, x,)/x21. The system T = {(x,, f(x~, XZ)), (x,, f(~j, x3))} is a triangu-
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lar form of m since it can be ordered as ((xl, ~(xz, Xz)), (.Yz, ~(x~, X3))) and

u = {f(x2, X.)/xll; [f(x3, x3)\x21.

The triangular form T = {(xl, tl ),. ... (XL, t~ )} of a substitution m also

defines a substitution; namely, UT = [t, /xl,. ... tk/xL ]. This substitution is

usually different from a and not idempotent as can be seen from Example 6.3.

However, this substitution plays a crucial role in our decision procedure

because of the following property.

LEMMA 6.4. Giuen a triangular form T = {(XI, tl ),. ... (XL, t~ )} for a substi-

tution o- and the associated substitution UT = [tl /xl, ..., t~/xL ], for eL’ery unifier

6of T,6=cr~;9.

Another important observation about UT is that even though it is usually not

idempotent, at least one variable in {xl, ..., x~} does not belong to I( ~* )

(otherwise, condition (1) of the triangular form fails). We assume that a

procedure TU is available, which, given any unifiable term system S, returns a

triangular form for an idempotent mgu of S, denoted by TU(S). When S

consists of a single pair (u, u ), TU(S) is also denoted by TU(LL, u).

Recall that we write u +~ u to express that L4 ~E U, treating the equations

in E as ground equations.

Definition 6.5. Let E = {(sI ~ tl), . . ., (s~ + t~)} be a finite set of equa-
tions, and let Var(E) = U(, =~,~ ~ Var(,s ~ t) denote the set of variables occur-

ring in E.10 Given a substitution 6, we let 6(E) = {6(s, > t,) I S, + t, E E, 6(s, )

# (3(tl )}. Given any two terms u and v,l 1 a substitution 6 is a rigid unifier of u

and u modzdo E (for short, a rigid E-unifier of LLand v) iff

6(u) ~o(~) (3(v), that is, 6(LL) and (3(v) are congruent modulo the set 6(E)

considered as a set of ground equations.

Definition 6.6. Let E be a (finite) set of equations, and W a (finite) set of

variables. For any two substitutions LT and 9, ~ =~ 0[ W 1 iff ~(x) ~~ d(x) for

every x = W. The relation LE is defined as follows. For any two substitutions

m and 6, u GE 6[W] iff o =fl ~, oIW]. The set W is omitted when W = X

\(where X is the set of variables , and similarly E is omitted when E = 0.

Intuitively speaking, m LE d iff o- can be generated from % using the

equations in 0(E). Clearly, LE is reflexive. However, it is not symmetric as

shown by the following example.

Example 6.7. Let E = {A + x}, u = [fa/x] and 0 = [a/x]. Then,

O(E) = {fa ~ a} and a(x) =fa + 6(E) a = O(X), and so a LE 6. On the other
hand, ~(E) = {Ha + fa}, but a and fa are not congruent from {fla ~ fa}.

Thus, 0 GE m does not hold.

It is not difficult to show that E~ is also transitive. We also need an

extension of E~ defined as follows.

Dejl~zitio~z 6.8. Let E be a (finite) set of equations, and W a (finite) set of

variables. The relation <~ is defined as follows: for any two substitutions m

and t), o <~ 0[ W] iff cr ;q p~ 6[ W] for some substitution q (that is,

m;q =dt~) O for some q).

10It is possible that equations have variables in common.
“ It is possible that u and u have variables m common with the equations in E.
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Intuitively speaking, ZT<E 8 iff u is more general than some substitution

that can be generated from 0 using 6(E). Clearly, s ~ is reflexive. The

transitivity of <~ is also shown easily. When m <~ 0[ W], we say that o- is

(rigid) more general than 9 over W. It can be shown that if CT is a rigid

E-unifier of Ll and u and c <~ 6, then 0 is a rigid E-unifier of u and u. The

converse is false.

Definition 6.9. Given a (finite) set E of equations, for any two terms u and

u, letting V = Var(u) u Var(v) U Var(E), a set U of substitutions is a complete

set of rigid E-unifiers for u and u iffl For every u E U,

(i) D(u) c V and D(u) n I(a) = 0 (idempotence),
(ii) u is a rigid E-unifier of u and u,

(iii) For every rigid E-unifier 6 of u and u, there is some o-G U, such that,
a SE (3[V].

It is very useful to observe that if a procedure P for finding sets of rigid

E-unifiers satisfies the property stated in Definition 6.10 given next, then in

order to show that this procedure yields complete sets, there is no loss of

generality in showing completeness with respect to ground rigid E-unifiers

whose domains contain V (i.e., in clause (iii) of Definition 6.9, 6(x) is a ground

term for every x = D( 6), and V c D(6)).

Definition 6.10. A procedure P for finding sets of rigid E-unifiers is pure iff

the following condition holds: For every ranked alphabet z, every finite set E

of equations over TX(X) and every u, v = T2(X), if U = P(E, u, u) is the set

of rigid E-unifiers for u and v given by procedure P, then for every u = U, for

every x G D(m), every constant or function symbol occurring in m(x) occurs

either in some equation in E or in LL or in u.

In other words, P(E, u, u) does not contain constant or function symbols that

do not already occur in the input (E, u, v). To prove what we claimed, we

proceed as follows. We add countably infinitely many new (distinct) constants

c, to Z, each constant c, being associated with the variable x. The resulting

alphabet is denoted by ~~~. If 8 is ~ot ground, we create the Skolemized

version of 6, that is, the substitution 0 obtained by replacing the variables in

the terms 0(x) by new (distinct) constants. I*

LEMMA 6.11. Given a rigid E-unification procedure P satisfying the prop-

erty of Definition 6.10, assume that for every ranked alphabet X, every finite

set E of equations over TX(X) and every LL, v G T~(X), the set U = P(E, u, u)

of rigid E-unifiers of u and v given by P satisfies conditions (i) and (ii) of

Definition 6.9, and the new condition (iii’): for every rigid E-unifier $ of u and

u such that V c D(6) and O(x) = Tz for every x = D(6), there is some o E U

such that o <~ f3[v] (where V = Var(E) U Var(u, u)). Then every set U =

P( E, L1,v) is a complete set of rigid E-unifiers for u and u.

7. Minimal Rigid E-Unifiers

One of the reasons for the decidability of rigid E-unification is that if a pair
( ZJ, u) has some rigid E-unifier, then it has a rigid E-unifier that is minimal in

a sense made precise in the sequel. Given a finite or countably infinite ranked

lZ That is, d is obtained from /3 by replacing every variable y m each term 0(x) by the
corresponding Skolem constant c”, for each x ● D(O).
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alphabet Z, it is always possible to define a total simplification ordering s on

Tz (the set of all ground terms) [11]. We use the total simplification ordering

~ on Tz to define a well-founded partial order << on ground substitutions.

For this, it is assumed that the set of variables X is totally ordered as

X=(xl,x?, . . ..xn).. .).

Definition 7.1. The partial order x< is defined on ground substitutions as

follows. Given any two ground substitutions u and 9 such that D(m) = D( 8 ),

letting (yl, ..., y,, ) be the sequence obtained by ordering the variables in

D( o- ) according to their order in X, then o- <<(3 iff

(a(y, )>...3a(yn)), x(~(Y,),)>~ (Y,*)),*)),

where ~ ~~, is the lexicographic ordering on tuples induced by s .

Since ~ is well-founded and <<is induced by the lexicographic ordering

+ [,X which is well-founded, <~ is also well-founded. In fact, given any finite set

~ of variables, note that <+ is a total well-founded ordering for the set of

ground substitutions with domain V.

Given a set E of equations and a total simplification ordering s on ground

terms, for any ground substitution 6, we let 6(E) denote the set {6(1) +

(3(v) I 6(1) > ~(r), 1 ~ r = E U E-l} of oriented instances of E. Thus, we can

also view 0(E) as a set of rewrite rules.

The reason for considering the well-founded ordering << on ground substitu-

tions is that minimal rigid E-unifiers exist. This is one of the reasons for the

decidability of rigid E-unification. The example below gives some motivation

for the next definition and lemma.

Example 7.2. Let E = {fa ~ a, x ~ fa}, and (u, v) = (gx, x). It is obvious

that there is a simplification ordering total on ground terms such that a x f < g

(for instance, a recursiue path ordering, see Dershowitz [1 l]). The main point of

this example is the fact that some rigid E-unifiers of gx and x are redundant,

in the sense that they are subsumed by rigid E-unifiers that are smaller with

respect to <~ . For instance, (3 = [gflOa/x] is a rigid E-unifier of gx and x,

but so is m = [ga/.x], ancl u ZE ().

An illustration of the redundancy of 9 is the fact that (3(x) = gfl”a is

reducible by the rule fa - a. The fact that some term 13(x) may be reducible

by some oriented instance (3(I) - O(r) of an equation 1 + r E E U E-L turns

out to be a problem for the completeness of the method. In order to avoid such

redundancies, for every rigid E-unifier d of u and v, we consider the set

s Z,u, ”,e of all ground rigid E-unifiers p of u and -U such that p ~fi 6. The

crucial fact is that the set SE, ~,”, ~ has a smallest element m under the

ordering +< , and that this least substitution is nicely reduced with respect to

u ( E). Intuitively speaking, we find the least ground rigid E-unifier m of u and

v constructible from 0 and (3(E) (least with respect to ++). Referring back to

d = [gflOa/x], the substitution m = [ga/x] is the smallest element of SE, ~,~ ~.

It is not sufficient to simply consider all ground substitutions p such that

p EE (3, because some of them may not be rigid E-unifiers of u and v. For
instance, we have p LE o for p = [a/x], but p is not a rigid E-unifier of ga

and a since p(E) = { fa ~ a}. Thus, we have to consider rigid E-unifiers of 14

and v such that p c~ (3.
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The least element u of the set SE,,,,., ~ enjoys some nice reduction proper-
ties with respect to o(E). These properties stated in the forthcoming lemma

will be used in the proof that the method is complete.

Definition 7.3. Let E be a set of equations (over TX(X)) and Lt, v G T>(X)

any two terms. For any ground rigid E-unifier 9 of u and v, let

s ~,, .,= {PID(P)‘~(~),d,,) ‘P(E) P(~),P~E @and P~rOund)
,!,

Obviously, 13E SE,,,,”, ~, so SE ~ “ ~ is not empty. Since <+ is total and well-

founded on ground substitutions’ with domain D(0), the set SE,,,,., ~ contains

some least element a (with respect to -+<).

We shall now prove the following crucial result: For this, recall that a

degenerate equation is of the form x ~ f, where x is a variable and x C Var(t),
and that a nondegenerate equation is an equation that is not degenerate.

LEMMA 7.4. Let E be a set of equations (o[er TZ(X)) and u, v @ Tz( X) any

two terms. For any ground rigid E-unifier O of u and v, if ~ is the least element of
the set S~, ,,, ~,~ of Definition 7.3, then the following properties hold:

(1) Eve~ term of the form m(x) is irreducible by eLety oriented instance m(l) ~

v(r) of a nondegenerate equation 1 ~ r E E U E-1, and

(2) Eve~ proper subte?m of a term of the form u(x) is irreducible by ele?y

oriented instance c(1) j o-(r) of a degenerate equation 1 ~ r =

Eu E-l.

8. The Reduction Procedure

One of the major components of the decision procedure for rigid E-unification

is a procedure for creating a reduced set of rewrite rules equivalent to a given

(finite) set of ground equations. This procedure first presented in Gallier et al.

[19] runs in polynomial time. However, due to the possibility that variables may

occur in the equations, we have to make some changes to this procedure.

Roughly speaking, given a “guess” @ (which we call an order msignrnent) of the

ordering among all subterms of the terms in a set of equations E, we can run

the reduction procedure R on E and & to produce a reduced rewrite system

R(E, @’) equivalent to E, and whose orientation is dictated by the ordering ~.

Definition 8.1. Given a set R of rewrite rules, we say that R is rigid reduced

iff

(1) No lefthand side of any rewrite rule 1- r e R is reducible by any rewrite

rule in R – {1 ~ r} treated as a ground rule;

(2) No righthand side of any rewrite rule 1 -+ r = R is reducible by any rewrite

rule in R treated as a ground rule.

Definition 8.2. Given two sets E and E‘ of equations, we say that E and E’

are rigid equivalent iff for every two terms Lf and v, u +~ u iff u +~, v

(treating E and E‘ as sets of ground equations).

For technical reasons, it will be convenient to view the problem of rigid

E-unification as the problem of deciding whether two fixed constants are rigid

E-unifiable. This can be achieved as follows (the idea is borrowed from

Dershowitz). Let eq be a new binary function symbol not occurring in Z, and T
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and F two new constants not occurring in S. The following simple but useful

lemma holds.

~EMiMA 8.3. Gillen a set E of equations and any two terms u and u, a

substitution 9 over T:(X) is a n“gid E-unifier of u and v iff there is some

substitution (3’ over T2(X) such that /3 = 9‘ lD~dJj_ {Z} and T +@,(E,,“, F, where

E ,,,U = E U {eq(u, v) ~ F. eq(z, z) = T}, and z is a new Lanable not in

Var(E) U Var(lt, v).

The total simplification ordering ~ can be extended to the set

TX u{ T,F} L.J{eq( u,v)lu, v= TX}.

For details, see [22]. We need to show that in searching for rigid E-unifiers, it

is always possible to deal with sets of equations that are rigid reduced. The

proof of this fact uses the result shown elsewhere that every finite set E of

ground equations is equivalent to a reduced set R(E) of rewrite rules. We now

review the procedure first presented in Gallier et al. [19], which, given a total

simplification ordering + on ground terms and a finite set E of ground

equations returns a reduced rewrite system R(E) equivalent to E.

Definition 8.4 (Basic reduction procedure). Let E be a finite set of ground

equations, and < a simplification ordering total on ground terms. The basic

reduction procedure generates a finite sequence of triples (S,, 11,, J%,) where

%, is a finite set of ground equations, II, is a partition (associated with 8,), and

M?, is a set of ground rewrite rules. Given a triple (%,, II,, ~,), we let ~ be the

set of all subterms of terms occurring in equations in 8, or in rewrite rules in

~,. The procedure makes use of the congme~lce closure of a finite set of ground

equations (Kozen [30, 31], Nelson and Oppen [361, Downey et al. [131).

Congruence closures are represented by their associated partition H. Given an

equivalence relation represented by its partition II, the equivalence class of t

is denoted by [t]II,or [t].Recall that s, t are in the same equivalence class of II

iff s and t are subterms of the terms occurring in E and s -E t (for details,

see Gallier [17]). The congruence closure algorithm will only be run once on E

to obtain II,,, but the partition H, may change due to further steps (simplifica-

tion steps).

begin algorithm

Initially, we set ~0 = E, @’. = @, and run a congruence closure algorithm on the ground
set E to obtain II(). i := O;

while II, has some nontrivial equivalence class 13 do {Slrnphfication steps}
Let p,*, be the smallest clement 14 of the set

u“
c’enz ICI>2

15 Let c , be the nontrivial class thatof terms belonging to nontrivial classes in 11,.

AL+l’},’~here k,+, z 1, since C,+, 1scontains p,+,, and write C,+j = {p, +l. A~+ l,..., ,+
nontrivial. Let Y;+, = {A;+] - p,+,,..., A:~+{ - p,+,}.
{Next, we use the rewrite rules in Y,+, to simplify the rewrite rules in %, U >;+,, the
partition H,, and the equations in %,.)

1~That is, a class containing at least two elements, m which case X, has at least one nontrivial

?Jquation.
In the ordering +

1’ Where I C I denotes the cardmality of the set C.
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TO get ~,+,, first, we get a canonical system equivalent to ~+,. For this, for every

lefthand side A of a rule in S ~ replace every maximal redex of ~ of the form AJ by P,
‘+ ’16 Let ~~ ~ be the set of simplified rules. AIso, let ~~+ IwhereA~~p~~+l–{A~p}.

be the set obtained by simplifying the lefthand sides of rules in 27?,using ~+ ~ (reducing

maximal redexes only), and let

Finally, use S;+ ~ to simplify all terms in H, and %,, using the simplification process
described earlier, to obtain Ifl +, and %,+ ~.

t:=i+l

endwhile

{All classes of fI, are trivial, and the set 91 is a canonical system equivalent to E.}

end algorithm

It is shown in [19] that the above procedure always terminates with a system

%,. equivalent to E that is reduced (and hence, canonical).

However, in order to show later that our decision method is in NP, it turns

out that we need a sharpening of the above result. We need to show that given

a set E of ground equations, the term DAG associated with any equivalent

reduced system R is of size no greater than the size of the term DAG

associated with E itself, and that the number of rules in R is no greater than

the number of equations in E. This is not at all obvious for our algorithm, but

fortunately true. To be more specific, the term DAG associated with a finite set

% of terms is the labeled directed graph whose set of nodes is the set of all

subterms occurring in terms in Y, where every constant symbol c or variable x

is a terminal node labeled with c or x, and where every node f(t,, ..., t~) is
labeled with f and has exactly the k nodes t,,...,tkas immediate successors.

In the case of a set of equations (or rewrite rules), the set of terms under

consideration is the set of subterms occurring in lefthand or righthand sides of

equations (or rules). If a term DAG has m edges and n nodes, we define its

size as (m, n).

The quickest way to prove this sharper result is to appeal to two facts:

The first one is due to Metivier [34] and Dershowitz et al. [12] (in fact, a

direct proof is quite short).

LEMMA 8.5. If R and R‘ are two equivalent reduced rewriting systems con-

tained in some reduction ordering ~ , then R = R‘.

The second fact is that given a set E of p ground equations with term DAG

of size (m, n), a reduced equivalent system R of p‘ rules with term DAG of

size (m’, n’) such that m’ s m, n’ s n, and p’ s p, is produced by a reduction

process that is essentially just a Knuth–Bendix procedure restricted to ground

terms.

Definition 8.6. Let > be a reduction ordering total on ground terms. Let R

be a multiset of oriented pairs (s, t)that we may denote by s ~ t of s > t and
s - t if J + t.Finally, let -~ denote the rewriting relation induced by the

‘6 By a maximal redex of A, we mean a redex of A that is not a proper subterm of any other redex
of A. The simplified term is Irreducible with respect to %+ 1, so these replacements are OnlY done

once, and they can be done in parallel because they apply to independent subterms of A.
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nontrivial pairs. The first transformation simply removes trivial pairs from R:

{(u, z~)} uR=R. (6)

The second orients rules:

{s~f}u R*{t-s}u R. (7)

Next, if r ~~ r’, then

{l~r}uRa{l~r’}ull, (8)

and finally, if 1 +~ l‘, then

{~ ~r} UR + {(1’, r)} uR. (9)

It should be noted that U denotes multiset union, which implies that when a

transformation is applied, the occurrence of the rule to which it is applied on

the lefthand side (for instance, s + t in (7)) no longer exists on the righthand

side.

We now show that our reduction method always produces reduced systems

whose associated term DAG is no greater than the term DAG associated with

the input.

~HEOREM 8.7. Let % be a simplification ordering total on ground terms. If E

is a set of p ground equations, R an equil’alent reduced set of p‘ ground rewrite

rules contained in > . and (m, n) and (m’, n’) are the sizes of the term DAGs

associated with E and R respectively, then m‘ < m, n‘ < n, and p‘ < p.

PROOF. We prove this by showing that every sequence of transformations

issuing from E must eventually terminate with the set R, and that the size

inequality stated above holds. Let

E= RO*R1*Rz q...

be any sequence of transformations starting with E and using the given

ordering > . It is tedious but not hard to show that the transformations

produce equivalent sets of rules, and we leave this to the reader. Similarly, it is
not hard to show that any set that cannot be transformed must be a reduced

set of rules contained in > , since otherwise some transformation would apply.

Now, by Lemma 8.5, if such a terminal set exists, it must be unique, and so it

will be identical with R. Thus, we next show that the relation * is noethe-

rian.

For any R, let P(R) = (M, k ), where M is the multiset of all terms
occurring in pairs in R and k is the number of pairs of the form s ~ t.Let the

ordering associated with this measure use the multiset extension of > for the

first component and the standard ordering on the natural numbers for the

second. Clearly this ordering is well-founded, since > is. But then, each

transformation reduces the measure of the set of pairs, since (6), (8), and (9)

reduce M, and (7) reduces k without changing ill. Thus, any sequence of

transformations must eventually terminate in the set R.
Finally, for any transformation R, = R,+,, note that the size of the current

term DAG cannot increase, since (6) deletes nodes and possibly edges, (7) does

not change the size, and (8) and (9) possibly decrease the number of nodes and

preserve the number of edges. As a matter of fact, these transformations can



Theorem Proving with Equational Matings and Rigid E-Unification 407

be implemented by moving pointers. It is also obvious that each transformation

either preserves or decreases the total number of rules. Thus, the claim follows

by induction on the length of the transformation sequence. ❑

Another useful fact needed later is that the time complexity of the reduction

procedure is in fact bounded by O((m + n + p)3), where (m, ~t) is the size of

the term DAG associated with the input E, and p is the number of equations

in E.

Unfortunately, given a nonground set E of equations, the reduction proce-

dure just presented may not be applicable since some of the equivalence

classes may contain terms involving variables and the ordering ~ may no

longer be total on such a partition. We need to guess how terms containing

variables compare to other terms in the partition in order to reduce the

equations. However, it is useful to observe that the reduction algorithm

applies, as long as at every stage of the algorithm, it is possible to determine

the least element of each nontrivial equivalence class and to sort these least

elements. This observation shows that in extending a simplification ordering <

total on ground terms to terms containing variables, it is sufficient to require

this extension to have a least element in each nontrivial equivalence class and

to be total on the set of least elements of these classes. Definition 8.10 will

make use of this fact.

The key to extending ground orderings is that if some ground rigid E-unifier

8 exists, since the ordering ~ is total on ground terms, 9 induces a preorder

on the terms occurring in the congruence closure II of E. For example, if

E = {fa ~ a,fa ~ x}, u = gx, v =x, and 0 = [ga/x], then II has a single

nontrivial class {fa, a, x}, and considering the recursive path ordering such that
a < ~ < g (see Dershowitz [11]), we have a < fa < ga = (3(.x). Hence, we can

extend ~ so that ~a + x. This way, the equations can be oriented as fa ~ a,
x +fa.

We shall define the concept of an order assignment in order to formalize the

above intuition. First, we define some relations induced by a ground subst itu -

tion on a finite set of terms.

De@ition 8.8. Given a finite set S of terms, let ST(S) be the set of all

subterms of terms in S (including the terms in S). Let < be a total

simplification ordering on ground terms, and $ a ground substitution such that

Var(S) G D(6). The relations =e, ~ and ~ ~,s on ST(S) are defined as

follows: For every u, v E ST(S),

and

u=,, s v iff 6(U) = o(v).

When we have a partition H induced by the congruence closure of a finite

set E of equations treated as ground, S consists of the lefthand sides and

righthand sides of equations in E, and we denote -&s as 5., [l and ‘e,s as

=., ” . As the next example shows, the equivalence relation -d, “ may be

nontrivial.

Example 8.9. Let E = {H + f~, f~ ~ gy, hgz ~ gz}, u = k(fi, gb), v =

k(ga, kgb), and 0 = [ga\x, a/y, b/z]. The nontrivial equivalence classes of the
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congruence closure fI of E are {jik, &y, gy}, and {hgz, gz}. Then, since (3(.x) =

13(gy) = ga, we have x -e, ~ gy and H -.,” jjj. Thus, -.,” has two nontrivial

equivalence classes {.x, gy} and {H, ~~}. Assuming that we have a total simplifi-

cation ordering on ground terms such that a ~ b < ~ < g < h (for instance, a

recursive path ordering, see Dershowitz [1 l]), we also have

The other pairs in s ~,,, are obtained by reflexivity and transitivity from -~, n

and the above pairs.

This time, it is not obvious how to orient the equation E + f~. This is

because 6(H) = /3(f~). One might think that this is a problem, but it can be

overcome. Observe that since the ground equation (3(@) ~ 6( fgy ) is trivial, it

does not help in any way in proving that (3(u) and (3(v) are congruent modulo

O(E). In [22], the problem was solved by factoring out the preorder SO, ~ by

the equivalence relation =0 II . It was also shown that as far as the complete-

ness of the method is concerned, we can restrict our attention to partial orders

rather than preorders. For the sake of simplicity, we present this solution,

referring the reader to [22] for a more complete solution.

The key point is that it is always possible to choose an orientation of the

equations which is compatible with <o “ . For example, we can define the

partial order s., on {x, y, z, fi, gy, gz, f~, hgz} such that, gy s& gz, gy -& fo,

fas, fi> and gz <,.- h% (other pairs in & are obtained by transitivity and

reflexivity). It is clear that -& G se “ . With this orientation, the set E of

Example 8.9 is equivalent to the following rigid reduced set of rewrite rules:

R = {K ~ gy, f~ ~ gy, hgz + gz}.

The above discussion leads to the following definition that makes use of the

fact noted before Definition 8.8.

Definition 8.10. Let ~ be a total simplification ordering on ground terms.

Given a finite set ~ of terms and a partition ~ on ~~( ~), a partial order & on

~~(~) (also denoted as s,.) is an order assignment for II iff the following

properties hold:

(1) <,. has the subterm property and is monotonic on ST(S), that is, for all
Ul, . . ..lln.ul, . . ,Un E ST(S), if u, se, v, fori = 1,. ... n and f(ul, . . ..u~)
and f(ul, ..., u,,) G ST(S), then f(ul, ...,).) <e f(q, ...,););

(2) The restriction of ~ ~ to ground terms agrees with ~ (on ST(S)), every

nontrivial equivalence class C of II has a least element, and < ~ is total

on this set of least elements.

Given a finite set E of equations, if ~ is the partition associated with the

congruence closure of ,?Z, by an order assigtunent for E we mean an order

assignment for Il.

The following lemma shows why order assignments can be chosen to be

partial orders.

LEMMA 8.11. Giucn a finite set S of terms ad a partition II ofz ST(S), giuen

arzy ground substitution 9 such that Var( ~) c D(O), there exists an order assign-
ment < ~ for II szlch that ~ ~ c ~ ~,,, and ~ ~ is a total ordering.

PROOF. For every nontrivial equivalence class C modulo =6 “ , we extend

the simplification ordering < as follows: Whenever such a class contains some
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variable, say C = {xl, ..., x~, tl,...,t,n}where xl, ..., x~ are variables, we

extend + to a relation <’ such that xl +’xz <’.”. <’x~ and x, <’t], for all i, j,

I<i <k, l<j<rn. It is clear that+’ is a partial ordering contained

in <e, ” . Now, we define <t, recursively as follows: u <F v iff either

(1) 6(u) K 6(v), or

(2) 6(u) = 6(v), and either

(2a) u is a variable and u <’v, or

(2b) u =f(ul,..., urn), v=~(vl,..., v~), and (Ul,..., U,,) <&(vl,..., v,l),

where < ~ is the lexicographic extension of + ~ .

We define ~ ~ as the reflexive closure of + ~ , and we claim that s ~, is a

total ordering which is an order assignment contained in s ~,[l. The only

problem is in showing that < ~ is a total ordering, as the other conditions are

then easily verified. To prove that s ~ is a total ordering, due to clause (1) of

the definition of <H , it is enough to show that for any two distinct elements

u, v in some nontrivial class C modulo -., “ , either u s ~v or vs ~U, but not

both. Note that the set of classes modulo =*, ~ is totally ordered: C << C‘ iff

(3(C) + 6(C ‘), where 6(C) denotes the common vahe of all terms O(t) where

t = C. We proceed by induction on this well-ordering of the classes. Clearly,

the least class contains some variable and at most one constant. But then, it is

already totally ordered by +‘. Given any other nontrivial class C, if u and v

are both variables, we already know by (2a) that either u <‘v or v <‘u, but not

both. If u is a variable and v is not, by (2a) we can only have u <’v. If both u
and v are not variables, then they must be of the form u = f(ul, ..., u,, ) and

V= f(vl, ..., v.), since C is unified by $. Since u # v, there is a least i such

that u, # v,, and since (3 unifies u and v, 6 unifies u, and v,. But then, because
x has the subterm property, u,, v, belong to some class Cl such that C, << C.

Therefore, either u, s ~ v, or v, < ~ u,, but not both, and thus by (2b), either

u~&vorv ~&u, but not both. ❑

In view of Lemma 8.11, the following definition is justified.

Definition 8.12. Given a finite set of terms S, an order assignment < ~, for

a partition II on ST(S) is realized by a ground substitution 13 such that

Var(II) c D(O) iff s ~ Q < ~,ll.

Given two order assignments & on a partition II for ST(S) and 6“ on a
partition H‘ for ST(S ‘), we say that @ and &‘ are compatible iff they coincide

on ST(S) n ST(S’).

Example 8.13. Let E = {ji ~ f~, f~ + gy, hgz + gz}, as in Example 8.9.

The nontrivial equivalence classes of the congruence closure II of E are

{A, f~, g}, and {hgz, w}.

Let & be the partial order on {x, y, z, h, gy, gz, fo, hgz} such that o 5p, gz,

8’5 ~f~, fO 5 ~fi, and gz 3 ~ hgz (other pairs in <. are obtained by
transitivity and reflexivity). It is immediately verified that @ is an order

assignment realized by 6 = [ga/x, a/y, b\zl, since < ~ c 5 ~,~.

The next example arises from the problem of proving that every monoid such

that x” x = 1 (for all x) is commutative.
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Example 8.14. Let 8 be the set of equations

Xl (y, “21) = (~l” Yl) “~1

x2”(y2”z2) + (x2”y2) “22

W2. W2=1

X,”(y,. Z,) = (x, -y,) .Z3

x4. (y4. z~) = (X4” Y4) “Z4

W3” W3=1

eq(a”b, b.a)+F

eq(z, z) ~T}.

The nontrivial equivalence classes of the congruence closure H of 3 are:

{T, eq(z, z)},

{F, eq(a. b, b.a)},

{1, W2”W2, W3. W3, MJ,. W1},

{~,, u,”l}>

{q>l” ~,},

{x~”(y, ”z,), (x, ”y, )”z,}>

{x4” (Y, ”z,)>(x4”Y4)”~4}7

{X, ”(y, ”z,), (x, ”y, )”z,},

{x, “(Y, “Z, )>(x, “y, ) “z,}.

We define the order assignment @’ on II by the order in which the elements in

each class of H are listed, and for the least elements in these classes, the order

in which the classes are listed. All other pairs in ~ ~ are determined by

reflexivity and transitivity. It is easily seen that there is a total simplification

ordering on ground terms such that 1 < a < b < ., and one can verify that ~ ~

is an order assignment, and that +_ ~ is realized by the substitution

O= [tz/u,, a/x13 a/x2. a/v95 a/wz, a/xA.

b/zz, b/vi, b/xj, b/z~. b/yb, b/z4, b/w~,

a“b/wl, a. b/yl, a. b/zl, a. b/yJ, a“b/z].

We can now modify the procedure of Definition 8.4 in order to accommo-

date variables.

Definition 8.15 (Reduction procedare R). Let ~ be a total simplification

ordering on ground terms, Let % = %2 u {eq(u, v) ~ F, eq(z, z) ~ T} be a

finite set of equations, where ~~ is a set of equations over ~z(~ ), and

14, v G ~z(~). Given any order assignment @’ on %, the procedure R returns a
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rigid reduced rewrite system R(8, &). To form the system R(8, @’), since s ~,

is a simplification ordering such that every nontrivial equivalence class of 11

has a least element and s ~, is total on this set of least elements, we apply to

% and 11 the procedure described in Definition 8.4, except that at the end of

every round, it may be necessary to extend & since new terms may arise due to

simplification. If at every round an extension of & can be found so that the

next step can be performed, R succeeds and returns a rigid reduced rewrite

system denoted as R(8, &’). Otherwise, R returns failure.

It is useful to remark that since the reduction procedure deals with sets of

equations of the form % = %> u {eq(u, v) ~ F, eq(z, z) ~ T}, in the congru-

ence closure II of %, the classes of T and F are always {eq(u, v), F} and

{eq(z,z), T}. From the way we have extended ~ to take care of T, F, and

terms involving eq, itwill be shown as a corollary of Theorem 10.2 that there is
no loss of generality in choosing order assignments such that T s ~. F s ~ s

s ~ eq(u, v) for all s, u, v = Tz( X ). We can show the following crucial result.

LEMMA 8.16. Let % = %> U {eq(u, v) ~ F, eq(z, z) + T} be a finite set of

equations, where Zz is a set of equations over TX(X), u, v = TX(X), and < a

total simplification ordering on ground terms. Given ml order assignment i? on ~,

if R does not fail, then R( %’, ~) is rigid equillalent to ~.

We are now ready to define a procedure for finding rigid E-unifiers.

9. A Method for Finding Complete Sets of Rigid E-Unifiers

This method uses the reduction procedure of Section 8 and a single transfor-

mation on certain systems defined next. First, the following definition is

needed.

Definition 9.1. Given a set E of equations and some equation 1 + r, the set

of equations obtained from E by deleting 1 ~ r and r ~ 1 from E is denoted

by (E – {1 ~ r})’. Formally, we let (E – {) + r})t = {u + v I u + v = E, u + u

#l~r, andu~v#r~ l}.

Definition 9.2. Let ~ be a total simplification ordering on ground terms.

We shall be considering finite sets of equations of the form 8 = %> U

{eq(u, v) ~ F, eq(z, z) + T}, where 82 is a set of equations over T2(X), and

u, v @ TX(X). We define a transformation on systems of the form (~, 27, &),

where Y is a term system, ~ a set of equations as above and ~ an order

assignment:

where 11 4 r,, 12 G rz G %0 u g; 1, either 11/~ is not a variable or l? ; rz

is degenerate, 11/~ # Iz, TU(ll/@, lZ) represents a mgu of 11/~ and lZ

in triangular form,17 a = [tl/x,, . . . , tP/xP ] where TU(ll/~, lZ) =

{(xl, tl),..., (xp, tp)},

d, is an order assignment on ~~ compatible with &o, 91 = ~. U TU(ll/fi, 1, ),

and 81 = R(%(, @’l).

17Note that we are requiring that 11/~ and 11 have a nontruval unifier. The triangular form of
mgus important for the NP-completeness of this method.
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Observe that U(ll[ p + r?] ~ rl ) looks like a critical pair of equations in

%0 U %~’, but it is not. This IS because a critical pair is formed by applying the

mgu of ll/@ and lZ to 1,[ ~ ~ r2] ~ rl, but [tl/xl, ..., tP/xP] is usually not a

mgu of Z1/B and lZ. It is the composition [tl/xl 1; “”” ; [tP\xPl that is a mgu of

11/~ and 12. The reason for not applying the mgu is that by repeated

applications of this step, exponential size terms could be formed, and it would

not be clear that the decision procedure is in NP. We have chosen an approach

of “lazy” (or delayed) unification. Also note that we use the rigid reduced

system R( %;, @’l) rather than %;, and so, a transformation step is defined only

if R does not fail. The method then is the following:

Definition 9.3 (Method). Let E,,,. = E U {eq(u, u) ~ F, eq(z, z) ~ T}, &O

an order assignment on EU ~, SO = 0, %0 = R(EU ~, at,), m the total number

of variables in %0, and V = ‘Var( E) u J%-(24, v). For any sequence

consisting of at most m transformation steps, if $~ is unifiable and k s m is

the first integer in the sequence such that F + T G i%’~,return the substitution

07i I ~, where 6“, is the mgu of Fk (over Tz( X)).

Example 9.4. Let E be the set of equations E = {fa ~ a, ggx + fa}, and

(z4, u) = (ggw, x). We have

E lL, u = {fa ~ a,ggx + fa, eq(gg~, x) + F,eq(z, z) + T}.

The congruence closure II of EU ~ has three nontrivial classes {a, fa, ggx},

{eq(gggx, x), F}, and {eq(z, z), T}. Let ~, be the order assignment on E,,,. such
that

T <,7,) eq(gggx, x),

F <,,, eq(z, z),

a ~<jo fa +(?O g~,

the least elements of classes being ordered in the order of listing of the classes.

We have ,90 = 0, and the reduced system %’0 = R(El,3 ~, @O) is

%0 = {fa ~a, ggx~a, eq(ga, x) ~F, eq(z, z) = T}.

Note that there is an overlap between eq(ga, x) ~ F and eq(z, z) ~ T at

address E in eq(ga, x), and we obtain the triangular system {(x, ga ), (z, ga )}

and the new equation F ~ T. Thus, we have

(so, %(),@,) - (~,>%l>m,),

where Y1 = {(x, ga), (z, ga)}

%( = {fa + a,ggga ~ a,eq(ga, ga) +F, F + T},

and c?, is the restriction of HO to the subterms in %(. After reducing %;, we

have

%1 = {fa ~ a,ggga + a,eq(ga, ga) > T,F + T}.
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Since F ~ T = 81 and F, is unifiable, the restriction [ga/x] of the mgu

[ga/x, ga/z] of Y, to Var(E) U Var(u, v) = {x} is a rigid E-unifier of gg~

and x.

10. Soundness, Completeness, and Decidability of the Rigid E-Unification Method

The main properties of the method are given in this section.

THEOREM 10.1 (SOUNDNESS). Let E be a set of equations ouer Tl( X), u, u

two terms in TX(X), E,,, ” = E U {eq(z, z) + T, eq(u, v) ~ F}, @fj a?z order as-

signment on E,,, ~, SO = 0, SO = R(EU, U, @O), m the total number of uariables in

8., and V = Var(E) U V’ar(u, v). If

where Pk is unifiable, F ~ T G ~~ and F ~ T @ Z, for all i, O s i < k s m,

then 6’, ~~ is a rigid E-unifier of u and v, where %>, is the mgu of Pk

(ouer T2(X)).

The proof of Theorem 10.1 does not use the fact that the systems R(S,’, @,)

are rigid reduced, but only the fact that 0‘( 8, ) and 6‘( R(8,’, @’l)) are rigid

equivalent. However, the fact that the systems R(%,’, @l) are rigid reduced

plays a crucial role in the proof of the completeness theorem. The Pi’s are only

needed for the completeness of the method, and to make sure that the

reduction procedure terminates. We now turn to the completeness part. The

main technique is roughly the removal of peaks by the use of critical pairs

(Bachmair [41, Bachmair et al. [5, 61).

THEOREM 10.2 (COMPLETENESS). Let E be a set of equations oler T2( X) and

u, v two terms in Tz( X). If 9 is any rigid E-unij$er of L! and v, then there is an

order assignment @O on EU ~, and letting &o = 0, ~0 = R(Elt,., d(,), m the

number of variables in R( &U,”, @O), and V = Var(E) u Var(u, v), there is a
sequence of transformations

where k < m, &“ is unifiable, F ~ T ● Zk, F ~ T @ Z, for alli, O < i < k, and

OYi I ~ SE 6[V], where 13Y, is the mgu of F~ over TX(X). Further-

more, $Yt I ~, is a rigid E-unfier of u and v.

COROLLARY 10.3. If O‘ is the mgu produced by a sequence of steps as in the

soundness theorem, there is a ground substitution f31 such that V G D( $1) and a

sequence of steps

such that 61 L~ ~, (31 is a unifier of Pk, and 01 realizes all the P,’s in the above

sequence. In particular, the method is still complete if we restrict ourselues to order

assignments @ such that T y ~ F Y ~ s s ~ eq(u, v) for alls, u,v = TX(X).

Theorem 10.2 also shows that rigid E-unification is decidable.

COROLLARY 10.4. Rigid E-unification is decidable.

Combining the results of Theorem 10.1 and 10.2, we also obtain the fact that

for any E, u, v, there is always a finite complete set of rigid E-unifiers.



414 J. GALLIER ET AL.

THEOREM 10.5. Let E be a set of equations oiler TX(X), u, v two terms in

T>(X), m the number of uariables in E U {u, v}, and V = Var( E) U Var(u, v).

There is a finite complete set of rigid E-unifiers for u and v giuen by the set

for any order assignment p, on EU, ”, with y. = (ZJ, 80 = R(E[,, ,,, @’,), and where

Pk is unifiable, F ~ T E EL, F ~ T G ~, for all i, O < i < k, and 13v, is the mgu

of FL ol~er Tz( X).

11. NP-Completeness of Rigid E-Unification

First, recall that rigid E-unification is NP-hard. This holds even for ground sets

of equations, as shown by Kozen [30, 31]. Using an idea of Kozen [30], we show

that rigid E-unification is NP-hard even when all equations in E are regular,

all ground except one, and u and v are ground.

Definition 11.1. An equation (1 ~ r) is regular iff Var(l) = Var(r),

THEOREM 11.2. Rigid E-unification is NP-hard when all equations in E are

regular, ail ground except one, and u and v are ground.

PROOF. The satisfiability problem is reduced to rigid E-unification as

follows. Let the set of function symbols consist of A, V, 1, and the Constants

T and L . Write down the set Eb,,ol o f 10 ground equations corresponding to

the truth tables for A, V, 1. Given any clause A, if Var(A) = {xl, . . . . x,,], let

Finally, let E~ = EbOO1U {~ + BA}, LL = T and v = 1. Clearly, A + B~ is

regular, and it is easy to see that a substitution CT such that T and 1 are

congruent modulo m ( Eq ) exists iff A is satisfiable, since B~ is false

for every truth assignment. Hence, satisfiability is reduced to rigid E-

unification. ❑

We now show that rigid E-unification is in NP.

THEOREM 11.3. Rigid E-urz@cation is NP-complete.

PROOF. We already know that rigid E-unification is NP-hard. By Corollary

10.4, the problem is decidable, It remains to show that it is in NP. From

Corollary 10.4, u and v have some rigid E-unifier iff there is some sequence of

transformations

(sf”, %’o,c@o} =+ {J’%, f%k, @k)

of at most k s m steps where nZ is the number of variables in %0, and such

that 9L is unifiable (over TX(X)), F + T = %~ and F + T @ 81 for all i,

O < i < k. We need to verify that it is possible to check these conditions in

polynomial time. First, observe that a triangular form can be computed in

polynomial time, applying the substitutions associated with triangular forms

can also be done in polynomial time, and checking that a preorder is an order

assignment can be done in polynomial time. Finally, we need to show that the

total cost of producing reduced systems is polynomial. This is a crucial point

that had been overlooked in a previous version of this paper, and we thank Leo
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Bachmair for pointing out this subtlety to us. We use two facts that have to do

with implementing the steps of the algorithm using term DAGs.

(1) We have already noted (see Theorem 8.7) that the size of the term DAG

associated with a reduced system equivalent to an input set of equations is

no greater than the size of the input term DAG, the number of rules no

greater than the number of input equations, and that the reduction

procedure runs in O((nz + n + p)3), where (m, n) is the size of the input

term DAG and p the number of equations in E.

(2) The term DAG associated with the system ~~, obtained from & by a
transformation step can be obtained from the term DAG associated with

%, by moving pointers, and if (m’, n‘) and (m, n) are the sizes of the term

DAGs of the systems i%,~~ and 8,, respectively, and p‘ and p the numbers

of equations in these systems, then m‘ < m, n‘ < n, and p‘ <p.

The reason why (2) holds is that the terms occurring in the triangular form of

the substitution u associated with the transformation step all belong to the

term DAG associated with 8,. For instance, this is easily seen if one uses

Paterson and Wegman’s method [37]. Now, forming 11[ ~ + rz ] only involves

pointer redirection, and so does the application of m. Thus, the size of the

resulting term DAG cannot increase. By the definition of the transformations,

it is also obvious that p‘ < p.
Because the number of steps is at most the number of variables in %0, the

total cost of producing reduced systems is indeed polynomial in the size of the

input.

It is interesting to note the analogy of this part of our proof with Kozen’s

proof that his method is in NP [31]. Both use the term DAG representation in

a crucial way. In this way, we avoid the potential exponential explosion that can

take place during reductions if identical subterms are not shared. ❑

If E is a set of ground equations, the &l’s are useless and the reduction

procedure R needs only be applied once at the beginning of E. Thus, Theorem

11.3 provides another proof of a result first established by Kozen [30, 31].

12. Applications of Rigid E-Unification to Equational Matings

The method developed for one set of equations and one pair can be easily

generalized to tackle problem (l). In fact, an algorithm to decide whether a

family of mated sets is an equational (pre)m~ting is obtained. The method of

Definition 9.3 can be generalized to pairs (E, S ) (as defined in problem 1 in

the introduction) by considering triples (Y, 27, &), where & is a te~m system,

and 27 is an n-tuple of sets of equations. The definition of a rigid E-unifier of

a set of pairs is generalized as follows:

Definition 12.1. Let ~ = {E, 11 < i s n} be a family of n sets of equations

(over TX(X)) and S = {(u,, q) 11< i s n} a se~ of n pairs of terms (over

TZ(X)). A substitution 0 (over TZ(X)) is a rigid E-unfier of S iff

for every i, 1 s i s n. A pair (~, S ) such that S has some rigid ~-unifier is

called an equational premating.
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The suitable generalization of the preorder <~ to a family ~ = {E, 11 s i

< n] of n sets of equations turns out to be the following:

Definition 12.2. Given a family ~ = {E, 11 s i < n} of n sets of equations,

for any (finite) set of variables ~, for any two substitutions m and (3, m <~ 6

iff there is some q such that o; q EEi oIP’] for every i, 1 s i s n.

Note that this condition is stronger than the condition u <~, 6[VI for

every i, 1 < i < n, because with this second condition we only know that there

are substitutions ql, ..., m such that O: T, L~, @[Vi for every i, 1 ~ is n. In
Definition 12.2, it is required that TI = “” ~ = q,,. It is straightfonvard to verify

that the generalization of Theorem 10.2 holds with the stronger Definition

12.2.

Complete sets of rigid ~-unifiers for S are defined as follows:

Definition 12.3. Let~={E, ll<i<~Z}and S= {(ul, u,)ll<i<n} asin

Definition 12.1, and+let V = Var(~) U P’ar(S ). A set U of substitutions is a

complete set of rigid E-unifiers for S iff For every u E U,

(i) D(U) c V an~ D(o-) n 1( m) = (Z (idempotence),

(ii) a is a rigid E-unifier of S,

(iii) For every rigid E-unifier (3 of S, there is some o e U such that m SF

e[v].

Minimal rigid ~-unifiers also exist and are defined as follows:

Definition 12.4. Let ~ be a family of sets+of equations and S a

as in Definition 12.1. For any ground rigid E-unifier 6 of S, let

sE~8.,

term system

{ }= PID(P) ‘D(6), P(u, ) +P(~l) P(v, ), PL~, 6,1<i<n, and pground .

Since ~~ is total and well-founded on ground substitutions with domain D(6),

the set SF,s, ~ contains some least element u (with respect to +<).
It is easy to see that Lemma 7.4 can be generalized as follows:

LEMMA 12.5. Let ~ be a family of sets of equations and S a term system

as in Definition 12.1. For any ground rigid ~-unifier 0 of S, if ~ is the least

elemetlt of the set SE,s, ~ of Definition 12.4, then the following properties hold:

(l)a LE dforeveryi,l<i <n,
(2) eve~’ term of the form a(x) is irreducible by every oriented instance

m(l) ~ o(r) of a nondegenerate equation 1 + r = ~ U I!-l, and

(3) every proper subterm of a term of the form m (.x) is irreducible ~y e~ery

oriented instance m(1) + u(r) of a degenerate equation 1 ~ r 6 E u E-1.

Lemma 8.3 is easily generalized as follows: We let eql, ..., eq. be n new

distinct binary function symbols not in Z (and distinct from T and F).

LEMMA 12.6. Let ~ be a family of sets of equations a~d S a term. system as in

Definition 12.1.A substitution 9 oiler Tz( X) is a rigid E-unifier of S iff there is

some substitution 6‘ ouer TX(X) such that 8 = O‘ I D(g)-{,,, , ,n} and T ~d(~t) F

for ele~ i, 1 s i s n, where E’ = E, U {eq,(u,, v,) + F, eq,(zl, z,) ~ T}, and

{21,..., z,,} is a set of new variables not in Var( @ U Var(S).
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The total simplification ordering + is extended to the set

as follows:

For any terms s, t, u, v ● TX,

(a) T + F + u + eq,(s, t);

(b) eq,(s, t) + eql(u, u) iff {s, t}~lex{u,v},where +l,X is the lexicographic
extension of < to pairs;

(c) q,(s, t) ~ q,(w V) iff 1 ~ i < ~ ~ n.

Clearly, this extension of ~ is a total simplification ordering. We define a

transformation on systems as follows: We shall be considering n-tuples 8 =

(8’ ,..., ~“ ) of finite sets of equations of the form 8’ = ~~ U {eql(u, v) ~

F, eqi(zc, z,) + T}, where 82 is a set of equations over TX(X) and u, u G
T2(X). We define a transformation on systems of the form (S, ~, ~), where

9 is a term system, % an n-tuple of sets of equations as above, and 6’ an order

assignment:

(Y”, %o, @o) = (Yl,~l,@l)7

where 11 ~ rl, lZ = r2 G %; U (%~)-1 for some i, 1< i s n, either 11/~ is not
a variable or lZ ~ r2 is degenerate, ll/p # 12, TU(~l/P, 12) represents a mgu of

1,/~ and 12 in triangular form, u = [tl/xl,. ... ~t /xP] where TU(ll/fl, l?) =

{(x,, tl),..., (xp, tp)},

and %’~ = a(%~) for every j # i,

BI is an order assignment on %; compatible with @O, ~1 = J%o U TMZ1/B, 12),

and%l=(%j,. ... $9:), where 2%’;= R($7’{, al) for all j, 1 <j s n.

The method for finding rigid ~-unifiers of S is the following:

9ejinition 12.7 (Method). Let ~ = {El 11< i < n} and S = {(u,, v,) 11 s i

s n} as in Definition 12.1, let E’ = E, U {eq,(ui, v,) A F, eq,(z,, z,) = T} for

every i,l<i<rz, @o an order assignment on (El,..., En ), $0 = @,8; =

R(E[, @o) for every i, 1 < i <:, %0 = (%;,..., %:), m the total number of

variables in 80, and V = Var(E) U Var(S). For any sequence

(Ye,’%o,@o)*+ (9~,8k,q)

consisting of at most m transformation steps, if Yk is unifiable and k < m is
the first integer in the sequence such that F ~ T = $7; for every i, 1 < i < n,
return the substitution Ox, I ~, where IS&, is the mgu of ‘k (Over TsL X)),

The proofs of Theorem 10.1 and Theorem 10.2 can be easily adapted to

prove that the finite set of all substitutions+ returned by the method of

Definition 12.7 forms a complete set of rigid E-unifiers for F. In particular,

the method provides a decision procedure for deciding whether a family of
mated sets is an equational premating that is in NP.

THEOREM 12.8 (SOUNDNESS). Let ~ = {El 11< i < n} and S = {(u,, V,) 11

s i s n} as in Definition 12.1, let E’ = Et U {eq,(u,, v,) : F, eq,(zt, z,) = ~} for
e.veryi, l<i <n, Ho an order assignment on (El,..., En), Y. = 0, ~~ =
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THEOREM 12.9 (COMPLETENESS). Let~={E, ll<i<rz} and S=

{(u,, v,) 11< i < n} as in Definition 12.1, and let E’ = E, U {eq[(u,, vl) ~

F, eql(zt, z, ) ~ T} for eve~y i, 1< i s n. If 8 is any rigid ~-unifier of S,

then there is an order assignment @’. on ( E’, . . . . En), and letting YO = @,

Z; = R(E’, C9’0) for eueV i, 1 < i s n. 80 = (g;, . . . . g:), m the total num-

ber of La?iables in Z ~, and V = Var(~) U Var(S), there is a sequence of transfor-

mations

(So, %o, ao) =$’+ (Y~,t7~,@k),

where k < m, Yk is unifiable, F ~ T E ~~, F ~ T e t%’! for all i andj, O < i < k,

1< j < n, and t)~l I ~ <E 9[V], where 13Y, is the mgu of Pk ol)er TV(X).

Furthen?~ore, 03, 1, is a rigid ~-un+er of S.

Actually, Theorem 12.9 can ~e sharpened. Examinagon of the induction

proof reveals that for any rigid E-unifier 9 of S, a rigid E-unifier more general

than 6 can be found, even if the transformations are applied in a certain order.

Definition 12.10. We say that a derivation

(&’o, %”, @o) -+ (Yin, %m, am)

is an lr-deriz,ation iff for every subderivation

(&”,%”>@”) =$’(%,~t,q) + (%+, >%+1>4+, ),

in the step from i to i + 1 (O < i < m), the equations 11 + rl and lZ ~ rz are

chosen in the set %: such that j > 1 is the least index such that F ~ T G %,(

forevery l<jand F~TE E:.

In some sense, such derivations compute rigid ~-unifiers incrementally from

left to right.

THEOREM 12.11 (INCREMENTAL COMPLETENESS). Theorein 12.9 lzolds with

lr-derivations instead of arbitra~ derivations.

This sharpening of Theorem 12.9 is VIU useful in practice, because it yields

an incremental way of finding rigid E-unifiers. From Theorem 12.9, it is

obvious that Theorem 10.5 also holds for a family of sets of equations ~ and a

term system $?

THEOREM 12.12. Let~ = {E, 11 s i s n} and S = {( Z4Z, VZ) 11 s i < n} as in

Definition 12.1, E’ = E, u {eql(ul, q) ~ F, eq,(z,, z,) + T] foreuery i, 1 s i s n,

m the number of van”:bles in E U S, and V = Var(E) U Var(S ). There is a finite

complete set of rigid E-unifiers for S giuen by the set

for any order assignment &’O on (E’ ,.. ., En), with JfO = 0, g: =R(E’, @O) for
el’eryi, l<i<n, %o=(%~, . . ., Z;), and where PL is unifiable, F ~ T G g;,
F ~ T ~ E: foralliandj, O < i < k, I < j < n, and Oa, is the mgu of Fk over
TX(X).
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Finally, it is obvious that Theorem 12.9 yields a generalization of Theorem

11.3 to equational prematings.

THEOREM 12.13. Finding whether a pair (~, S ) (as in Dejlnition 12.1) is an

equational premating is NP-complete.

As a consequence, since the problem of deciding whether a family of mated

sets forms an equational mating is equivalent to the problem of finding

whether a pair (E, S ) is an equational premating, the former problem is also

NP-complete.

In the next section, we present a procedure based on the method of

equational matings. The basic idea of such a procedure is straightforward, as

suggested by Theorem 5.5: Compute incrementally amplifications of a formula

in nnf, and at each stage, test whether such an amplification has a p-acceptable

mating. The efficiency related issues here are the same as in Andrews’s

nonequational case, except that they are harder: In addition to efficient data

structures that save information between stages, we must identify mated sets

instead of mated pairs, and use rigid ~-unification instead of standard unifica-

tion.

Although implementation issues are of importance for a practical procedure,

ye do not feel they are as new as the ideas of equational matings and rigid

E-unification, and thus, we only give a high-level description of the procedure.

13. A Refutation Procedure

We now con~ider defining a refutation procedure based on equational matings

and rigid E-unification. As mentioned in Section 5, such a procedure is

suggested by Theorem 5.5: compute incrementally amplifications of a formula

in nnf, and at each stage, test whether such an amplification has a p-acceptable

mating. This idea can be formalized in the following nondeterministic defini-

tion, which uses the incremental rigid E-unification algorithm E_ UNIF given

by Theorem 12.11.

Definition 13.1. Let A be a rectified universal sentence in nnf and D

an amplification of A. An EQ-deriL’ation R is a sequence of tuples

(( DO, HO> MS0,60),..., (DP, HP, MSP, 6P)), such that for O s i s p, D, is an
amplification of A, 111 is a set of vertical paths in D,, MS, is a set of mated

sets, each such set of the form {(sI ~ tl), ..., (sn : tn), T(S > t)}, and @, is a

substitution, such that

(1) Do is the quantifier-free form of A, fIO = Up(Do), MS. = @, and 00 = Id,
and

(2) For every i, O s i <p, if MS, = {S1,..., S,.}, then either

(i) There is some vertical path n-,+, in FI,, some subset S1+ ~ of m,+, such

that S,+l = {(s, ~ tl),. . ., (s,, = tn), T (s ~ t)}, and some rigid E-uni-
fier CT,+~ for S[., given by the procedure E– UNIF (where E =

{(s1 > tl)> . . .,(s. ~ t,,)}). Then Dl+l = D,, ~,+1 = O,+,(H, – {~,+1}),

MS, , ~ =MS, u {S, +l}, and 01+1 = f3,; ~,+l; or

(ii) If D, is obtained from the rectified form of a sentence C, by deleting

quantifiers, where C, is a sentence in a sequence (Cl,..., c, ) (i z 1) of

formulas resulting from quantifier duplications, then D,+ ~ is obtained

from the rectified form of a sentence Cl+ ~, obtained by quantifier
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duplication from Cl, by deleting quantifiers. Then, ~,+ ~ = VP( ~1 +, ),

A4SL+1= 0, and 0,. ~ = Id.

If in addition, ( MSP, dP) is a p-acceptable mating, we say that R is an

EQ-refutation.

Since the method outlined in Definition 13.1 nondeterministically enumer-

ates all equational matings for potentially all amplifications of A, it is immedi-

ate from Theorem 5.5, that since A is unsatisfiable iff some amplification of A

has a p-acceptable mating, A is unsatisfiable iff there is an EQ-refutation for

A.

There are a number of implementation problems with Definition 13.1 as the

basis for a practical method for showing the unsatisfiability of a formula in nnf

(1) The p-acceptable mating found is maximal, since no attempt is made to
identify overlapping vertical paths that are spanned by common mated sets.

(2) Every time a subformula of A is amplified, the entire computation up until
that point is discarded.

(3) No effort is made to use any failure in any step as a source of information
for the next step.

These points are closely related to the acceptability criteria given by An-

drews in Section 2.3 of [1], where he defines a procedure for finding (nonequa-

tional) p-acceptable matings. We tried to adapt the notion of a connection

graph used by Andrews in Section 3 of [1], but unfortunately with no success.

The difficulty in the presence of equality is that a vertical path T is closed iff it

contains some mated set {(sI + ~1),..., (s. ~ t.), -(s ~ t)} such that s and t

have some rigid E-unifier (where E = {(,sl ~ 11),..,, (s. ~ t,,)}), but there is no

guarantee that n s 1. For languages without equalhy, a mated set is of the

form {L, m L‘} where L and L’ are unifiable. In order to determine which

pairs of literals are unifiable it is necessary to examine 0( nz ) pairs, where n is

the total number of literals in D. Hence, for languages without equality, it is

advantageous to precompute a connection graph recording the pairs of literals

{L, 1 L‘} where L and L’ are unifiable, since every closed path must contain

such a pair. However, for languages with equality, if D contains n = q + r

literals where q literals are positive and r literals are negative (r > 1), to form

a mated set there are r choices for the negative literal and for each such

choice, any subset of the positive literals can be chosen. Thus, there are

potentially r29 mated sets, that is, an exponential number of mated sets. In

addition, rigid E-unification is NP-complete.

Thus, the cost of determining which sets of literals are mated sets is

exponential and there does not seem to be any advantage in computing such

sets. Since our investigations on this subject are still very prelimina~, we shall
not elaborate any further. However, this is a very interesting topic that clearly

requires more work.

We conclude this section with a naive procedure written in pseudocode

implementing the method of equational matings. We have made no efforts

towards improving efficiency of the basic method. This aspect should be

addressed in further work.

Let us now turn our attention to identifying mated sets in the set up(D)

of vertical paths in D. Since mated sets are of the form {(sl ~ tl ), . . . .

(sn + t,,), T (s ~ t)}, the search is organized around the negative literals. Ob-
serve that if some path w = vp(D) does not contain a negated literal, it cannot
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contain an unsatisfiable mated set and D is satisfiable. In this case, the

procedure stops with failure. Suppose now that for some vertical path n, there

is a mated set S of the form {(sI ~ tl), . . . ,(s. + t.), --I(s ~ t)} but it has no

rigid E-unifier. Then, we must perform an amplification step. We would like

this step to supply information that was missing in the attempt to find an

unsatisfiable mated set. Unfortunately, any arbitrary duplication may fail to do

this, and may even introduce new vertical paths. As Andrews says in discussing

this problem in the context of looking for nonequational p-acceptable matings,

“One would like to develop a set of heuristics for duplicating quantifiers.”

However, it is beyond the scope of this paper to consider this issue in detail (as

it was beyond the scope of Andrews and Bibel’s papers), and we use a

straightforward breadth-first outermost duplication strategy: In the lexical

order of occurrences of subformulas in A, perform an outermost duplication of

the first nonground subformula, then the second, and so on until the last

nonground subformula in the lexical order has been duplicated, and then start

again from the top. A breadth-first strategy clearly generates a complete search

space of outermost duplications; however, it can clearly result in superfluous

paths.ls

Example 13.2. Consider the following formula A, formed from the union of

Examples 4.8 and 5.6, where f, j, 2, u, v, w, x, y, z denote variables:

(a +b) V 7(*(a, b) ~ *( b,a)) ( 10)

A [Qa V 1(f3a ‘a))

(11)

( 12)

AV~[[f5~<~jV m~) (13)

A(Ra V l(fa~a)V lPfa) (14)

A Vi ~ Rfi (15)

A pa ( 16)

A VxVy Vz(*(x, *(y, z)) ~ *(*( X,y), Z))) (17)

A VU(*(U,l) ~ U) (18)

A VV(*(l, V) + u) (19)

A VW(*(W, W) A 1), (20)

The problem is to find the right sequence of duplications for A. We know from

Example 5.6 that 3 duplications of subformula (17) and 2 duplications of

subformula (20) are necessa~ for the existence of a p-acceptable mating. But

an obvious breadth-first outermost sequence of duplications results in 21

duplications before these duplications are generated. Subformulas (10), (12),

(14), and (16) are ground and thus not subject to duplication.
Let A be a rectified universal formula in nnf. A breadth-first outermost

amplification sequence (D,, ..., D,) (i > 1) for A is a sequence such that D~
is obtained from the rectified form of a sentence CL by deleting quantifiers,

where C~ is a sentence in a sequence ( cl, ..., C,) (i 2 1) of formulas resulting

‘~ Andrews and Bibel have shown that outermost duplication itself can generate superfluous

Iiterals.
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from quantifier duplications (1 s k s i). The C~’s are defined such that

Cl =A, and Ck+l is obtained by quantifier duplication of an outermost

universal subformula of CL using a breadth-first strategy (1 s k s z – 1).

Given a counter k >1, a call amplijj(k + 1, A, D) to the procedure amplifi

returns the amplification D = D~+ ~ obtained from CL as explained above. For

k = O, it is assumed that amplifi(l, A, D) returns the quantifier-free formula

QI obtained by deleting quantifiers from A. We are assuming that the

E-unification algorithm E– UNIF (given by Theorem 12.11) takes as input a

mated set S = {(sl + tl), . . . . (s, > t.), 1 (s : t)} and returns a finite complete
set of rigid E-unifiers of s and t where E = {(s, + tl), . . . . (s. ~ t~)}, in the

form of a set of triangular forms, where each triangular form T represents a

substitution m~. For presenting the refutation procedure, we also assume that

a mating & is represented by a pair ( MS, U), where MS is a collection of

mated sets, and U is the triangular representation of a substitution. Also, given

a set of paths II and a substitution u, let

apply (u, fI) ={m’l T={ P1, . . ..P~} ● IIandm’ ={m(Pl), . . ..u(P~ )}}.

We assume that the application of o- to II is done intelligently, that is, since m

is the identity substitution on almost all literals in n, some table lookup

mechanism is available to identify the literals that have variables in the domain

of o-.
We collect the information discussed in this section into the following

pseudo-code version of a refutation procedure for formulas in nnf that uses the

following variables and procedures: A is a rectified universal sentence in nn~ i

is a counter for vertical paths in an amplification; j is a counter for negative

literals in a vertical path; k is an amplification counter; 42 is an equational

mating: p–acceptable is a Boolean value which is true iff A? is p– acceptable;

~ound is a Boolean value that is true if an unsatisfiable mated set is identified

in some path; select_path( i, vp( D)) returns the ith path associated with ampli-

fication D; select–negatiue _literal( j, m ) returns the jth negative literal in ~;

choose_positive _subset(n ) returns the set of positive literals for some path m.

This procedure must be understood as a nondeterministic procedure. A deter-
ministic version can be written by implementing explicitly the backtracking

needed to handle the choice of literal, path, etc. However, we feel that it would

not be as clear as the present version.

A Refutation Procedure

procedure eqL~afzoizal_?e& fation( A);
begin

k’+l;

arrzplifi(k, A, D); (D is thus the quantifier-free form of A)
.,jf?+ (0,0):

l_krmf + #paths(up(D)); i + 1;
p_acceptable * L ;
while i s i_lirnif A ~ p_ acceptable do

rr + select–path( L, vp( D));
j_limit ~ #negatiue_literals(~ ); found e L ;
if j_lo-rlit # O then

[j ~ 1;
while j s j_limit A 1 found do
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~ * select_negatille_literal( j, v);
S G choose_positive-subset(~) u {N);
if 3 T ~ E– UNIF(S) then

[ foand + T ;
if 1 = i_liwzzt then p_acceptable G T eke i + i + 1;
let (MS, U) =.&, .k’~ (MS u S,UU T);

VP(D) - apply(uT, VP(D))]
else j~j+ 1

endwhile]
else retzzrn; {A is satisfiable}
if 1 found then

[k+k+l;
avzplifi(k, A, D);

i_limit + #paths(up(D)); i + 1]
endwhile;

return( 44’4’)

end;

423

14. Conclusion and Further Work

We have generalized Andrews and Bibel’s method of matings to first-order

languages with equ~lity. This new met~od is sound and complete, and uses a

decidable form of E-unification, rigid E-unificatQn. We have shown that both

rigid E-unification and finding whether a pair (E, S ) is an equational premat-

ing ar~NP-complete problems. We also have shown that finite complete sets of

rigid E-unifiers always exist. Theorem 12.13 has important implications regard-

ing the computational complexity of theorem proving for first-order languages

with equality using the method of matings. It shows that there is an algorithm

for finding equational matings, but not only is the problem of deciding whether

an equational mating is p-acceptable co-NP-complete, the problem of deciding

that a family of mated sets is an equational mating is NP-complete. For

languages without equality, the first problem is still co-NP-complete, but the

second can be solved in polynomial time using standard unification, and in fact

in linear time.

It is essential to find ways of trimming the search space of order assignments

if we want the method to be practical. When a reduction ordering ~ is

available and all subterms in 8,’ are ordered by ~ , ~, is completely deter-

mined. It would be interesting to investigate subcases where order assignments

can be found quickly. An actual implementation of the refutation procedure

would also be interesting, as well as a comparison with other methods, those

based on Knuth-Bendix completions in particular. The above questions are

left for further research.

Appendix. Proof of the Skolem –Herbrand-Godel Theorem

In this section, we give a semantic proof of the Skolem–Herbrand–Godel

theorem, in the line of Andrews’s proof [1, 2]. The proof relies on two

properties:

(1) If every c-instance of a universal sentence A in nnf is satisfiable, then the

set of all c-instances of A is satisfiable. This follows from an easy
application of the compactness theorem, as in Andrews [1, 2].

(2) If a universal sentence in nnf (with equality) is valid in some model M, then

it is valid in some model % whose domain is the quotient of the Herbrand

universe by some congruence.
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For languages without equality, property (2) is simpler. If a sentence is valid

in some model, then it is valid in some Herbrand model, and there is no need

for a quotient construction. We now proceed with the proofs.

LEMMA Al. Let A be a universal sentence in nnf. If el~ey c-instance of A is

satisfiable, then the set of all c-instances of A is satisfiable.

PROOF. First, we use the fact proved in Andrews [1, Lemma 1] or Gallier

[17, Lemma 7.6.1], that for any two c-instances K and L of A, there is some

c-instance D of A such that 1= D 2 (K A L). Then, assume that every

c-instance of A is satisfiable. For every finite set {Kl, ..., K.} of c-instances of

A, using the above property n – 1 times, we have some c-instance K of A,

such that, = K n (Kl A ““. A Kn). Since every c-instance of A is satisfiable,

the set {K,,. ... K,,} is satisfiable. By the compactness theorem, the set of all

c-instances of A is satisfiable. ❑

LEMMA A2. Consider a first-order language with equality haling at least one

constant. Given a sentence A in negation normal form and not containing

existential quantifiers, if A is satisfied in some structure, then A is satisfied in some

structure whose domain is the quotient of the Herbrand uniljerse HT by some

congruence = .

PROOF (SKETCH). Assume that M i= A, for some structure M. Let %7 be

the initial algebraly generated by the constant and function symbols in the

language (whose domain is the Herbrand universe HT). Let h be the unique

algebra homomorphism h: 2?7+ M defined such that:

For every constant c, h(c) = CM;

For every function symbol f of rank n >0, for any n terms t,,...,tn

E HT,

h(ftl, . . ..t~) =f~(h(tl ),..., h(t~)).

It is immediate by the definition of h that for every term t G HT, tM = h(t).

Let = be the kernel of the homomorphism h, that is, the relation on HT

defined such that, for all s, t G HT, s = t iff h(s) = h(t). It is well known

that = is a congruence on 27222 Observe that s = t iff M I= (s + t),since

s~ = h(s) and tM = h(t). Let Y? be the quotient algebra 2=/= . Since

= = kernel(h), there is a unique homomorphism ~: Z -+ M, such that

h(t) = h(t), for every i E HT/= .

We make% into a structure as follows: For each predicate symbol P of rank n,

for any n equivalence classes of term ~,. . . . ~ 6 HT/ = ,

PW(~,. . . . E) = true iff ~M(h(tl ),. ... h(t~)) = true.

Note that for every t E HT, we have

tM =72(;),

since ~(i) = h(t) and tM = h(t).

Given a formula ~ with set of free variables {xl,.. ., x.}, and a structure M,
for any n-tuple (ml, . . ..m.l) ● M“, M l= A[ml, . . ..m~] means that M +
A[s] for any assignment s such that s(x, ) = m,, for 1 s i s n. (It is well

1’ For details on algebras and homomorphisms, see Gallier [17].
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known Gallier [17] that A ~[s] only depends on the restriction of s to

$; “fo~mulas:
x.}) The following properties can be proved by induction on terms

(1) ~or evgy term t with free variables {xl,..., x.}, for every n-tuple,

t t GHT/=,1>...,,,
—

tx(tl , . . . Z) =@l>..., ,, ]“t /xn ,

(2) For every atomic formula B (including the case of an equation) with free—
variables {xl, ..., x~}, for every n-tuple, tl,...,~GHT/=

%EB[~,..., ~] iff % =B[tl/xl, . . ..tJ]. ].

Using induction on formulas, we shall establish the following claim:

Claim. For every formula X in negation normal form and not containing

any existential quantifiers, for every assignment a: v+ HT/ = , if M +

X[a o i], then% I= X[a]. The proof is similar to that in Gallier [17].

Proof of claim. We proceed by induction on formulas.

(i) First, assume that X is an equation (s + t), with set of free variables

{xl,..., x.}, and that for some n-tuple (tl,...,t,,) G HTn, we have

M i= (s + t)[i(;),...,~(;)].

Since for every t G HT, t~ = h(t), we have

(SM z(~),..., ~(iJ)=SM((tI )M,..., (t,l)M)

= (s[tI/xl,..., t,,/x,Z])M and

‘M(x(~)’”””’ ~(z)) = tM((~l)M7” ””9(Ll)M)

= (t[t,/x~,. -., txn])M)M.

Hence, the hypothesis M + (s ~ t)[~(~),...,~(~)1 is equivalent to

M I= (s[tl/xl,.. .,tFx,l]l] + t[tl/xl,... >t~\%, ]).

By the definition of = , this shows that

[s tl/x~, . . . >Wl] = ++%. ! tn/x,,].

Since for every <,. ..,< E HT/ Y , we have

[s%(;, . . ..iJ=stxl.l, ..., tn/x,L] and

t%(i,....q = t[tl/’xl, . . ..tn\x.J,

by (*), we have shown that

(*)

M 1= (S = t)[i(~),..., i(~)l ;]iff Wi=(s=t)[;,. ...n .
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(ii) If X= l?s, . . ..sm. with set of free variables {xl, ..., x,,}, we have

‘x~((f~)~,...$(tn)M)

= (x[t,/’x,, . . . . f,*/’x,, ])M

= (Psl[tl/xl,..., fxn],],sm[tlmxl, /,tn..., tn/ln])M
=PM((sl[tl\x,,. ... tn/xn])M,. ... (s,n[tl/xl, . . .. f., /x,*])M)

-P~(h(sl[tl/xl,. ... tn/xn]), . ..3h(sm[fl/xl . . ..>~n/x.tl)).—

and

Xy(; ,. ..,;) = (x[t~/xl >.. .>~n\xnl)fl

= (Ps[[tl,h,,..., tn/xn],...>sm[t~,,~>~,t.xnl)Jrnl)Jr
=~7((s1[t1/x1,..., tn/xn])%,..., (s,n[tl/xl,... >t,,/x,L])%)

—Pz(sl[v.l>....m],. ..>%[fl+fl>....W] ].

Since for any n terms fi,.. ., ~ E HT/ = ,

P’(;, . . . .~) = true iff PM(k(rl), . . ..h(r., )) = true,

then

%%x[~,..., ~] iff M RX[li(~),..., i(~)].

(iii) If X = = B, where B is an atomic formula, the result holds because we

have shown equivalences in (i) and (ii).

(iv) If X is of the form (B ~ C), then M E X[a oi] implies that

MkB[ao~] and M ~ c[a Ok].

By the induction hypothesis,

W!= B[a] and Y?YR C[a],

that is, %’ I= X[a].

(v) If X is of the form (B V C), then the proof is similar to case (iv).

(vi) X is of the form 2xB. This case is not possible since X does not contain

existential quantifiers.

(vii) X is of the form VXB. If M 1=X[a 0~], then for every m = M,

M ~B[(a oZ)[x:= m]].

(Given an assignment a, the notation a[x := m] denotes the ass~nment a‘
such that a.’(x) = m, and a’(y) = a(y) for all y # x). Now, since h: W + M,
for every i = H, ~(i) = M, and so, for every i c H,

M i= B[(a oz)[.x:= z(i)]], that is, M +B[(a[x:= i]) OZ].

By the induction hypothesis, fl 1= B[a[x:= i]] for all t e ~, that is, % % X[a].

This concludes the proof of the claim. ❑
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From the claim, since M is a model of A, we have shown that 2 is a model

of A. •1

It is clear that Lemma A2 also holds for sets of universal sentences in nnf.

Finally, we prove the Skolem–Herbrand–Godel theorem.

THEOREM 5.2. Given a universal sentence A in nnf, A is unsatisfiable iff some

c-instance C of A is unsatisfiable.

PROOF. First, assume that some compound instance c is unsatisfiable. It is

straightforward to show that R A ~ C (see Gallier [17, Theorem 7.6.11).

Hence, A is unsatisfiable.

To establish the converse, we prove its contrapositive: If every c-instance of

A is satisfiable, then A is satisfiable.

Since every c-instance of A is satisfiable, by Lemma Al, the set of all

c-instance of A is satisfiable. By Lemma A2 (extended to sets of sentences),

the set of all c-instances is valid in some structure X whose domain is the

quotient of the Herbrand universe HT by some congruence = . We prove by

induction on the structure of A that A is valid in 2?.

Case 1. A is a literal. Then, A is the only c-instance of A, and the result

holds sinces is a model of all c-instances of A.

Case 2. A = (B A C). Let K be a c-instance of B, and L be a c-instance

of C. Then, (K A L) is a c-instance of A. Since% is a model of all c-instances

of A, we have % != (K A L), that is, since K and L are ground formulas,

% I= K and x R L. By the induction hypothesis, 27 t= B and & E C, which,

since A is a sentence, implies that & I= A.

Case 3. A = (B v C). We claim that either ~ is a model of all c-

instances of B, or that ~ is a model of all c-instances of C. Indeed, if this was

not the case, there would be some c-instance K of B and some c-instance L of

C such that% & B and%’ w C. However, since (K V L) is a c-instance of A,

we would have EY !# (K V L), contradicting the fact that 7? is a model of all

c-instances of A. Thus, by the induction hypothesis, either Yf’ * B or 7 != C,

which, since A is a sentence, implies that W 1=A.

Case 4. A = VXB. Let t be any (ground) term in HT. Every c-instance of

B[t/x] is a c-instance of A, and since%’ is a model of every c-instance of A, by

the induction hypothesis, we have & > B[ t/x]. However, in the proof of

Lemma A2, we have shown:

Fact. For every atomic formula B (including the case of an equation) with—
free variables {xl,. ... x.}, for every n-tuple, tl,...,<= HT/=,

By a straightforward induction on formulas almost identical to the proof of the
claim in Lemma A2, we can generalize the above fact to any universal formula

B in nnf. But then, W = B[t/x] iff # + B[i ], where [i] denotes any assignment

S[X: = i] such that s(x) = i. Hence, for every i = HT, we have % > B[i], and

by the semantics of quantifiers, this means that & 1= VXB. Therefore, X R A,

as desired. ❑
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