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1. INTRODUCTION

Rigid E-unification is a restricted kind of unification modulo equational
theories, or E-unification, that arises naturally in extending Andrews’
theorem proving method of matings to first-order languages with equality
[1]. This extension was first presented by Gallier, Raatz, and Snyder [10],
who conjectured that rigid E-unification is decidable. In this paper, it is
shown that rigid E-unification is NP-complete and that finite complete sets
of rigid E-unifiers always exist. These results were announced (without
complete proofs) at LICS’88 [12].

We now explain why this result is significant for theorem proving in first-
order languages with equality. At first glance, a generalization of the
method of matings to first-order languages with equality where equality is
built-in in the sense of Plotkin [26] (thus, it is not the naive method where
explicit equality axioms are added, which is rejected for well-known
inefficiency reasons) requires general E-unification. Hence, there are two
factors contributing to the undecidability of the method of matings for
first-order languages with equality: (1) the fact that one cannot predict how
many disjuncts will occur in a Herbrand expansion (which also holds for
first-order languages without equality); (2) the undecidability of the kind of
unification required (E-unification). However, we have shown in [10, 13]
that the completeness of the method of equational matings is preserved if
unrestricted E-unification is replaced by rigid E-unification. Since we prove
in this paper that rigid F-unification is decidable, the second undecidability
factor is eliminated. This is the main reason why our result is significant.

The NP-completeness of rigid E-unification also shows clearly how the
presence of equality influences the complexity of theorem proving methods.
For languages without equality, one can use standard unification whose
time complexity is polynomial, and in fact O(n). For languages with
equality, the type of unification required is NP-complete.

Before launching into rigid E-unification, let us recall how it arises
naturally in generalizing the method of matings to first-order languages
with equality. For details, the reader is referred to Gallier, Raatz, and
Snyder [10], and Gallier, Narendran, Raatz, and Snyder [13]. The crucial
observation due to Andrews is that a quantifier-free formula without
equality is unsatisfiable iff certain sets of literals occurring in 4 (called
vertical paths) are unsatisfiable. Matings come up as a convenient method
for checking that vertical paths are unsatisfiable. Roughly speaking, a
mating 1s a set of pairs of literals of opposite signs (mated pairs) such that
all these (unsigned) pairs are globally unified by some substitution. The
importance of matings stems from the fact that a quantifier-free formula 4
has a mating iff there is a substitution 8 such that 6(A4) is unsatisfiable. For
languages without equality, this can be checked using standard unification.
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In the case of languages with equality, one needs to extend matings to
equational matings, which is nontrivial and requires proving a generaliza-
tion of Andrews’ version of the Skolem~Herbrand-Gddel theorem [1, 2].
An equational mating is now a set of sets of literals (mated sets), where a
mated set consists of several positive equations and a single negated equa-
tion (rather than pairs of literals as in Andrews’ case). Checking that a
family of mated sets is unsatisfiable, i.e., an equational mating, is equivalent
to the following problem.

PrROBLEM 1. Given E={E;|1<i<n} a family of » finite sets of
equations and S= {{u;, v,>|1 <i<n} a set of n pairs of terms, is there a
substitution 8 such that, treating each set §(E,) as a set of ground equations
(i.e., holding the variables in (E,;) “rigid”), 8(u;) and 6(v,} are provably
equal from 6(E,) for i=1, .., n?

Equivalently, is there a substitution 6 such that (x,) and 6(v;) can be
shown congruent from 6(E;) by the congruence closure method for
i=1,..,n (Kozen [19, 20], Nelson and Oppen [24], Downey, Sethi, and
Tarjan [8])?

A substitution @ solving problem 1 is called a rigid E-unifier of S, and a
pair (E, S such that S has some rigid E-unifier is called an equational
premating. 1t is shown in Section 10 that deciding whether a pair {E, S)
is an equational premating is an NP-complete problem. Since the problem
of deciding whether a family of mated sets forms an equational mating is
equivalent to the problem of finding whether a pair {E, S) is an equa-
tional premating, the former problem is also NP-complete.! Actually, this
result is an easy extension of a simpler problem, and we now focus on this
problem.

PrROBLEM 2. Given a finite set E= {u, = v, .., u, = v,} of equations
and a pair (u, v) of terms, is there a substitution & such that, treating 0(E)
as a set of ground equations, 0(u) ég(E)H(U), that is, 8(u) and O(v) are
congruent modulo 6(E) (by congruence closure)?

The substitution @ is calied a rigid E-unifier of u and v.

ExampLE 1.1. Let E={fa = a, ggx = fa}, and <u,v)={gggx, x).
Then, the substitution 6 = [ga/x] is a rigid E-unifier of » and v. Indeed,
O(E)={fa = a, ggga = fa}, and 6(gggx) and (x) are congruent modulo
0(E), since

0(gggx)=gggga — gfa using ggga = fa
— ga=0(x) using fa = a.

' We chose the terminology equational premating because an equational mating is an
equational premating satisfying some extra properties; see [10] or [13].
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Note that 6 is not the only rigid E-unifier of # and v. For example, [ gfa/x]
or more generally [ gf"a/x] is a rigid E-unifier of ¥ and v. However, 0 is
more general than all of these rigid E-unifiers (in a sense to be made
precise later). It is shown in Section 8 that there is always a finite set of
most general rigid E-unifiers called a complete set of rigid E-unifiers.

It is interesting to observe that the notion of rigid E-unification arises by
bounding the resources, in this case, the number of available instances of
equations in E. To be precise, only a single instance of each equation in £
can be used, and in fact, these instances 0(u, = v,), .., 8w, = v,) must
arise from the same substitution 6. Also, once these instances have been
created, the remaining variables (if any) are considered rigid, that is,
treated as constants, so that it is not possible to instantiate these instances.
Thus, rigid E-unification and Girard’s linear logic [14] share the same
spirit. Since the resources are bounded, it is not too surprising that rigid
E-unification is decidable, but it is not obvious at all that the problem
is in NP. The special case of rigid E-unification where E is a set of ground
equations has been investigated by Kozen [19, 201, who has shown that
this problem is NP-complete. Thus, rigid E-unification is NP-hard, and we
will show that it is also in NP, hence NP-complete.

Suppose we want to find a rigid E-unifier € of ¥ and v. Roughly, the idea
is to use a form of unfailing completion procedure (Knuth and Bendix
[18], Huet [16], Bachmair [3], Bachmair, Dershowitz, and Plaisted [4],
Bachmair, Dershowitz, and Hsiang [5]). In order to clarify the differences
between our method and unfailing completion, especially for readers
unfamiliar with this method, we briefly describe the use of unfailing
completion as a refutation procedure. For more details, the reader is
referred to Bachmair [3].

Let E be a set of equations, and > a reduction ordering total on ground
terms. The central concept is that E is ground Church-Rosser w.r.t. > . The
crucial observation is that every ground instance o(/) = o(r) of an equa-
tion / = re E is orientable w.r.t. >, since >is total on ground terms. Let
E™ be the set of all instances o(/) = o(r) of equations / = re EU E ' with
o(l)>=o(r) (the set of orientable instances). We say that E is ground
Church—Rosser w.r.t. > iff for every two ground terms u, v, if u <%, v, then
there is some ground term w such that « % . w and w < 2~ v. Such a proof
is called a rewrite proof.

An unfailing completion procedure attempts to produce a set £ equiv-
alent to E and such that £* is ground Church-Rosser w.r.t. >. In other
words, every ground equation provable from E has a rewrite proof in £~
The main mechanism involved in the computation of critical pairs. Given
two equations /; = r, and /, = r, where /, is unifiable with a subterm /,/f
of /, which is not a variable, the pair {o(/,[f —r,]), o(r;)) where o is a
mgu of /,/f and [, is a critical pair.
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If we wish to use an unfailing completion procedure as a refutation
procedure, we add two new constants 7 and F and a new binary function
symbol eq to our language. In order to prove that E+ u = v for a ground
equation u = v, we apply the unfailing completion procedure to the set
Eu {eq(u,v) = F, eq(z,z) = T}, where z is a new variable. It can be
shown that E+— u = v iff the unfailing completion procedure generates the
equation F = T. Basically, given any proof of F = T, the unfailing comple-
tion procedure extends £ until a rewrite proof is obtained. It can be shown
that unfailing completion is a complete refutation procedure, but of course,
it is not a decision procedure. It should also be noted that when unfailing
completion is used as a refutation procedure, E® is actually never
generated. It is generated “by need,” until F = T turns up.

We now come back to our situation. Without loss of generality, it can
be assumed that we have a rigid E-unifier 6 of T and F such that 6(F) is
ground. In this case, equations in §(E) are orientable instances. The crucial
new idea is that in trying to obtain a rewrite proof of F = T, we still
compute critical pairs, but we never rename variables. If I, 1s equal to [,/f,
then we get a critical pair essentially by simplification. Otherwise, some
variable in /, or in /, becomes bound to a term not containing this variable.
Thus the total number of variables in £ keeps decreasing. Therefore, after
a polynomial number of steps (in fact, the number of variables in E) we
must stop or fail. So we get membership in NP. Oversimplifying a bit, we
can say that our method is a form of lazy unfailing completion with no
renaming of variables.

However, there are some significant departures from traditional Knuth-
Bendix completion proceddures, and this is for two reasons. The first
reason is that we must ensure termination of the method. The second is
that we want to show that the problem is in NP, and this forces us to be
much more concerned about efficiency.

Our method can be described in terms of a single transformation on
triples of the form (%, &, ¢ >, where ¥ is a unifiable set of pairs, & is a
set of equations, and ¢ is something that will be needed for technical
reasons and can be ignored for the present. Starting with an initial triple
(%, &, Oy initialized using E and u, v (except for ¢, that must be
guessed), if the number of variables in E is m, one considers sequences of
transformations

<'%a éﬂOs C()O> :+<*ij édk’ (g(>a

consisting of at most k < m steps. It will be shown that « and » have some
rigid E-unifier iff there -is some sequence of steps as above such that the
special equation F = T is in &, and %, is unifiable. Then, the most general
unifier of % is a rigid E-unifier of ¥ and v.
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Roughly speaking, &,,, is obtained by overlapping equations in &,
(forming critical pairs), as in unfailing Knuth-Bendix completion proce-
dures, except that no renaming of variables takes place. In order to show
that the number of steps can be bounded by m, it is necessary to show that
some measure decreases every time an overlap occurs, and there are two
difficulties. First, the overlap of two equations may involve the identity
substitution when some equation simplifies another one. In this case, the
number of variables does not decrease, and no other obvious measure
decreases. Second, it is more difficult to handle overlap at variable
occurrences than it is in the traditional case, because we are not allowed
to form new instances of equations.’

The first difficulty can be handled by using a special procedure for
reducing a set of (ground) equations. Such a procedure is presented by
Gallier ef al. [11] and runs in polynomial time. Actually, one also needs
a total simplification ordering < on ground terms, and a way of orienting
equations containing variables, which is the purpose of the mysterious
component ¢. The second difficulty is overcome by noting that one needs
only consider ground substitutions, that the ordering < (on ground terms)
can be extended to ground substitutions, and that given any rigid E-unifier
0 of u and v, there is always a least rigid E-unifier o (w.r.t <) that is equiv-
alent to € (in a sense to be made precise).

Other complications arise in proving that the method is in NP; in
particular, we found it necessary to represent most general unifiers (mgu’s)
by their triangular form (see Definition 3.3), as in Martelli and Montanari
[22].

We now give an outline of the paper. Section 2 contains background
material consisting of a summary of definitions and results needed in this
paper. In Section 3, the representation of mgu’s in triangular form is
reviewed. In Section 4, some preorders on substitutions and complete sets
of rigid E-unifiers are defined. The existence of minimal rigid E-unifiers is
shown in Section 5. The procedure for reducing a set of (ground) equations
and the notion of order assignment (the ¢’s) are given in Section 6. The
method for finding complete sets of rigid E-unifiers and two examples are
given in Section 7. The soundness, completeeness, and decidability of the
method are shown in Section 8. The NP-completeness of rigid F-unification
is shown in Section 9. In Section 10, the decision procedure for rigid
E-unification is extended to equational prematings. It is shown that finding
prematings is NP-complete. Section 11 is the conclusion, and further work
is briefly discussed.

2 We realize that only readers intimately familiar with completion procedures will under-
stand this problem. Other readers should move on. We hope that this point will become clear
during reading of the proof of Theorem 8.2.
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2. PRELIMINARIES

In order that this paper be self-contained, a summary of the basic
definitions and results used is given in this section. These are basically
consistent with [17, 9]. We begin with the basic algebraic notions of trees
and substitutions.

DerFINITION 2.1, Let N be the set of natural numbers. A ranked alphabet
is a set 2’ with an associated function arity: 2 — N assigning a rank or arity
n to each symbol fin 2. We denote the set of symbols of arity #» by X,.
(For example, the set of constants is just X;.)

DeriNiTION 2.2, Let N denote the set of positive natural numbers.
A tree domain D is a nonempty subset of strings in N* satisfying the
conditions:

(1) For all o, fe N*, if afe D then xe D.

(iif) For all «aeN*, for every ieN,, if aie D then, for every j,
1<j<i, gjeD.

DeriNITION 2.3. Given a ranked alphabet X, a X-tree (or term) is any
function t: D — X, where D is a tree domain denoted by Dom(¢) and if
aeDom(t) and {i|aie Dom(t)} = {1, .., n}, then arity(¢(x)) =n. We shall
denote the symbol t(¢) by Root(t). Given a tree ¢ and some tree address
aeDom(t), the subtree of t rooted at o is the tree, denoted t/a, whose
domain is the set {f|afe Dom(¢)} and such that t/a(B)=t(af) for all
B e Dom(t/a). Given two trees ¢, and t, and a tree address « in ¢, the result
of replacing t, at  in ¢, denoted by r,[a«t,], is the function whose
graph is the set of pairs {(f, #,(8))| f € Dom(r,), « is not a prefix of B} U
{(aB, 1,(8))| B Dom(1,)}.

The set of all finite trees is denoted by T',.. Given a countably infinite set
of variables X = {x,, x,,...}, we can form the set of trees T<(X) by adjoin-
ing the set X to the set 2'y. Thus, T-(X) is the set of all terms formed from
the constant and function symbols in X and the variables in X.

We shall denote the deprh of a term ¢, i.e., the length of the longest path
in ¢ (or, equivalently, the length of the longest string in Dom(t)), by |1].
For example, |f(a)] =1 and |c¢| =0. The size of a term ¢ is the number of
addresses in Dom(r), and it is denoted by size(r). The set of variables
occurring in a term ¢ is the set

Var(r) = {x e X|#(x) = x for some a € Dom(r)}.

Any term ¢ for which Var(t)= (¥ is called a ground term.
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In the rest of this paper, we use the letters a, b, ¢, and d to denote
constants; f, g, and /& to denote functions;, /, r, s, t, u, v, and to denote
terms; and o, 8, and y to denote tree addresses.

In order that T.(X) be nonempty, we assume that X, u X # . Thus
Ts(X) is the free Z-algebra generated by X. This property allows us to
define substitutions.

DEFINITION 2.4. A substitution is any function 0: X — T-(X) such that
f(x) # x for only finitely many x € X. Since T (X) is freely generated by X,
every substitution 0: X' —» T,(X) has a unique homomorphic extension
0: T (X) = T(X). In the sequel, we will identify 6 and its homomorphic
extension .

DrrFINITION 2.5. Given a substitution o, the support (or domain) of ¢ is
the set of variables D(o)= {x|o(x)#x}. A substitution whose support is
empty is termed the identity substitution, and is denoted by Id. The set of
variables introduced by o is (o) =) . p(,, Var(a(x)). Given a substitution
o, if its support is the set {x,, .., x,}, and if t,=¢a(x,) for 1 <i<n, then ¢
is also denoted by [¢,/x,, .., 7,/x,]. Given a term r, we also denote o(r) as
rlt/xy, . t,/x,]. The restriction of a substitution 6 to some V, denoted
8|, is the substitution €’ such that

8/()():{9()(), if xelV;
X, otherwise.

DEerFINITION 2.6. The composition of ¢ and 6 is the substitution denoted
by o; 6 such that for every variable x we have ¢; 0(x)=60(c(x)). Given a
set V' of variables, we say that two substitutions ¢ and 6 are equal over V,
denoted o =0[ V] iff Yxe V, o(x)=0(x). We say that ¢ is more general
than O over V, denoted by o < O[ V], iff there exists a substitution #n such
that 6 =0; #[V]. When V=X (where X is the set of variables), we will
drop the notation [ V]. A substitution ¢ is idempotent if 6; 6 = 6. It is easily
seen that ¢ is idempotent iff D(o)n I(o)= . Given two disjoint sets of
variables {x,, .., x,} and {y,, .., y,}, the substitution [ y,/x,, .., v./X,] is
called a renaming.

We now proceed to review the basic notions of relations, orderings, and
equational rewriting.

DerINITION 2.7 Let = be a binary relation= < 4 x 4 on a set 4. The
transitive closure of =is denoted by =" and the reflexive and transitive
closure of = by =>*. The converse (or inverse) of the relation = is the rela-
tion denoted as = ! or <=, defined such that u < v iff v = u. The symmetric
closure of =, denoted by <, is the relation = U <.



RIGID E-UNIFICATION 137

DErFINITION 2.8. A relation > on a set A is Noetherian or well founded
iff there are no infinite sequences {ayq, ..., @,,d,,,--» Of elements in A4
such that a,>a,,, for all n>0.}

DEFINITION 2.9. A preorder < on a set A4 is a binary relation
< € A x A that is reflexive and transitive. A partial order < on a set A4 is
a preorder that is also antisymmetric. The converse of a preorder (or
partial order)=(is denoted as >>. A strict ordering (or strict order)<on a
set A is a transitive and irreflexive relation. Given a preorder (or partial
order)=<{on a set A4, the strict ordering < associated with <{is defined such
that s<1 iff s<Xr and r L 5. Conversely, given a strict ordering <, the
partial ordering < associated with < is defined such that s=<Criff s<¢ or
s=1t The converse of a strict ordering < is denoted as >. Given a
preorder (or parrtial order) <, we say that < is well founded iff > is well
founded.*

DerFmNITION 2.10. Let — be a binary relation - € T(X)x Tx(X) on
terms. The relation — is monotonic iff for every two terms s, ¢ and every
function symbol f, if s—¢ then f(..s,..)>f(.., 1 ..). The relation —is
stable (under substitution) if s—¢ implies o(s)—o(t) for every substitution a.

DerNITION 2.11. A strict ordering < has the subterm property iff
s<f(..,s,..) for every term f(..., s, ..) (since we are considering symbols
having a fixed rank, the deletion property is superfluous, as noted by
Dershowitz [7]). A simplification ordering < is a strict ordering that is
monotonic and has the subterm property. A reduction ordering < is a strict
ordering that is monotonic, stable, and such that > is well founded. With
a slight abuse of language, we will also say that the converse > of a strict
ordering < is a simplification ordering (or a reduction ordering). It is
shown by Dershowitz [7] that there are simplification orderings that are
total on ground terms.

> We warn the readers that this is not the usual way of defining a well-founded relation in
set theory, as, for example, in Levy [21]. In set theory, the condition is stated in the form
G, <a, for all 20, where < = > "' It is the dual of the condition we have used, but
since < = > !, the two definitions are equivalent. When using well-founded relations in the
context of rewriting systems, we are usually interested in the reduction relation => and the fact
that there are no infinite sequences {ag, .., a,, a,,,..» such that a,=a,,, for all n>0.
Thus, following other authors, including Dershowitz, we adopt the dual of the standard
set-theoretic definition.

* Again, we caution our readers that in standard set theory it is < that is well founded!
However, our definition is equivalent to the standard set-theoretic definition of a well-founded
partial ordering.
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DerFiNITION 2.12. Let E< T5(X) x Tx(X) be a binary relation on terms.
We define the relation «, over T, (X) as the smallest symmetric, stable,
and monotonic relation that contains E. This relation is defined explicitly
as follows: Given any two terms 7, 1,€ Tx(X), then 1, <. ¢, iff there is
some variant® (s, 7) of a pair in Eu E~!, some tree address o in z,, and
some substitution o, such that

tjo=o(s) and t,=t{a<oa(1)].

(In this case, we say that ¢ is a matching substitution of s onto ¢,/a. The
term f,/o is called a redex.) Note that the pair (s, 7) is used as a two-way
rewrite rule (that is, nonoriented). In such a case, we denote the pair (s, 1)
as s =t and call it an equation. When t, <> ,, we say that we have an
equality step. It is well known that the reflexive and transitive closure <%,
of < is the smallest stable congruence on T's(X) containing E. When we
want to fully specify an equality step, we use the notation

Ly ras=r0112

(where some of the arguments may be omitted). A sequence of equality
steps

USUg gy Opee Oplly O pU, =0

is called a proof of u & . v.

DEerFINITION 2.13.  Given a finite set E of equations (ground or not), we
say that E is treated as a set of ground equations iff for every pair of terms
u, v (ground or not), for every proof of u <% . v, then for every equality
Step S>[,/=,. ! in this proof, ¢ is the identity substitution and
! =reEUE"! (no renaming of the equations in Eu E ! is performed).
This means that variables are treated as constants. We use the notation
u U to express the fact that u <% , v, treating E as a set of ground equa-
tions. Equivalently, u 2 £ U iff u and v can be shown congruent from E by
congruence closure (Kozen [19,20], Nelson and Oppen [24], Downey,
Sethi, and Tarjan [8]) again, treating all variables as constants—they are
considered rigid.

DErFINITION 2.14. When a pair (s, t) € E is used as an oriented equation
(from left to right), we call it a rule and denote it as s — 1. The reduction
relation — ;. is the smallest stable and monotonic relation that contains E.
We can define ¢, — . ¢, explicitly as in Definition 2.12, the only difference

> A pair (s,t) is a variant of a pair (u, v)e E iff there is some renaming p with domain
Var(u) u Var(v) such that s= p(u) and 7 = p(v).
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being that (s, ) is a variant of a pair in E (and not in EUE 1), When
t, = 5 t,, We say that ¢, rewrites to t,, or that we have a rewrite step. When
we want to fully specify a rewrite step, we use the notation

I P lassna 2

(where some of the arguments may be omitted).

When Var(r)< Var(/), then a rule /- r is called a rewrite rule; a set of
such rules is called a rewrite system. A degenerate equation is an equation
of the form x = 1, where x is a variable and x ¢ Var(¢), and a nondegenerate
equation is an equation that is not degenerate.

DEFINITION 2.15. Let » =T (X)xTx(X) be a binary relation on
T, (X). We say that — is Church-Rosser iff for all 1,, 1, € T (X), if t; <5 1,,
then there is some t;€ Tx(X) such that 7, % ¢y and 1, % ¢,. We say that
— is confluent iff for all t, t,, t,e T, (X), if t % ¢, and 1 % 1,, then there
is some t;€ T, (X) such that t; 5 ¢, and 1, % 1,. A term s is irreducible
w.r.t. — iff there is no term 7 such that s > 1.

Given a set R of rewrite rules, we say that R is reduced iff

(1) no left-hand side of any rewrite rule / — re R is reducible by any
rewrite rule in R— {/—>r};

(2) no right-hand side of any rewrite rule /— re R is reducible by
any rewrite rule in R.

Given two sets R and R’ of rewrite rules, we say that R and R’ are
equivalent iff for every two terms u and v, u <5 v iff u <5 4 0.

It is well known that a relation is confluent iff it is Church—Rosser [16].
We say that a rewrite system R is Noetherian, Church-Rosser, or con-
fluent, iff the relation — . associated with R given in Definition 2.14 has the
corresponding property. We say that R is canonical iff it is Noetherian and
confluent.

3. MosT GENERAL UNIFIERS IN TRIANGULAR FORM

We now review the fundamental notion of a unifier and some of its basic
properties. It is convenient to discuss unification in the framework of term
systems, as in Martelli and Montanari [22], and already anticipated by
Herbrand in his thesis [15].

DEeFINITION 3.1. A term pair (or pair) is just a pair of two terms,
denoted by (s, r), and a substitution 6 is called a unifier of a pair (s, 1>



140 GALLIER ET AL.

if 0(s)=0(tr). A term system (or system) is a set of such pairs, and a
substitution 6 is a unifier of a system if it unifies each pair.

DerFINITION 3.2. A substitution o is an (idempotent) most general
unifier, or mgu, of a system S iff

(i) D(o)< Var(S) and D(c)nI(c)= & (g is idempotent);
(1) o is a unifier of S;
(ii1) for every unifier 8 of S, ¢ <8 (that is, 8 =g, n for some ).

In order to show that our decision procedure is in NP, we will need the
fact that if two terms » and v are unifiable, a mgu of v and v can be
represented concisely in triangular form (the size of this system is linear in
the number of symbols in u and v). This result can be obtained from the
fast method using muiltiequations of Martelli and Montanari [22] or the
fast method using the graph unification closure of Paterson and Wegman
[25].

DErFINITION 3.3. Given an idempotent substitution o (ie., D(o)n
I(6) = &) with domain D(¢)= {x,, .., x,}, a triangular form for ¢ is a
finite set T of pairs <{x, ), where xe D(o) and ¢t is a term, such that this
set T can be sorted (possibly in more than one way) into a sequence
Xy Dy e {Xg» £ satisfying the following properties: for every i,
1<igk,

(1) {x;, ., x;}nVar(t;)=, and
(2) o=1[t)/x ] [te/xc ]

The set of variables {x,,.., x,} is called the domain of T. Note, in
particular, that x,¢ Var(t;) for every i, 1 <i<k, but varnables in the set
{Xi 41> X} may occur in t,, .., t,.

By successively eliminating the variables x,, xs, ..., x;, it is easily seen
that ¢ is an (idempotent) mgu of the term system 7. As a consequence, if
o is an idempotent mgu of a system S, and T is a triangular form for o,
the systems .S and T have exactly the same set of unifiers (because o is a
mgu of both S and 7).

ExampLE 3.4. Consider the substitution o = [ f(f(x;, X3), f(x3, X3))/%,,

f(x3, x3)/x,]. The system T={{x,,f(x;,x)>, {x5,f(x3,%35)>} is a
triangular form of o since it can be ordered as {<x,,f(x,,x;)),

{xy, flx3,x3)0 > and o= [ f(xy, x5)/x,1; [f (x5, x3)/x,].

The triangular form 7= {{x,, 1, ), ..., {x, f; >} of a substitution ¢ also
defines a substitution, namely ¢,=[t,/x,, .., tx/x,]. This substitution is
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usually different from ¢ and not idempotent as can be seen from Example
3.4. However, the substitution plays a crucial role in our decision proce-
dure because of the following property.

LEMMA 3.5. Given a triangular form T= {{x, 1), ... {Xp, 8>} for a
substitution ¢ and the associated substitution o= [1,/x|, ..., L/Xs ], for every
unifier 0 of T, 0=0,; 0.

Proof. Since 0 is a unifier of T, we have 0(x,)=0(t;)=0(o(x;)) for
every i, 1 <i<k. Since a(y)=y forall y¢ {x,, ., x},0=0,;6 holds. |

Another important observation about ¢, is that even though it is usually
not idempotent, at least one variable in {x, .., x,} does not belong to
I(o ;) (otherwise, condition (1) of the triangular form fails). We will assume
that a procedure TU is available, which, given any unifiable term system S,
returns a triangular form for an idempotent mgu of S, denoted by TU(S).
When S consists of a single pair {u,v)>, TU(S) is also denoted by
TYU(u, v).

4. CoMPLETE SETS OF RIGID E-UNIFIERS
We begin with the definition of a rigid E-unifier.

DerFINITION 4.1. Let E={(s; =1¢,), .., (s,, = ¢,)} be a finite set of
equations, and let Var(E)= ), = . Var(s = t) denote the set of variables
occurring in E® Given a substitution 6, we let O(E)=
{0(s;, = 1,)|s; = 1,€ E, 0(s;)#6(t;)}. Given any two terms u and v,’ a
substitution 0 is a rigid unifier of u and v modulo E (for short, a rigid
E-unifier of u and v) iff

0(u) 2 oz 8(v), that is, 8(u) and 8(v) are congruent modulo
the set 8(F) considered as a set of ground equations.

Note that a rigid E-unifier is an E-unifier, but the converse is not true.
We will also need some definitions regarding complete sets of rigid
E-unifiers. First, we need to define some preorders on substitutions.

DErFINITION 4.2. Let E be a (finite) set of equations, and W a (finite) set
of variables. For any two substitutions ¢ and 8 6 =, 8[ W] iff o(x) 2 £ 0(x)
for every x € W. The relation = is defined as follows. For any two substitu-
tions ¢ and 8, o= 0[ W] iff 0 =4, O[ W]. The set W is omitted when

1t is possible that equations have variables in common.
"It is possible that # and v have variables in common with the equations in E.
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W =X (where X is the set of variables), and similarly E is omitted when
E=@.

Intuitively speaking, o=, 0 iff 6 can be generated from 6 using the
equations in 0(E). Clearly, =, is reflexive. However, it is not symmetric, as
shown by the following example.

EXAMPLE 43. Let E={fx = x}, 6=[fa/x], and 0=[a/x]. Then
O(E)={fa = a} and o(x)=fa 2, a=60(x), and so o= . 6. On the other
hand ¢(E)={ ffa = fa}, but a and fa are not congruent from { ffa = fa}.
Thus 0= ¢ does not hold.

Some positive facts about the relationc, are shown in the following
lemma, transitivity in particular.

LEMMA 4.4. (i) For any two substitutions o, 0, if o=y, 0, then
U(li) 3*9(5) H(u)fo*r any term u. (i) If 6=y 0, then for all terms u, v, if
u =, pvthen u =y v (i), is transitive. (iv) For any two terms u, v,
and any substitution 8, if u £ p U then 8(u) ﬁm,;, O(u).

Proof. An easy induction on terms yields (i). To show (i), it is
sufficient to show that o(/) ﬁ,,(b, a(r) for every [ = re E. By (i), since
0 =gy 0, we have a(/) éf,m (1) and o(r) il,(,;-, O(r). Since | = re E, we
have a(/) =y, o(r), proving gii). Assume that, 0, =, 0, and 0, =4, 0.
Since 0, =, 05 and 0,(x) =, 0,(x) for every variable x, by (ii), we
have 0,(x) é,h(,;, 05(x). Since we also have 6,(x) é«m«;. O4(x), by
transitivity we have 6,(x) é(h(b‘) 05(x). Thus, 0, =4, 05, establishing the
transitivity of —,. Part (iv) is verified easily. J

Thus, by (iil), = is a preorder. By (i) and (ii), it is immediately verified
that if ¢ is a rigid E-unifier of ¥ and v and o =, 6, then @ is a rigid E-unifier
of u and v. The converse is false, as shown by the following example.

ExaMpPLE 4.5. Let E={fx = x}, o =[fa/x], 0=[a/x], and {u,v) =
{a, fa). Since O(E)= {fa = a}, it is clear that 6 is a rigid E-unifier of «
and fa. But o(E)={ffa = fa} and a and fa are not congruent from
{ ffa = fa}. Hence, ¢ is not a rigid E-unifier of a and fa.

We also need an extension of =, defined as follows.

DErINITION 4.6.  Let E be a (finite) set of equations, and W a (finite) set
of variables. The relation <. is defined as follows: for any two substitu-
tions ¢ and 6, 6 < 0{ W] iff o; nc - B[ W] for some substitution # (that is,
a; N =gz 0[ W] for some ). The conventions for omitting [ W] and E are
those of Definition 4.2.

Intuitively speaking, o <, 6 iff ¢ is more general than some substitution
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that can be generated from 6 using 8(E). Clearly, < is reflexive. The
transitivity of < . is shown in the next lemma.

LEMMA 4.7. The relation < is transitive.

Proof. Assume that 0, <, 0, and 0, <, 8;. By the definition of <., we
have some #, and 5, such that 0,; #, =4, 0, and 0,; 1, =,z 5. By part
(iv) of Lemma 4.4, 0,; n, =4,z 0, implies 0,; 1,5 1, =0, 025 2. Thus,
we have 6,; n,; n,=¢ 0,; n,, and since 8,; n, = 05, by transitivity of —,
we have 0,; n,; n,=g0,, that is, 6, <. 05. |

Thus, <, is a preorder, and it is clear that it extends =,. When
o< O[ W], we say that ¢ is (rigid) more general than 6 over W. By the
remark following the proof of Lemma 4.4 and part (iv) of Lemma 44, it
is immediately verified that if ¢ is a rigid E-unifier of 4 and v and ¢ <0,
then 6 i1s a rigid F-unifier of ¥ and v. From Example 4.5, the converse is
false.

In the next definition, the concept of a most general unifier is generalized
to rigid E-unifiers. Unlike standard unification, it is necessary to consider
a set of substitutions.

DerFINITION 4.8. Given a (finite) set E of equations, for any two terms
u and v, letting V' = Var(u) U Var(v) u Var(E), a set U of substitutions is a
complete set of rigid E-unifiers for u and v iff: For every o e U,

(i) D(o)<= V and D(o)n I(0)= & (idempotence);
(ii) o is a rigid E-unifier of u and v;

(iii) for every rigid E-unifier 6 of u and v, there is some ¢ e U such
that 6 < £ 0[ V]

Condition (i) is the purity condition, condition (ii) the consistency condi-
tion, and condition (iii) the completeness condition.

By the remark following the proof of Lemma 4.7, if U is a complete set
of rigid E-unifiers for u and v, 0 € U, and ¢ < 0, then 0 is a rigid E-unifier
of u and v.

It is very useful to observe that if a procedure P for finding sets of rigid
E-unifiers satisfies the property stated in Definition 4.9, given next, then in
order to show that this procedure yields complete sets, there is no loss of
generality in showing completeness with respect to ground rigid E-unifiers
whose domains contain V (that is, in clause (iii) of Definition 4.8, 8(x) is
a ground term for every x e D(6), and V < D(0)).

DerFINITION 4.9. A procedure P for finding sets of rigid E-unifiers is
pure iff the following condition holds: For every ranked alphabet X, every

643/87/1/2-10
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finite set E of equations over T.(X) and every uw, veT,(X), if
U= P(E, u, v) is the set of rigid E-unifiers for 4 and v given by procedure
P, then for every oe U, for every xe D(c), every constant or function
symbol occurring in ¢(x) occurs either in some equation in E or in u or
in v.

In other words, P(E, u, v) does not contain constant or function symbols
that do not already occur in the input (E, u, v). To prove our claim, we
proceed as follows. We add countably infinitely many new (distinct) con-
stants c, to 2, each constant ¢, being associated with the variable x. The
resulting alphabet is denoted by Zg,. If 6 is not ground, we create the
Skolemized version of 6, that is, the substitution § obtained by replacing
the variables in the terms 6(x) by new (distinct) constants.®

LemMa 4.10. Given a rigid E-unification procedure P satisfying the
property of Definition 4.9, assume that for every ranked alphabet X, every
finite set E of equations over T (X) and every u, ve T(X), the set
U= P(E, u, v) of rigid E-unifiers of u and v given by P satisfies conditions (i)
and (i) of Definition 48, and the new condition (iii'): for every rigid
E-unifier 08 of u and v such that V< D(0) and 0(x)e Tx for every xe D(0),
there is some o€ U such that ¢ <, 0[V] (where V=Var(E)u Var(u, v)).
Then every set U= P(E, u, v) is a complete set of rigid E-unifiers for u and v.

Proof.  Let 0 be any rigid E-unifier of ¥ and v over T»(X). If D(0) does
not contain V, extend # such that 8(y)=c, for every ye V' — D(8), and let
6 be the Skolemized version of this extension of 6. We are now considering
the extended alphabet Z'g . It is immediately verified that 0 is also a rigid
E-unifier of u and v such that V< D(f) and 6(x)e Ty, for all xe D(6).
Then, there is some ¢ € U such that ¢ <, 0[ V], Wthh means that there is
some substitution 5 (over Tz, (X)) such that 0N =g 6[ V]. Note that by
the property of Definition 4.9, since E, , and v do not contain Skolem con-
stants, o does not contain Skolem constants. Let ' be obtained from 5 by
changing each Skolem constant back to the corresponding variable. Since
g does not contain Skolem constants, it is immediately verified that o;
1" =gk 0L V] Thus, the set U is a complete set of rigid E-unifiers for « and
vover T;(X) |

5. MINIMAL RiGID E-UNIFIERS

Given a finite or countably infinite ranked alphabet X, it is always
possible to define a total simplification ordering < on T, (the set of

¥ That is, § is obtained from 6 by replacing every variable y in each term 6(x) by the
corresponding Skolem constant ¢, for each x e D(6).
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all ground terms). For instance, we can choose some total well-founded
ordering < on X and extend < to T as follows: s <1 iff either

(1) size(s) < size(t), or

(2) size(s)=size(r) and Root(s) < Root(t), or

(3) size(s)=size(z), Root(s)=Root(s), and letting s=f5,---s, and
=1t tyy {Sqs o Sy) <iex {fys s 1,0, Where <., is the lexicographic
ordering induced by <.

In the rest of this paper, we assume that =< is a fixed simplification
ordering which is total on T,. We shall use the total simplification
ordering < on T to define a well-founded partial order << on ground
substitutions. For this, it is assumed that the set of variables X is totally
ordered as X = (xy, Xa, iy Xppy o )

DErFINITION 5.1. The partial order << is defined on ground substitu-
tions as follows. Given any two ground substitutions ¢ and 6 such that
D(c) = D(6), letting {y,,.., y,» be the sequence obtained by ordering the
variables in D(o) according to their order in X, then ¢ << ¢ iff

<‘7()’1)’ ey U(yn)> <lex<0(yl)’ ey e(yn)>9

where <., is the lexicographic ordering on tuples induced by <.

Since < is well founded and ={ is induced by the lexicographic ordering
< x Which is well founded, << is also well founded. In fact, given any
finite set V" of variables, note that << is a total well-founded ordering for
the set of ground substitutions with domain V.

Given a set E of equations and a total simplification ordering < on
ground terms, for any ground substitution 8, we let 8(E) denote the set
{6(1) = 0(r)|6(!) = 06(r), | = re EUE '} of oriented instances of E. Thus,
we can also view O(E) as a set of rewrite rules.

The reason for considering the well-founded order <« on ground sub-
stitutions is that minimal rigid E-unifiers exist. This is one of the reasons
for the decidability of rigid E-unification. The example below gives some
motivation for the next definition and lemma.

EXAMPLE 5.2. Let E={fa = a, ggx = fa}, and <{u,v) = {gggx, x>. It
is obvious that there is a simplification ordering total on ground terms
such that a < f<g. The main point of this example is the fact that some
rigid E-unifiers of gggx and x are redundant, in the sense that they are
subsumed by rigid E-unifiers that are smaller w.rt. <. For instance,
0= [gf'%/x] is a rigid E-unifier of gggx and x, but so is ¢ = [ ga/x], and
a0
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An illustration of the redundancy of @ is the fact that 8(x)=gf'%a is
reducible by the rule fa — a. The fact that some term 6(x) may be reducible
by some oriented instance 6(/) — 6(r) of an equation / = re Eu E~! turns
out to be a problem for the completeness of the method. In order to avoid
such redundancies, for every rigid E-unifier 8 of v and v, we consider the
set S¢ , .. ¢ of all ground rigid E-unifiers p of ¥ and v such that p—, 6 and
D(p)=D(0). The crucial fact is that the set S, , . o has a smallest clement
o under the ordering <<, and that this least substitution is nicely reduced
w.r.t. ¢(E). Intuitively speaking, we find the least ground rigid E-unifier ¢
of u and v constructible from 6 and 6(E) (least w.r.t. << ). Referring back
to 8=[gf'%/x], the substitution ¢ =[ga/x] is the smallest element of
Se v o In general, it is not sufficient simply to consider all ground
substitutions p such that p, 6, because some of them may not be rigid
E-unifiers of u and v. For instance, for E={fa = a, x = fa}, and (u,v) =
{gx,x) U=[ga/x] is a rigid E-unifier of gx and x, we have p, 0 for
p=[a/x], but p is not a rigid E-unifier of ga and «a since p(E) = { fa = a}.
Thus, we have to consider rigid E-unifiers of ¥ and v such that p,, 6.

The least element o of the set Sy, , , enjoys some nice reduction proper-
ties w.r.t. o(E). These properties, stated in the forthcoming lemma, will be
used in the proof that the method is complete.

DErFINITION 5.3. Let E be a set of equations (over T,(X)) and u,
ve T,(X) any two terms. For any ground rigid E-unifier 8 of « and v, let

{10

Sk wvo= {p|D(p)=D(6), p(u) 5y P(v), pcy b, and p ground }.

yil
Obviously, e Sy, . 4, S0 Si . . ¢ 1S DOt empty. Since << is total and
well founded on ground substitutions with domain D(6), the set Sz, . 4
contains some least element o (w.r.t. < ).
We shall now prove the following crucial result. For this, recall that a
degenerate equation is of the form x = ¢, where x is a variable and
x ¢ Var(t), and that a nondegenerate equation is not a degenerate equation.

LEMMA 54. Let E be a set of equations (over Ts(X)) and u, ve Tx(X)
any two terms. For any ground rigid E-unifier 6 of u and v, if ¢ is the least
element of the set Sg , . ¢ of Definition 5.3, then the following properties
hold:

(1) Every term of the form o(x) is irreducible by every oriented
instance a(l) — o(r) of a nondegenerate equation | = re EUE™", and

(2) every proper subterm of a term of the form o(x) is irreducible by
every oriented instance o(l) — a(r) of a degenerate equation | = re EQE".



RIGID E-UNIFICATION 147

Proof. To prove that ¢ has the desired properties, we proceed by
contradiction. Assume that some subterm of a term of the form a(x) is
reducible by some oriented instance o(/)—a(r) of an equation
| =reEUE~' Hence, o(x)/B=0c(l) for some address f in o(x) and
o(l)>o(r). In order to prove that x¢ Var(l,r) if either / = r is non-
degenerate or / = r is degenerate and f # ¢, we prove the following claim.

Claim. (i) o(y)<o(x) for every yeVar(r). (1) o(y)<a(x) for every
yeVar(/) if / = r is nondegenerate. (ili) o(/)<o(x) if f#¢ and [ = r is
degenerate.

Proof of Claim. Since < is a simplification ordering, by the subterm
property, a{y)=<o(r) for each yeVar(r), and since o(/) > o(r), we have
ag(y)<<o(l) for each y e Var(r). Since a(/) 1s a subterm of ¢(x}), o(/) <X a(x),
and we also have o(y)< a(x) for each ye Var(r). This proves (i). Next, we
show that if / = r is nondegenerate, then / cannot be a variable. For the
sake of contradiction, assume that /=z for some variable z. If ze Var(r),
then o(r)>>o(z) by the subterm property, contradicting the assumption
that o(z) > o(r). But then z = r is degenerate, a contradiction. Now if [ = r
is nondegenerate, since / is not a variable, by the subterm property, we
have o(y)<a(!) for each ye Var(l), and since o(/) is a subterm of a(x),
a(l)< a(x), which implies a(y)< o(x) for each ye Var(/), showing (ii). If
{ = r is degenerate, and f #¢, then /=y for some variable y and o(y) is a
proper subterm of ¢(x), and so a(y)<a(x), proving (iii). This concludes
the proof of the claim. ||

It is clear that the claim implies that x ¢ Var(/, r) if either / = r is non-
degenerate or / = r is degenerate and 8 #¢. We now form a new substitu-
tion ¢’ that will contradict the minimality of ¢. We define ¢’ such that

o faly), if yeD(o)—{x};
7 _{o(x)[ﬁﬁa(r)], it y=x

Since a(/})>o(r) and o(x)/f=a(/), by monotonicity of <, we have
o'(x)<o(x) and

0(X) = (5. 611 = o(r17 T (X)- (*)

By the definition of ¢’ and since ¢'(x) < a(x) we have 0’ << o' Since by the
hypothesis ¢ =4z 6, by Lemma 4.4, a(l) = g 0(/) and a(r) = g 0(r), and
by (*land the fact that / = re EUE !, we have 0'(X) Zgp) 0 (x) Since

a(y) Zor) 0(y) and o'(y)=a(y) for all ye D(B) — {x}, we have 6" =, 0.
Since x ¢ Var(/, r), o'(l)=o(l), ¢'(r)=a(r), and it is easy to see that ¢'(u)
and ¢’(v) are congruent modulo the set of ground equations ¢'(E). (The
equation ¢'(/) = ¢'(r), which is identical to ¢(/) = o(r) since o'({)=a(/)
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and ¢'(r)=o(r), can be used to go from ¢'(x) to o(x) and conversely
whenever necessary.) Hence, 0’ =40, ¢’ << 0, and ¢’ is a rigid E-unifier of
u and v, which contradicts the minimality of o. This concludes the
proof. |

In view of Lemma 5.4, it is convenient to introduce the following
definition.

DerFNITION 5.5. Given a set E of equations, a total simplification
ordering < on ground terms, and any two terms u, v, a ground rigid
E-unifier 6 of u and v is reduced w.r.t. 8(E) iff

(1) every term of the form 6(x) is irreducible by every oriented
instance 6(/) - 0(r) of a nondegenerate equation / = re EU E ™!, and

(2) every proper subterm of a term of the form 6(x) is irreducible by
every oriented instance 6(/)—> 8(r) of a degenerate equation [ = re
EVE~"

Thus, Lemma 5.4 asserts that two terms u, v have a rigid E-unifier if they
have a rigid minimal (w.rt. <<) E-unifier # that is reduced w.r.t. 8(E).
Consequently it is sufficient to search for such rigid E-unifiers.

6. THE REDUCTION PROCEDURE

One of the major components of the decision procedure for rigid
E-unification is a procedure for creating a reduced set of rewrite rules
equivalent to a given (finite) set of ground equations. This procedure, first
presented by Gallier ef al. [11], runs in polynomial time. However, due to
the possibility that variables may occur in the equations, we have to make
some changes to this procedure. Roughly speaking, given a “guess”
(which we call an order assignment) of the ordering among all subterms of
the terms in a set of equations E, we can run the reduction procedure R
on E and O to produce a reduced rewrite system R(E, ¢') equivalent to E,
and whose orientation is dictated by the ordering €. First, we need a few
definitions.

DEFINITION 6.1. Given a set R of rewrite rules, we say that R is rigid
reduced iff

(1) no left-hand side of any rewrite rule / - re R is reducible by any
rewrite rule in R— {1 — r} treated as a ground rule;

(2) no right-hand side of any rewrite rule /- re R is reducible by
any rewrite rule in R treated as a ground rule.
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DEFINITION 6.2. Given two sets E and E’ of equations, we say *t!hat E
and E’ are rigid equivalent iff for every two terms u and b, u = viff
us g v (treating E and E’ as sets of ground equations).

It is clear that if £ and E' are rigid equivalent, then for every substitution
0, O(E) and 0(E’) are rigid equivalent.

For technical reasons, it will be convenient to view the problem of rigid
E-unification as the problem of deciding whether two fixed constants are
rigid FE-unifiable. This can be achieved as follows (the idea is borrowed
from Dershowitz). Let eq be a new binary function symbol not occurring
in 2, and T and F two new constants not occurring in X. The following
simple but useful lemma holds.

LEMMA 6.3. Given a set E of equations and any two terms u and v, a
substitution § over Tx(X) is a rigid E-unifier of u and v iff there is some
substitution 8" over Ty (X) such that 0=10'|p4y. ., and T igf(Eu'v) F, where
E,.=Eu{eq(uv) = F, eq(z,z) =T}, and z is a new variable not in
Var(E)u Var(u, v).

Proof. 1f a substitution 8 over T, (X) is a rigid E-unifier of v and v,
then 6(u) =y 0(v), and extending 6 such that 6'(z)=0(u), since
B(eq(u, v)) = o) eq(0(u), B(u)), clearly

F2,. 0 eq(uv)
e, o 0'(eq(z, 2))

*i{l(*

[TEIrE

0" (Ey. ¢} T.

Conversely, if there is some substitution 6 over T (X) such that
T—g(b o I, because eq, T, F are not in 2, from the way congruence
closure works, it must be the case that ¢’ (eq(z, z)) =g, ) 0'(eqlu, v)). Let-
ting 0 =0"| poy- (215 51*nce 8’ is over Ty (X) and eq, T, F are not n X, we
must also have 0'(z) =y 0(u) and 0'(z) = -9(,5, 6(v). Thus O(u) = —9(5) 0(v),
showing that 8 is a rigid E-unifier of » and v. |

We also need to extend the total simplification ordering= so that T, F,
and terms involving eq can be compared. Actually, it is not necessary to
consider arbitrary terms containing eq, and we extend < to the set
Ty {T, F}u {eq(u, v)|u,ve Ty} as follows:

For any terms s, ¢, u, ve Ty,

(a) T<F<u<eq(s,t); and

(b) eq(s, t)<eq(u,v) iff {s,1} <i{u,v}, where <, is the
lexicographic extension of < to pairs.
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It is clear that we have defined a total simplification ordering on the set
TsU{T, F}u{eq(u,v)|u,ve Ty}

We will need to show that in searching for rigid E-unifiers, it is always
possible to deal with sets of equations that are rigid reduced. The proof of
this fact uses the result, shown elsewhere, that every finite set E of ground
equations is equivalent to a reduced set R(E) of rewrite rules. We now
review the procedure first presented by Gallier er al. [11], which, given a
total simplification ordering < on ground terms and a finite set £ of
ground equations, returns a reduced rewrite system R(E) equivalent to E.

DEFINITION 6.4 (Basic reduction procedure). Let £ be a finite set of
ground equations, and < a simplification ordering total on ground terms.
The basic reduction procedure generates a finite sequence of triples
{&, I, R, where &, is a finite set of ground equations, /7, is a partition
(associated with &), and #, is a set of ground rewrite rules. Given a triple
(&, 1T, R;>, we let F; be the set of all subterms of terms occurring in
equations in & or in rewrite rules in #,. The procedure makes use of the
congruence closure of a finite set of ground equations (Kozen [19,20],
Nelson and Oppen [24], Downey, Sethi, and Tarjan [8]). Congruence
closures are represented by their associated partition /1. Given an equiv-
alence relation represented by its partition /1, the equivalence class of ¢ is
denoted by [#], or [7]. Recall that s, 7 are in the same equivalence class
of IT iff s and ¢ are subterms of the terms occurring in £ and s % . ¢ (for
details, see Gallier [97]). The congruence closure algorithm will only be run
once on E to obtain I, but the partition /7, may change due to further
steps (simplification steps).

begin algorithm
Initially, we set &=FE, %,=, and run a congruence closure

algorithm on the ground set E to obtain /1,. i :=0;

while 7, has some nontrivial equivalence class® do {Simplification steps }
Let p,, , be the smallest element'® of the set

U ¢
Cel|Ciz2

of terms belonging to nontrivial classes in /7..'" Let C,,, be the
nontrivial class that contains p,,,, and write C,, =

9That is, a class containing at least two elements, in which case &, has at least one
nontrivial equation.

%in the ordering <.

" where |C| denotes the cardinality of the set C.
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[piv1s Al yy o A1), where k., 21, since C,,, is nontrivial. Let

Siv1= {’{z!+1 > PLiv1s lf:i _’P1+1}-
{Next, we use the rewrite rules in &, | to simplify the rewrite rules in
R, 0 S, |, the partition I1,, and the equations in &.}

To get 4, ,, first, we get a canonical system equivalent to &%, . For
this, for every left-hand side 4 of a rule in %, ,, replace every max1mal
redex of 4 of the form ' by p. where ¥/ »pe %, ,—{i—>p}."? Let

.1 be the set of simplified rules. Also, let #;, , be the set obtained
by simplifying the left-hand sides of rules in #; using ;. ; (reducing
maximal redexes only), and let

T 1 pr
'%i+1_*%i+lu<fi+l-

Finally, use %, , to simplify all terms in 71, and &, usmg the
simplification process described earlier, to obtain I7;, , and &,

i=i+1

endwhile
{All classes of II; are trivial, and the set %, is a canonical system
equivalent to E.}

end algorithm

It is shown in [11] that the above procedure always terminates with a
system &%, equivalent to F that is reduced (and hence canonical).

However, in order to show later that our decision method is in NP, it
turns out that we need a sharpening of the above result. We need to show
that given a set E of ground equations, the term DAG associated with any
equivalent reduced system R is of size no greater than the size of the term
DAG associated with E itself, and that the number of rules in R is no
greater than the number of equations in E. This is not at all obvious for
our algorithm, but fortunately true. To be more specific, the term DAG
associated with a finite set S of terms is the labeled directed graph whose
set of noddes is the set of all subterms occurring in terms in S, where every
constant symbol ¢ or variable x is a terminal node labeled with ¢ or x, and
where every node f(¢,, ..., t,) is labeled with f and has exactly the k nodes
ty, .., l; as immediate successors. In the case of a set of equations (or
rewrite rules), the set of terms under consideration is the set of subterms
occurring in left-hand or right-hand sides of equations (or rules). If a term
DAG has m edges and »n nodes, we define its size as (m, n).

'2 By a maximal redex of 4, we mean a redex of / that is not a proper subterm of any other
redex of A. The simplified term is irreducible w.r.t. &, |, so these replacements are done only
once, and they can be done in parallel because they apply to independent subterms of A.
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The quickest way to prove this sharper result is to appeal to two facts:
The first one is due to Metivier [23] (in fact, a direct proof is quite
short).

LemMma 6.5. If R and R’ are two equivalent reduced rewriting systems
contained in some reduction ordering >, then R=R’.

The second fact is that given a set E of p ground equations with term
DAG of size (m, n), a reduced equivalent system R of p’ rules with term
DAG of size (m’, n') such that m’ <m, n’' <n, and p’ <p, is produced by a
reduction process which is essentially just a Knuth-Bendix procedure
restricted to ground terms.

DEFINITION 6.6. Let > be a reduction ordering total on ground terms.
Let R be a multiset of oriented pairs (s, ) which we may denote by s — ¢
if s>>¢ and s« ¢ if s<t Finally, let -, denote the rewriting relation
induced by the nontrivial pairs. The first transformation simply removes
trivial pairs from R:

{(u,u)} UR=R. (1)
The second orients rules:
{se1}UR={t>s}UR (2)
Next, if r - #', then
{I-r}UR={l->r}UR, (3)
and finally, if / — 5 /', then
{I-r}UR={(I'r)JUR (4)

It should be noted that {J denotes multiset union, which implies that
when a transformation is applied, the occurrence of the rule to which it is
applied on the left-hand side (for instance, s < ¢ in (2)) no longer exists on
the right-hand side.

We now show that our reduction method always produces reduced
systems whose associated term DAG is no greater than the term DAG
associated with the input.

THEOREM 6.7. Let > be a simplification ordering total on ground terms.
If E is a set of p ground equations, R is an equivalent reduced set of p’
ground rewrite rules contained in >, and (m, n) and (m’, n') are the sizes of
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the term DAGs associated with E and R respectively, then m' <m, n’' <n,
and p' <p.

.Proof. We prove this by showing that every sequence of transforma-
tions issuing from E must eventually terminate with the set R, and that the
size inequality stated above holds. Let

E=Ry,=>R, =>R,= --.

be any sequence of transformations starting with F and using the given
ordering >. It is tedious but not hard to show that the transformations
produce equivalent sets of rules, and we leave this to the reader. Similarly,
it is not hard to show that any set which can not be transformed must be
a reduced set of rules contained in >, since otherwise some transformation
would apply. Now, by Lemma 6.5, if such a terminal set exists, it must be
unique, and so it will be identical with R. Thus, we next show that the
relation = is Noetherian.

For any R, let u(R)= (M, k>, where M is the multiset of all terms
occurring in pairs in R and & is the number of pairs of the form s« 7. Let
the ordering associated with this measure use the multiset extension of >
for the first component and the standard ordering on the natural numbers
for the second. Clearly this ordering is wellfounded, since >~ is. But then,
each transformation reduces the measure of the set of pairs, since (1), (3),
and (4) reduce M, and (2) reduces k without changing M. Thus any
sequence of transformations must eventually terminate in the set R.

Finally, for any transformation R,= R;,,, note that the size of the
current term DAG cannot increase, since (1) deletes nodes and possibly
edges, (2) does not change the size, and (3) and (4) possibly decrease the
number of nodes and preserve the number of edges. As a matter of fact,
these transformations can be implemented by moving pointers. It is also
obvious that each transformation either preserves or decreases the total
number of rules. Thus, the claim follows by induction on the length of the
transformation sequence. |

Another useful fact, needed later, is that the time complexity of the
reduction procedure is in fact bounded by O((m + n + p)’), where (m, n) is
the size of the term DAG associated with the input £, and p is the number
of equations in E.

Unfortunately, given a nonground set E of equations, the reduction pro-
cedure just presented may not be applicable since some of the equivalence
classes may contain terms involving variables and the ordering < may no
longer be total on such a partition. We need to guess how terms containing
variables compare to other terms in the partition in order to reduce the
equations. However, it is useful to observe that the reduction algorithm
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applies, as long as at every stage of the algorithm, it is possible to deter-
mine the least element of each nontrivial equivalence class and to sort these
least elements. This observation shows that in extending a simplification
ordering < total on ground terms to terms containing variables, it is
sufficient to require this extension to have a least element in each nontrivial
equivalence class and to be total on the set of least elements of these
classes. Definition 6.12, below, makes use of this fact.

The key to extending ground orderings is that if some ground rigid
E-unifier 8 exists, since the ordering < is total on ground terms, 6 induces
a preorder on the terms occurring in the congruence closure I7 of E. For
example, if E={fa = a, fa = x}, u=gx, v=x, and 6= [ga/x], then I1
has a single nontrivial class {fa, g, x}, and assuming that a<f<g, we
have a < fa < ga=8(x). Hence, we can extend < so that fa < x. This way,
the equations can be oriented as fu - a, x - fa.

We shall define the concept of an order assignment in order to formalize
the above intuition. First, we define some relations induced by a ground
substitution on a finite set of terms.

DerFmNITION 6.8, Given a finite set S of terms, let ST(S) be the set of all
subterms of terms in S (including the terms in S). Let < be a total
simplification ordering on ground terms, and 6 a ground substitution such
that Var(S) < D(6). The relations =, ¢ and <, ¢ on ST(S) are defined as
follows: For every u, v € ST(S),

Uy 50 iff  O(u)<0(v),

and
U=, gt iff  8(u)=0(v).

When we have a partition /7 induced by the congruence closure of a
finite set E of equations treated as ground, S consists of the left-hand sides
and right-hand sides of equations in E, and we denote <, 5 as <, ; and
=, ¢ a5 =, ;. As the next example shows, the equivalence relation =,
may be nontrivial,

EXAMPLE 6.9. Let E={fx = fgy, fgy = gy, hgz = gz}, u=k(fx, gb),
b=k(ga, hgb), and 8= [ga/x, a/y, b/z]. The nontrivial equivalence classes
of the congruence closure /1 of E are {fx,fgy, gy}, and {hgz, gz}. Then,
since B(x)=0(gy)=ga, we have x=, ; gv and fx=, ;fgy. Thus, =, ;
has two nontrivial equivalence classes {x, gy} and {fx,/fgy} Assuming
that we have a total simplification ordering on ground terms such that
a<b=<f<g=<h, we also have

Yo nINonX<on8V <o 8=, nfx <onf&V<on hgz.
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The other pairs in =<, , are obtained by reflexivity and transitivity from
=,  and the above pairs.

This time, it is not obvious how to orient the equation fx = fgy. This is
because 0( fx)=06(fgy). One might think that this is a problem, but it can
be overcome. Observe that since the ground equation 0( fx) = 0( fgy) is tri-
vial, it does not help in any way in proving that 8(x) and 6(v) are
congruent modulo 8(E). Also, observe that # is a common unifier of every
equivalence class modulo =, ;. The solution is to factor out the preorder
=< ¢ 7 by the equivalence relation =, ;. This can be achieved by choosing
representatives into the classes modulo =, ; and replacing every term in
E U {u, v}, by the representative in its class modulo =, ;. In order to keep
track of this equivalence, we also form the triangular form of the common
mgu of these classes. Referring to Example 6.9, the mgu of the nontrivial
classes {x,gy} and {fx,fgy} of =, ; is [gy/x], represented by the
triangular form (x, gy ). If fgy is chosen as the representative in { fx, fgy},
the set of equations becomes E'= {fgy = gy, hgz = gz}, and we have
u =k(fgy, gb) and v’ = k(ga, hgb). The nontrivial classes of the congruence
closure of E' are {fgy, gv}, and {hgz, gz}. Now, the order is forced by
0: gv < fgy, gy <gz, and gz < hgz. Note that 6 = [ga/x, a/y, b/z] is a unifier
of {(x, gy> and a rigid E’-unifier of &' =k(fgy, gb) and v’ = k(ga, hgb).

The partition /7 induces an equivalence relation on the set of equivalence
classes modulo =, ; defined as follows.

DerFINITION 6.10.  Given a set S and two equivalence relations /7 and =
on S, let I ==(Tu =)", the least equivalence relation containing /7
and =. The relation =/I7 on the set of equivalence classes of = is defined
as follows: for any two classes [u]. and [v]- of =, ([u]_,[v].)e =/0T
iff (y,v)ellu =.

Note that the sets of the form {J4. K, where C is a class of =//I, are
the equivalence classes of 171 =. We will denote the set ).~ K (where
C is a class of =/IT) as UC. Actually, every class of ITu = is both the
union of some classes of /7 and the union of some classes of =.

ExampLE 6.11. Let E={fx =fgx, fy=hy, kz=fz}, and 6=
[a/x, ga/y, b/z]. The nontrivial classes of the congruence closure I7 of E
are {fx, fgx}, {fy, hy}, and {kz, fz}, and the equivalence relation =, ,
has two nontrivial equivalence classes {y, gx} and {fy, fgx! since
8(y) = 6(gx) = ga. The nontrivial equivalence classes of =, ,/IT are {{ fx},
xSy}, (hy}} and {{kz}, {fz}}. If C={{/x}, {fgm, /i {hy) ), then
WUC={rx, fex, fv, hy}.

The above discussion leads to the following definition, which makes use
of the fact noted before Definition 6.8,
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DErFINITION 6.12. Let =< be a total simplification ordering on ground
terms. Given a finite set S of terms and a partition /7 on ST(S), given a
preorder ¢ on ST(S) also denoted as <, let =, be the equivalence
relation associated with =<{, defined such that

=,={(,v)|u,veST(S), u<X, v and v <, u},

and let ST(S)/ =, denote the set of equivalence classes of = .. The partial
ordering induced by =, on the set ST(S)/=, is defined such that
[u] <c[v] iff ux<, v for every [u], [v]eST(S)/=,. We say that the
preorder @ on ST(S) is an order assignment for IT iff the following proper-
ties hold:

(1) =, has the subterm property and is monotonic on ST(S), that
is, for all w,,..,u,, v;,.,v,eST(S), if u, <X, v, for i=1,..,n and
Sfluy, ..., u,) and f(v,, .., v,) € ST(S), then f(u,, ... u,) X f(vy, . v,);

(2) The restriction of =<{, to ground terms agrees with < (on
ST(S}), and the partial ordering <, on ST(S)/=,. is such that every non-
trivial equivalence class C of =,/IT has a least element, and <, is total on
this set of least elements.

(3) There is some joint unifier of all equivalence classes modulo = .
By this, we mean that there is some @ such that for every class K of =,
for every pair of terms u, ve K, (u) = 6(v).

Note that condition (3) implies that each class of the equivalence
relation =, contains at most one ground term. Condition (1) implies that
the partial ordering induced by =<, on the set ST(S)/ =, in monotonic.

Given a finite set E of equations, if 7 is the partition associated with the
congruence closure of E, by an order assignment for E we mean an order
assignment for 77.

Remarks. We can add the following condition to the definition of an
order assignment:
(4) =, is a unification closure, that is, for all f(u,,.., u4,) and
f(vyy ., 0,)€ST(S), if fluy,..,u,) =f(vy,..0,), then u,=,v, for
i=1,..,n

One of the benefits of adding condition (4) is that there are fewer order
assignments on a partition satisfying condition (4).

The following lemma gives a useful method for obtaining order
assignments.
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LEMMA 6.13. Given a finite set S of terms and a partition II on ST(S),
given any ground substitution 8 such that Var(Il) < D(6): (i) the preorder
X, ;7 18 an order assignment for II satisfying condition (4); (i) there exists
an order assignment <X, for IT such that <X ,.S <y 7 and <, is a total
ordering.

Proof. (i) The verification is straightforward and left as an exercise.
(i) For every nontrivial equivalence class C modulo =, ,, we extend the
simplification ordering < as follows. Whenever such a class contains some
variable, say C= {x,, .., X\, t, .., I,,} where x,, .., x, are variables, we
extend < to a relation <’ such that x, <" x, <" <" x; and x, <'1,, for
all i, j, 1 i<k, 1 <j<m. Itis clear that <’ is a partial ordering contained
in <4 ;. Now, we define <, recursively as follows: u <, v iff either

(1) 6(u)<8(v), or
(2) 6(u)=06(v), and either
(2a) wuis a variable and u <’ v, or

(2b)  u=fluy,..u,), 0=f (v, v,)s ANA Uy, oyt ) <301,y 0, s

where <! is the lexicographic extension of <.

We define <, as the reflexive closure of <, and we claim that <, is
a total ordering which is an order assignment contained in <, ;. The only
problem is in showing that <, is a total ordering, as the other conditions
are then easily verified. To prove that < is a total ordering, due to clause
(1) of the definition of <, it is enough to show that for any two distinct
elements u, v in some nontrivial class ¥ modulo =, ;, either u<, v or
v<, u, but not both. Note that the set of classes modulo =, j is totally
ordered: C < C" iff 0(C) < 8(C"), where 6(C) denotes the common value of
all terms 6(¢), where 1€ C. We proceed by induction on this well-ordering
of the classes. Clearly, the least class contains some variable and at most
one constant. But then, it is already totally ordered by <. Given any other
nontrivial class C, if v and v are both variables, we already know by (2a)
that either v <’ v or v <’ u, but not both. If « is a variable and v is not,
by (2a) we can have only u <'v. If both « and v are not variables, then
they must be of the form u=f(u,,..,u,) and b=f(v,, .., v,), since C is
unified by 6. Since u # v, there is a least i such that u,#v,;, and since 6
unifies ¥ and v, 6 unifies u; and v,. But then, because < has the subterm
property, u;, v; belong to some class C, such that C, < C. Therefore, either
u; <gv; or v,<gu;, but not both, and thus by (2b), either u<, v or
v <. u, but not both. |

In view of Lemma 6.13, the following definition is justified.
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DEFINITION 6.14.  Given a finite set of terms S, an order assignment <,
for a partition IT on ST(S) is realized by a ground substitution 8 such that
Var(I) e D(O) iff <, =<y 5.

By condition (3) of Definition 6.12, the equivalence classes of =, have
some common unifier. We now show how a triangular form of a joint mgu
of these classes can be obtained.

DEeFINITION 6.15. Given an order assignment <, for a partition [7
on ST(S), for every nontrivial equivalence class C of =., let S¢c=
{{tyy 11, {t3, 8y )y oy {1,, 1, )}, where 1, is any chosen representative in C
and C= {7, ... t,}, and let S, =) -, Sc be the union of these systems.
From the way the term system S, is constructed, a substitution unifies S,
iff it unifies every class of =,. Thus, we let TU,. denote the triangular form
of the mgu of S.. We also denote by o, the substitution [s,/x, ..., 5,/x; ]
defined by the triangular form TU, = {{x, s, ), ..., {xy, se >}, as explained
after Definition 3.3.

Given two order assignments ¢ on a partition [T for ST(S) and ¢’ on
a partition I’ for ST(S’), we say that ¢ and (' are compatible iff they
coincide on ST(S) N ST(S").

EXAMPLE 6.16. Let E={fx = fgy, fgy = gy, hgz = gz}, as in Example
6.9. The nontrivial equivalence classes of the congruence closure IT of E are
{fx, fgy, gv}, and {hgz, gz}. The preorder ¢, on {x,y,z fx, gy, gz,
fey, hgz} of example 6.9 whose only nontrivial equivalence classes are
{x,gv} and {fx, fgv}, and such that

YRonINonX<on8 Nan&2 <o nfx <o nfgy <o, 7 hgz

is an order assignment realized by 6 = [ ga/x, a/y, b/z].

Let ¢, be the preorder on {x, y, z, fx, gy, gz, fgy, hgz} whose equiv-
alence relation is the identity relation, and such that gy <, gz, gy <.,
fey, fgy <, fx, and gz <., hgz (other pairs in <, are obtained by
transitivity and reflexivity). It is immediately verified that ¢, is an order
assignment realized by 6 = [ ga/x, a/y, b/z], since <,,S <y -

Let ¢, be the preorder on {x, y, z, X, g, gz, fgy, hgz} whose equivalence
relation is the identity relation, and such that fx <., gz, fx=<, gy,
gy <¢,fey, and gz=,, hgz (other pairs in =<, are obtained by transitivity
and reflexiviy). It is immediately verified that (); is an order assignment,
and that it is not realized by 8 = [ga/x, a/y, b/z]. This time, it is not true
that <., S =<, since 0(fx) = fga, 0(gy)=ga, but fga K ga.

The next example arises from the problem of proving that every monoid
such that x-x=1 (for all x) is commutative.
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ExaMPLE 6.17. Let & be the set of equations
E={u; -1 =u
wy-w, =1
xo-(yozy) = (x3-¥0) - 24
Xy (y2:22) = (x3¥2) 2,

Wy W, =1

Xg-(Va-24) = (x4-V4) 24

wy-wy =1
eqa-b,b-a) = F
eq(z,z) = T}.

The nontrivial equivalence classes of the congruence closure I7 of & are

{T, eq(z, 2)},

{F,eq(a-b,b-a)},

{1, wy - wy, wy-ws, wy-w},

{uy,u -1},

{vr, Lo}y

{x2:(y2-22), (x3

{x4-(ys-24),

{x3-(y3-23),
z)

{x-(

'yZ)'ZZ}s
x4-y4)-z4},
X3-¥3)-23},

(
(
(
(x1-y1)-2. )

[

We define the order assignment ¢ on IT whose equivalence relation is the
identity and such that the ordering =, is defined by the order in which the
elements in each class of /T are listed, and for the least elements in these
classes, the order in which the classes are listed. All other pairs in <, are
determined by reflexivity and transitivity. It is easily seen that there is a
total simplification ordering on ground terms such that 1 <a<bh< -, and
one can verify that < is an order assignment.

643/87/1/2-11
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Another order assignment =, is defined as the preorder extending =
and whose nontrivial equivalence classes of =, are

a, Uy, Xy, Xa, Vo, Wo, X4},

bv ZoyUpy X3y 23,5 Vias 24, W3},

{
{
{wa-wy, X301,
{a 'bs Wi, Vi, 21, V3,2, V222, X4 'y4}’
{wa-ws, ya-24})
{wi-w,yezi,
these classes being ordered as listed (since a<b). It is easy to verify that
=<, 1s realized by the substitution
0=1L[a/u,, a/x,, a/x,, aly,, a/ws, a/x,,
bjz,, bjvy, bjxy, bjz3, bfys, bjz4, biws,
a-biw,,a-biy,,a-bjz,,a-b/ys,a-b/z].
Note that =, causes the merging of some equivalence classes of /7, even

some trivial ones.

One more issue that we would like to address before presenting a revised
version of the procedure of Definition 6.4 is the simplification of equations
using the equivalence relation = . This is primarily for efficiency reasons.
The problem is illustrated by the order assignment <. of Example 6.17.

ExaMPLE 6.18. Recall that the nontrivial equivalence classes of =
(from Example 6.17) are
(1) {a, uy, x5 X5, p2, was X4,
(2) b, z5, vy, X3, 23, V4, 24, W3 )4
(3) {wa-wy x5 320
(4) {a-b,wi, p1, 21, 932, V2 22, X4 Vals
(5) {ws-ws, ya-za4)s
(6) {w,-wy,y -z}

The problem is to simplify the equations by replacing subterms by equiv-
alent terms modulo =, in such a way that <. is a partial order on the
new partition associated with the set of simplified equations. Clearly, this
is a problem of choice of representatives. For example, how do we simplify
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xy-(y1z;) = (x;-y,)-z;? If we choose the first element of each class as a
representative, then the above equation simplifies to a-(w,-w,) =
(a-(a-b))-(a-b), if we replace maximal subterms (in the subterm
ordering) by their representatives. But it is preferable to replace each
variable by its representative in the class, since we obtain the ground
equation a-((a-b)-(a-b)) = (a-(a-b)) (a-b). So, how do we proceed? A
key observation is that the subterm ordering induces a strict order on the
classes modulo =,.. A class C precedes a class C’, denoted as C < (', iff
C contains some term that is a proper subterm of some term in C’. Thus,
(1)<(3), (1)<(4), (2)<(4), (2)<(5), (4)<(6), and the other relations
are obtained by transitivity and reflexivity. We propose to assign repre-
sentatives from the bottom up, starting with the minimal classes (w.r.t. <)
and proceeding up using the ordering < on the classes. Furthermore,
whenever possible, we pick ground representatives. For example, we would
pick a in (1), # in (2), and then a-a in (3), a-b in (4), b-b in (5), and
(a-b)-(a-b)in (6).

Before we proceed with rigorous definitions, let us observe that if ¢ is an
order assignment on a partition 7, since the classes modulo =, have some
joint unifier, every nontrivial class contains at most one ground term, and
all compound terms in a nontrivial class have the same root symbol. With
a slight abuse of notation, we let =, denote the set of equivalence classes
of the equivalence relation = .

DEFINITION 6.19. Let @ be an order assignment on a partition /7. The
relation <is defined on the set of classes modulo = as follows: given any
two classes K, K'€ =,, K< K' iff there are terms t€ K and ' € K’ such that
t is a proper subterm of 7.

LEMMA 6.20. The relation < given in Definition 6.19 is a strict order on
the set of classes modulo =, and if K< K’ then K <, K.

Proof. It 1s clear that < is transitive, and we need only show that it is
irreflexive. As noted earlier, the classes modulo =, have some joint unifier,
say 8. Then, for every class K of =, there is some term s such that O(u) = s
for all ue K. With a slight abuse of notation, we use the notation 8(K) for
this term s. Recall that K < K’ iff there are terms 7€ K and ¢’ € K’ such that
t is a proper subterm of ¢’. Consequently, if K< K’ then 6(K)=0(¢) is a
proper subterm of 8(K') = 6(¢'). Thus K < K does not hold, since otherwise
0(K) would be a proper subterm of itself. Since K< K’ implies that
K <, K', by the irreflexivity of < we have K<, K. }

We now use the strict order € on the classes modulo =, to assign
representatives inductively.
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DEFINITION 6.21. Let @ be an order assignment on a partition [] on
ST(S). A function p: =, > T'5(X) assigning a term p(K) to every equiv-
alence class K modulo = is a representative selector iff for every minimal
class K wrt. <, p(K) is the unique ground term in K if it exists, or else
any chosen element of K, and for every nonminimal class X, if

R={f(t), 1)), o f(17, s 12}

is the subset of compound elements in K, then p(K) is the unique ground
term in

p(K) = {F(p([61] 2 )s v (L0 T2 Dy s F(PALETT 2 ), p( L1 2 )))

if it exists, or else any chosen element in p(K), where [u]_, denotes the
equivalence class of ¥ modulo = .

The reduced partition p(II) is the partition whose classes are the sets of
the form {p(K)|Ke C, K is a class modulo =, Ce =./IT}, and if IT is the
congruence closure associated with a set E of equations, the reduced set of
equations p(E) is the set of equations {p([/1_, = p([r].,)|/ =reE}. We
also define the preorder p(=<X,) on p(JI) such that p(K) p(<,) p(K') iff
u=x.vfor some ue K, ve K'. It is obvious that p(=<,) is a partial order
on p(IT) since K, K’ are classes modulo =.

Note that p(K)e K if K is a minimal class (w.r.t. <), but it is possible
that p(K)¢ K if K is not minimal. However, as shown in the next lemma,
p s injective and even though p(K) may not be in K, this does not matter
for our purposes as shown below.

LEMMA 6.22. Let (O be an order assignment on a partition Il on ST(S),
and 0 any joint unifier of the classes modulo =,. (i) For every class K
modulo = ,, 8(K)=0(p(K)) (with the slight abuse of notation where 8(K)
denotes the term s such that 8(u)=s for all ue K). (1) Every representative
selector is injective.

Proof. First, note that since the set of classes modulo = is finite, the
strict order < is well founded. We prove (i) by induction on the well-
founded ordering <. For a minimal class K, since p(K)=u for some
element ue K and 8(K)=6(u), it is clear that 8(K) = 0(u) = 0(p(K)). For a
nonminimal class X, if

K={f(t}, 1), o, f(E7, s 7))

is the subset of compound elements in K, then p(K) is the unique ground
term in

p(K)={f([1D2 )s o PCLEE T 2 )y oS (PULETT 2 s s (L] 2 )}
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if it exists, or else any chosen eclement in p(K). Assume that
flo([t1]=,), - p([2,,]1=,)) was picked. Since t} is a proper subterm of
f(t}, .., 1), by the definition of < we have [¢]]_, <K for all i, 1<i<m.
Thus, by the induction hypothesis

Blp([; 1= N=0([1;1-,)=0(1})

for all i, 1 <i<m, and since # is a homomorphism,

B(p(K)=0(f(p([1:]= ) s p([1,,] =)
=/(0(p([£,3=))s s Op([1,] =)
=£(0(t;), ... 0(1,,))
=0(f (1, . 1))
= (K)

This concludes the induction step and the proof of (i).

To prove (ii), we proceed by induction on the well-founded ordering <,
defined on pairs of classes modulo =, such that {K;, K,> <, (K{, K3)
iff K; < K| and K, < K. Assume that p(K)= p(K’). There are three cases.

If both K and K’ are minimal w.r.t. <, since in this case p(K)e K and
p(K')e K', we have K=K".

If K is minimal but K’ is not (the case where K’ is minimal being
symmetric), then p(K') is some compound term but p(K) is either a
constant or a variable since K is minimal, and this is a contradiction.

If both K and K’ are not minimal, then both p(K) and p(K') are
compound terms and we have

p(K)=f(p([s:]1= ) s P([5:m]=,))
and
p(K)=f(p(Lt]<.) - p([Em] =)

for some terms f(s,, .., 5,,) € K and f(¢,, .., 1,,) € K'. From the definition of
< and <,, it is clear that

<[Si]£@s [tf]E(f,> <2 <K’ K/>

Since p(K)=p(K'), we have p([s,]-,)=p([t,]=,) for all i, 1<i<m. By
the induction hypothesis, this yields [s,]1-,=1[t,]-,, that is, s, =, ¢, for
all i, 1<i<m. Since =, is congruential, the above implies that
S(815 e S) =0 f(£y, oy 1), and so K= K'. This concludes the induction
step and proves that p is injective. |

The following lemma shows that representative selectors always exist.
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LemMMA 6.23 (Construction of representative selectors). Let ¢ be an
order assignment on a partition II on ST(S). There is an algorithm to
construct representative selectors p: =, — T5(X).

Proof. 1t is easy to design an algorithm that proceeds bottom up in the
acyclic graph corresponding to the strict order <, say performing a
topological sort, and assigns representatives according to the rules given in
Definition 6.21. The details are straightforward and left to the reader. }

LeMMa 6.24. Let © be an order assignment on a partition Il on ST(S).
The strict order p(=X o) on p(Il) is a simplification ordering such that every
nontrivial class of p(IT) has a least element, and it is total on this set of least
elements. If I1 is the congruence closure associated with a set E of equations,
then p(II) is the congruence closure associated with p(E).

Proof. To show that it is a simplification ordering, we proceed by
induction on the well-founded ordering <. The other properties are
immediate because =<, is an order assignment. J

We can now modify the procedure of Definition 6.4 in order to accom-
modate variables.

DEerFINITION 6.25 (Reduction procedure R). Let < be a total simplifica-
tion ordering on ground terms. Let & =&y U {eq(u, v) = F, eq(z,z) = T}
be a finite set of equations, where &5 is a set of equations over T-(X), and
u, ve Tx(X). Given any order assignment ¢ on &, the procedure R returns
a rigid reduced rewrite system R(&, @0). To form the system R(&, (), first,
we use the algorithm of Lemma 6.23 to get a representative selector p for
=, (if is not the identity), and we let & be the reduced set p(&). Trivial
equations are discarded. Let IT' be the congruence closure associated with
é'. By Lemma 6.24, p(=<,) is a simplification ordering such that every
nontrivial equivalence class of IT' has a least element and it is total on this
set of least elements. From this point on, we apply to ' and /T’ the proce-
dure described in Definition 6.4, except that at the end of every round, it
may be necessary to extend ¢ and modify the representative selector p,
since new terms may arise due to simplification. If at every round an exten-
sion of @ can be found so that the next step can be performed, R succeeds
and returns a rigid reduced rewrite system denoted as R(&, V). Otherwise,
R returns failure.

It is useful to remark that since the reduction procedure deals with sets
of equations of the form & = & U {eq(w, v) = F, eq(z, z) = T}, in the con-
gruence closure 7 of &, the classes of T and F are always {eq(u, v), F} and
{eq(z, z), T}. From the way we have extended < to take care of T, F, and
terms involving eq, it will be shown as a corollary of Theorem 8.2 that
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there is no loss of generality in choosing order assignments such that
T, F<,s<pequ,v)foralls, u, ve To(X). Using Lemma 6.13, we can
show the following crucial result.

LEMMA 6.26. Let & =6&xv {eq(u, v) = F, eq(z, z) = T} be a finite set of
equations, where & is a set of equations over Ty(X), u,ve Tz (X), and < a
total simplification ordering on ground terms.

(1) Given an order assignment O on &, if a substitution 8 (not
necessarily ground) unifies TU, and R does not fail, then 8(R(&, 0)) is rigid
equivalent to 8(&).

(ii) Given an order assignment C on &, if some ground substitution 0
realizes O and R does not fail, then O(R(&, ) is rigid equivalent to 0(&).

Proof. First, we prove (i). Let IT be the congruence closure of &, and
let TU, be the triangular form associated with = .. Since 8 unifies TU,,
# unifies every class modulo = . If p is the representative selector given by
the algorithm of Lemma 6.23, by Lemma 6.22, we have 6(K) = 6(p(K)) for
every class K modulo =,. Then, for every equation / = re &, we have
0(p([11=,) = p([r]1=,))=06(l=r), and this shows that 6(&) and
0(&') = 8(p(&)) are rigid equivalent. Since the result of applying the reduc-
tion procedure of Definition 6.4 to &' = p(&) yields a system R(&, () that
is rigid equivalent to &’ when R does not fail, the systems 0(R(&, ¢)) and
0(&') are also rigid equivalent, and so O(R(&, ¢)) and 6(&) are rigid
equivalent.

The proof of (ii) follows from the fact that since 8 realizes ¢, then 0
unifies 7U,, and by using (i). ||

It is important to note that part (i) of Lemma 6.26 holds even if 0 is not
ground. This fact will be used in the proof that the method is sound. We
are now ready to define a procedure for finding rigid E-unifiers.

7. A METHOD FOR FINDING COMPLETE SETS OF RIGID E-UNIFIERS

This method uses the reduction procedure of Section 6 and a single
transformation on certain systems defined next. First, the following defini-
tion is needed.

DrerINITION 7.1.  Given a set E of equations and some equation / = r,
the set of equations obtained from E by deleting / = r and r = / from E is
denoted by (E—{/=r})". Formally, we let (E-{I=r})'=
(u=viu=veEu=v#l=r,and u = v#r = [}.
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DErFINITION 7.2. Let < be a total simplification ordering on ground
terms. We shall be considering finite sets of equations of the form
&=68xu {eq(u,v) = F,eq(z,z) = T}, where & is a set of equations over
Ts(X), and u, ve T-(X). We define a transformation on systems of the
form (¥, &, ¢, where & is a term system, & a set of equations as above,
and ¢ an order assignment:

<=%9 éaO’ (ﬂ()>: <'5pl’ éﬂ]’ (/ﬁl)’

where [, = r,, 1, = r,eéyu &, ", either [,/f is nor a variable or [, = r,
is degenerate, [,/B+#1,, TU(l,/B,,) represents a mgu of //f and /,
in triangular form,"” &=[1/x,,..,1,/x,] where TU(/,/f,1,)=

(00 1100 (X 1,5, o
5’1:0((50—{11 = rl})*u{ll[lﬁ——rz] = rl}),

¢, is an order assignment on &) compatible with ¢,, % =S,u
TU(\/p, 1) o TU,, and &= R(E", ().

Observe that a(/,[f < r,] = r,) looks like a critical pair of equations in
& &y, but it is not. This is because a critical pair is formed by applying
the mgu of /,/f and /, to I,[f < r,] = r, but [¢,/x,, .., t,/x,] is usually
not a mgu of /,/f and /,. It is the composition [#,/x,];...; [1,/x,] that is
a mgu of /;/B and /,. The reason for not applying the mgu is that by
repeated applications of this step, exponential size terms could be formed,
and it would not be clear that the decision procedure is in NP. We have
chosen an approach of “lazy” (or delayed) unification. Also note that we use
the rigid reduced system R(&}, ¢,) rather than &, and so, a transformation
step is defined only if R does not fail. The method then is the following.

DEFINITION 7.3 (Method). Let £, ,=FE U {eq(u, v} = F, eq(z,z) = T},
(O, an order assignment of E, ,, %, =TU,, 6 =R(E, ,, (), m the total
number of variables in &), and V' = Var(E)u Var(u, v). For any sequence

<%9 éa()a (/(b> =" <<9;\’ gk’ €k>

consisting of at most m transformation steps, if % is unifiable and k <m
is the first integer in the sequence such that F = T e &, return the substitu-
tion 0, |V, where 8, is the mgu of 4 (over Tx(X)).

We shall prove that the finite set of all substitutions returned by the
method of Definition 7.3 forms a complete set of rigid E-unifiers of v and
v. In particular, the method provides a decision procedure that is in NP.
But first, we illustrate the method by means of two examples.

3 Note that we are requiring that /,/f and /, have a nontrivial unifier. The triangular form
of mgus’ is important for the NP-completeness of this method.
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ExamPLE 7.4. Let E be the set of equations E= {fa = a, ggx = fa},
and <u,v)>= (gggx, x>. We have

E,.={fa=a, ggx = fa,eq(qqx, x) = F,eq(z,z) = T}.

The congruence closure 17 of E, , has three nontrivial classes {q, fa, ggx},
{eq(gggx, x), F}, and {eq(z, z), T}. Let ¢, be the order assignment on E, ,
where every equivalence class is trivial and such that

T<(’0 e‘](gggx, X),
F<(’0 e‘I(Z, Z)a
a< ¢ fa< ¢, 88X,

the least elements of classes being ordered in the order of listing of the
classes. We have %, = @, and the reduced system &= R(E, ,, () is

bo={fa = a, ggx = a, eq(ga, x) = F, eq(z,z) = T}.

Note that there is an overlap between eq(ga, x) = F and eq(z,z) = T
at address ¢ in eq(ga, x), and we obtain the triangular system
{<{x,ga), (z,ga)} and the new equation F = T. Thus, we have

<%s éﬂO’ (90> = <'5p1’ éF)l’ (91 >a
where # = {{(x, ga), {z,ga)}
&1={fa = a ggga = a,eq(ga,ga) = F,F = T},

and ¢, is the restriction of ¢, to the subterms in &. After reducing &, we
have

&={fa = a,ggga = a, eq(ga,ga) = T, F = T}.

Since F = T'ed, and & is unifiable, the restriction [ga/x] of the mgu
[ ga/x,ga/z] of # to Var(E)u Var(u, v) = {x} is a rigid E-unifier of gggx
and x.

ExaMPLE 7.5. Let E be the set of equations of Example 6.17 and
{u,vy=<a-b,b-a), so that

E,.,={u-1=u
wyew, =1

(xi-yi)zy = x-(y-2y)

[N
[
~—

(x2:¥2-2; = x5 (y2-



168 GALLIER ET AL.

Wy W, =1
1 Uy, =
(x3-¥3) 25 = x3-(ps-23)

(Xg-y4) 24 = x4-(ya-24)

—

Wiy w 3 =
egla-b,b-a) = F
T

eq(z,z) = T}.

In working out this example, the following useful fact will be used, Given
an order assignment ¢ on a partition /7 associated with a set E of equa-
tions, if the rewrite system R obtained by orienting E using <, is already
reduced, then there is no need to sort the least elements of the nontrivial
classes.

Let (), be the order assignment of Example 6.17. The set E, , is already
reduced, and so §,=R(E, ,, () =E, ..

There is an overlap between (x,-y,) -z, = x5 (y2-25) and wy-w, = 1,
due to the unification of the pair {x,-y,, w,-w,». Thus we obtain the
system

r9’/1 = {<x2’ Ws >, <.V2’ W2>}

and the new equation

The nontrivial equivalence classes of the congruence closure 17, of & are
{T,eq(z,z)},
{F,eq(a-b,b-a)},
{1, wy wy, wy-wy, wy-wy},
{ul s Uy - 1 }’

{Ul’ 1 'UI}’

{x4 (Va-z24) (X4-54) ‘24},
3

{xl Ayr-z0) (x '}’1)'21}-

ey

{x3 A y3+Z3), (x3:93)-
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We define the order assignment ¢/, on II, whose equivalence relation is the
identity and such that the ordering <, is defined by the order in which the
elements in each class of IT, are listed, and for the least elements in these
classes, the order in which the classes are listed. It is easy to see that

II-

& =1{u -1 =u
wyenw, =1

(xy-yi)-z0 = x-(yy-2y)

Wy -w, = 1
-0, =1
(X3~y3)'2’3 = x3.(}~3.:3)
(-’(4')74)'24ix4‘(}’4'24)
wy-wy = 1
eq(a-b,b-a)=F
eq(z,z) = T}.

There is an overlap between 1.z, = w, - (w,-z,) and 1-v, == v, due to the
unification of the pair {(1.z,, 1-z,). Thus we obtain the system

Sy ={ X2, w20, {yaa W), {22, 0 D}
and the new equation
Uy = Wy (wyev)

The nontrivial equivalence classes of the congruence closure /7, of &% are

{T, eq(z, z)},

{F,eqa-b,b-a)},

{1, wy o wy, wa oWy, wyow, ],

{uy,u -1},

{v, Lo, wa-(wa-vy) ),

{x4 (ya-za) (x4-¥4)- 2’4},

(X5 (r3-23), (X3-33) - 23 ),

{xl '(yl 'Zl), (xl -)’1)-:’1}.
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We define the order assignment ¢, on I1, whose equivalence relation is the
identity and such that the ordering =<, is defined by the order in which the
elements in each class of I7, are listed, and for the least elements in these
classes, the order in which the classes are listed. It is easy to see that

‘502:{“1'1 = u,

Wy Wy = 1
eqa-b,b-a)=F
eq(z,z) = T}.

The next two steps are similar to the previous two. Due to the similarities,
we omit some details.

There is an overlap between x,-(y,-2,) = (x4-y4)-z4 and wy-w; = 1,
due to the unification of the pair {y,-z4, w;-w;>. We obtain the system
’%= {<x2’ W2>, <.V2’ W2>, <225 Ul>a

(Yar W30, {24y W3}

and the new equation
X4-1 = (x4-w3)-ws.
The order assignment () is easily determined, and we have

&E={u-1=u
w-wy =1
(xi-y)zy =x,(py-2y)

wy-(wy-ty)

Uy
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W2'W2 i ]
1.vy = v,
(x3-y3)z3 = x3-(y3-23)

(xg-w3)-wy =x4-1

W3 "'V3 = 1
eqa-b,b-a)=F
eq(z,z) = T}.

The next overlap is between x,-1 = (x,-w,)-w; and u, -1 = u;, due to
the unification of the pair {x,-1, u;-1). We obain the system

Fa={{X2, w2, {¥2, W2, {Z2, V1 ),
CYar W3, (Zay W3, {Xgy )}
and the new equation
(ug-wy)-ws = uy.
The order assignment ¢, is easily determined, and we have
Ey=1{u -1 =u,
wy-wy =1
(xl 'yl)'zl = X1 (yl 'Zl)
Wy Wy Uy) = 0y
Wwyew, =1
.o, =,
(x3-¥3) 23 = x3-(y3-23)

(y-wy)-wy = uy

wi-wy = 1
eqa-b,b-a)y=F
eq(z, z) = T}.

The next overlap is between x,(y,-z,) = (x,-y,)-z, and w,-w, = 1, due
to the unification of the pair (y,-z,, w,-w, ). We obtain the system

‘%{<x27 W2>, <y2’ W2>7 <Z2’ Ul)’
<)’4, W3>, <Z4, W3>’ <X4, u1>a
<y19 W1>’ <Zla W1>}

643/87/1/2-12
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and the new equation
Xl = {x;-wy)wy.
The order assignement ¢ is easily determined, and we have
Es=1{u,-1 = u,
wp-wy =1
(xy-wy) wyp = x;-1
Wy (Wy-0y) = v
Wwyow, =1
v, =,
(x3:¥3) 23 = x3-(y3-23)

(uy-w3)-wy = u,

W3‘W3 = 1
eqa-b,b-a) = F
eq(z,z) = T}.

The next overlap is between x,-1 = (x;-w,)-w, and u,-1 = u,, due to
the unification of the pair {(x,-1, u,-1>. We obtain the system

Fo={<{x2s Wy, {¥2s W3, {22, 01 ),
CYas W32, {2, W32, (Xas 11y,
yows 2w, (U, x 0}
and the new equation
X, = (X wy)-w,.
The nontrivial equivalence classes of the congruence closure 7 of & are
{T, eq(z, z)},
{F,eq(a-b,b-a)},
{1, wy Wy, wy-wy, wy-w;},
{x1, 11, (x1-wa) - ws, (X, -wy)-wi
{vy, 1oy, wy-(wy 1)},

{x3 (y3-z3) (x3:¥3) ‘Z3}~
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We define the order assignment @ on IT; whose equivalence relation is the
identity and such that the ordering <, is defined by the order in which
the elements in each class of I, are listed, and for the least elements in
these classes, the order in which the classes are listed. It is easy to see that

E=1{x,-1=x,
weew, =1
(x1-wy)-wy = x;

wy(w, - vy) = vy

Wy ewy =1

l.v, =v,
(x3-y3)-23 = x3-(y3-23)

(xy-w3)-wy = x4

W’}'W:; = 1
eqa-b,b-a) = F
eq(z,z) = T}.

The next overlap is between (x,-w;}-w; = x; and w,-(w,-v,) = v,, due
to the unification of the pair {x,-w,, w,-(w,-v;})>. We obtain the system

‘% = {<x2’ l"’y2>9 <J/2, W2>, <22’ U]>’
<y4’ W3>, <Z4’ W3>’ <X4, Uy >,
Ky wis zy, wid, Uy, xp),

{xyp, wap, wy, Wz‘”1>}

and the new equation

vy (wy-vy) = wy.

The order assignment ¢ is easily determined, and we have
E={w-1 =w,
(wy-v)-(wy-vy) =1
v, -(wz-vl) = w,

wy - (wy-0) = v,
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Wy -w, =1
1o, = v,

(x3-p3) 23 = x3-(y3-23)

(wz.w3).w3 = W,

Wy wy =1
egla-b,b-ay=F
eq(z, z) = T}.

The next overlap is between x;-(y;-2z3) = (x3-y;3)-z3 and (w, -w;)-
wy = w,, due to the unification of the pair {y;-z3, (W -w;3) -w;3)>. We
obtain the system

HK= {<x29 Wi, { ¥z, W), {22, 0,
(Yas Wi, {Zgr W3, {Xa, Uy ),
{yis Wi, L2y, Wiy ty, X1 ),
Cxps wa ), KWy, Wy 1), (ys, Wa W3,
(23, Wi}
and the new equation
X3-wy = (x5 (wy-w3))-ws.
The order assignment € is easily determined, and we have
bo=1{wy 1 =w,
(wy-vy)-(wy-vy) =1

vi-(wyvy) = wy

Wy (Wy-vy) =0
wy-w, =1
v, = v

(x5 (wa-w3)) - ws = Xx3-X;
(wy-wiy) w3 = w,
wy-wy =1
eq(a-b, b-a) =
eq(z, z) = T}.

il
"
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The next overlap is between (x;-(w,-ws3))-w; = x3-w, and v;-(w;,-v,)
= w,, due to the unification of the pair {x;-(w,-w3), v,-(w,-v;)). We
obtain the system

Fo={<x3, W2, {¥a, W2, {22, 01,
Cas wip, {245 w3, X4, Uy ),
(i Wi L2y, Wi, Sy, X1,
Cxp, W, KWy, Wy vy), V3, Wa W3,
(z3, W3, X3, 01, {W3, 01 )]
and the new equation
Wy Uy = D) W,.
The order assignment @, is easily determined, and we have
So={wy-1 =w,
(Wwy 1) -(wyovy) =1
vy (wyo0y) = w,
Wy (wy-vy) = 1y
wy-wy =1
1-v, = v
Vy-Wy = Wy-0y

(wy-v1) vy = w,

v,-v, =1
eqla-b,b-a)y=F
eq(z,z) = T}.

The next overlap is between eq(a-b,b-a) = Fand v, -w, = w,-v,, due to
the unification of the pair (b-a, v, -w,). We obtain the system

Fro= {{x2, w2, {p2, w20, {22, U1 ),
(Yas W3, {24y W3, {Xgy Uy ),
i wi, 2wy, Uy, X1,
Xy, Wa), AWy, Wy D), {¥3, Wy-W3),
(23, w32, X3, 0,3, (W3, 01,

<Ula b>’ <W2, (l>}
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and the new equation

eqa-b,a-b)y = F.

The order assignment (), is obvious, and we have

Eo=1{a-1=a
(a-b)-(a-b) =1
b-(a-by=a
a-{a-by=b»b
a-a=1
l-b=bh
b-a=a-b
{a-b)y-b=a
b-b=1
eqa-b,a-b)=F
eq(z, z) = T}.

The last overlap is between eq(z, z) = T and eg(a-b, a-b) = F. We obtain
the system
Fir={{xg, wy), (¥, wad, (22,0,

Chas w3, {Zgy W3, {Xay ),

yiuwid Lz wy), Suy, xp),

X1 Wo 0, KWp Wy v ), {y3, W W3,

(23, wap, (x5, 00, {Ws, 0,

v, b, {wy,a), {z,a-b)}

and the new equation

After reducing £1,, we obtain
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bu={a-1=a
(a-b)-(a-b) =1
b-(a-b)=a
a-(a-b)y=»>
a-a=1
1-b=5»
b-az=a-b
(a-b)-b=a
b-b=1
eqa-b,a-b)y =T
F=T}

Since F = Te &, and ¥, is unifiable, the restriction of the mgu of 4, to
Var(E) is a rigid E-unifier of a-b and b - a, and it is easy to verify that this
substitution is

0= [afuy, a/x,, a/x,, ajy,, a/w,, ajx4,
b/zy, bfvy, b/x3,v/z3, b/ys, bjz4, bjws,
a-b/wy,a-b/y,,a-bjzy,a-bjy;].

Hence, we have shown that every monoid such that x-x=1 for all x is
commutative.

It is interesting to note that most of the guessing in Example 7.5 has to
do with guessing overlaps among equations, because the ordering of the
terms is never really problematic. This is because we can use the subterm
property, the fact that consants are always smaller than compound terms,
and some depth considerations. By contrast, we shall redo Example 7.5
using the order assignment ¢’ of Example 6.17. This time, it will not even
be necessary to form critical pairs, but this is because (' is already a guess
of a solution! Note that this guess represents one partition among a very
large number of partitions. We will come back to this point after the
example.

ExaMpLE 7.6. Recall that the nontrivial equivalence classes of = . are

{a, uy, x1, X5, Vo, Wa, X4},

{b, Z3,Uy5 X35 23,45 245 W3}a
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{wa-wy, X332},
{a-b, Wi, YisZ1s V322, Vo 22, X4 Va)s
{wy-wa, ya-24f,
{wiw,yoz

Using the method of Definition 6.21 for choosing a representative selector
and forming a reduced set of equations, it is easy to see that E, , yields the
set of ground equations

&'={a-l=a
(a-b)-(a-b) =1
(a-(a-b))-(a-b) =a-((a-b)-(a-b))
(a-a)-b=a-(a-b)
a-a=1
1-b=b
(b-(a-b))-b=b-((a-b)-b)
(a-b)-b=a-(b-b)
b-b=1
egla-b,b-a)=F
eqla-b,a-b) = T}.
With a little bit of work, one can verify that F and T are congruent from

&’. Thus, we have found a solution, and it easy to see that the joint mgu
of the classes of = is the substitution 8 of Example 7.5.

It is particularly appropriate at this point to comment on the computa-
tional complexity of guessing an order assignment (. Note that this
involves guessing an equivalence relation =, that is, a partition. The
number of partitions on a set of n elements is given by the “Beli exponen-
tial number” B, (Berge [6]). The Bell numbers have the remarkable
property that

From this, we have the formula

1 2" 3" 4 m"
Bn+1=;(1+ﬁ+—+—+---+ +>



RIGID E-UNIFICATION 179

attributed to G. Dobinski (Berge [6]), which shows clearly that B, ,
grows exponentially fast. In the case of Example 7.6, there are 18 variables,
and B, is already a respectable number! It is therefore highly desirable to
find criteria for weeding out partitions that will lead to failure of the
method. It is also desirable to favor the formation of critical pairs, since
this is much more deterministic than guessing partitions.

8. SOUNDNESS, COMPLETENESS, AND DECIDABILITY OF THE METHOD
First, we show the soundness of the method.

THEOREM 8.1 (Soundness). Let E be a set of equations over Tx(X), u,
v two terms in To(X), E, ,=Eu {eq(z,z) = T, eq(u, v) = F}, O, an order
assignment on E, ., $,=TU,,, &=R(E, ,, (), m the total number of
variables in &,, and V =Var(E) v Var(u, v). If

<‘%5 £07 (90> :+ <'5€(sgk’ ﬁk>y

where &, is unifiable, F = Te &, and F = T¢ &, for all i, 0<i<k <m, then
04,1y is a rigid E-unifier of u and v, where 0, is the mgu of ¥, (over
Ts(X)).

Proof. We shall prove the following claim by induction on k.
Claim. Given any set & =& U {eq(u, v) = F, eq(z,z) = T}, with & a
set of equations over T'x(X) and u, ve T5(X), for any triple <%, &, 5>,

where ¢, is an order assignment on &, ¥ is any triangular form containing
TUg,, and &,= R(&, &), if

<'5’63 éﬂOa (90> $+ <y;“ évk’ (ﬁk>’

where % is unifiable, F = Te &, and F = T¢& for all i, 0<i<k<m,
then 64, is a rigid &-unifier of T and F, where 0, is the mgu of % (over
Tx(X)).

Proof of Claim. In the base case, we must have k=1 because
F=T¢&UE, . In order that F= T be in &, the transformation step
must be

(H» b, Go) = {H0 TU(eq(z, 2), eq(u, v)) U TU,,, R(&, ), C,),

where &) =0((&— {eq(z,z) = T})U {F = T}), TU(eq(z, z), eg(u, v)) s
the triangular form of a mgu of eq(z, z) and eq(u, v)(over Ts(X)), and
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0"'=0, is the mgu of &. Since TU(eq(z, z), eq(u, v)) is a triangular
form of the mgu of eq(z, z) and eq(u, v) and 6’ is the mgu of
HA=FHvu TU(eq(z, z), eq(u, v)) 0 TU,,, we have 0'(eq(u, vl) =0'(eq(z, z)).
Since eq(u, v) = F and eq(z,z) = T are in &, we have T =4, F, and ¢
is a rigid &y-unifier of T and F (over T-(X)). Recall that TU, = %. Since
%95’ and 0’ is a mgu of ¥, 8’ unifies TU,,. Thus, by Lemma 6.26(i),

(€)Y and 0'(&)=0'(R(&, ()) are rigid equivalent. Therefore, 8" is a rigid
&-unifier of T and F.

For the induction step, assume that

<‘%’é50a (Q()>$<5’j’éolacol>:>+<<%(’gk’ (pk>’

where & =% 0 TU(,/B, 1) 0 TU,,, & =R(&, O) with
Ei=a((é—{l; = "1})+U{11[ﬂ*"72] =r}),

S, is unifiable, F = Teé,, F=T¢é& for all i, 0<i<k<m, TU(/B,I,)
represents a mgu of /,/f and /, in triangular form, o= [1,/x,, .., 1,/x,],
where TU(L/B, 1,) = {{xy, 1,0, ., {X,, 1,7}, and 0" =0, is the mgu of &,
over Ty(X). Note that TU, =% <% and [|[f«r,] =r, cannot be
F = T. Thus the induction hypothesis applies to {4, &, ¢, >, and the mgu
0’ of & is a rigid &,-unifier of 7 and F (over Tx(X)). Since 0’ is a mgu of
%, TU(L/B, 1) S, and TU(l,/B, I,) represents a mgu of /,/f and /, in
triangular form, we have 0'(/,/8)=0'(l,). Because TU(l,/B, I,) represents a
mgu of /,/f and /, in triangular form, ¢ is the substitution associated with
TU(l,/B, 1,), and €' is a unifier of TU(!,/B, ;). by Lemma 3.5, we have
ag; 8’ =6'. Consequently

06N =0"(c((&—{l =r D) {lL[Ber]=r}))

=0'((& {1—"1} Y UlL[Bera] = 1)) (1)
From 0'(1,/p) = , we have
0'(1)=0(U)B«0'(/B)=0()B« 8'(L5)]. (2)

Then we have

(LB r)=0()B<0(rr)]
_’emém6'(11)[.3*9/(12)]
=60'(l;)  by(2)

0'(r)

oih=rp
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and
0'(1)=0'())[B<01()] by(2)
oy (LB < 0(ry)]
=0'(L[B<r.])

oW~ rl=r) 0'(ry)

Thus, 6'(/,[f«r,] = r,) is provable from {&'(/, = r;), 8'(/; = r,)} and
0'(l, = r,) is provable from {0'(/,(B«r,] =r)), 0'(,;=r,)}. Since
I, =r,l, =r,eduéy', then 6(&) and O(&—{L =r})u
{l,[B«r,] = r}) are rigid equivalent and by (1), 0'(£}) and 0'(&,) are
rigid equivalent. Since TU, & A S ¥ and 0’ is the mgu of &, 6 unifies
TU,,, and, by Lemma 6.26(i), 0'(&,) = 0'(R(&, ¢),)) is rigid equivalent to
0'(€7). Since we just showed that 8'(£7) and 6'(&,) are rigid equivalent,
then €'(&) is rigid equivalent to 0'(&,). Hence, since by the induction
hypothesis T égl(gl) F, we have T ég/(éwo) F, and €' is a rigid &,-unifier of T
and F (over Tx(X)). Since TU,, & % < % and 0’ is a mgu of %, 6’ unifies
TU,,. Thus, by Lemma 6.26(i), 0'(¢) and 0'(&)=0'(R(&, (,)) are rigid
equivalent. Therefore, 6’ is a rigid &-unifier of T and F. This concludes the
induction step and the proof of the claim. |

Applying the claim to ¢,=TU,,, and &= R(E, ,, (), we have that 6’
is a rigid E, ,-unifier of T and F, where 6'=0,, is the mgu of % (over
Ts(X)), and by Lemma 6.3, 0,1, is a rigid E-unifier of u and v. I

The reader may have noticed that the proof of Theorem 8.1 does not use
the fact that the systems R(é&}, ¢);) are rigid reduced, but only the fact that
0'(&) and 0'(R(&;, () are rigid equivalent provided that §" unifies TU,.
However, the fact that the systems R(&;, ();) are rigid reduced plays a
crucial role in the proof of the completeness theorem. The careful reader
may also have noticed that if §' is the mgu of %, its Skolemized form 6§’
may not realize any of the order assignments ¢! However, this does not
matter for soundness. The important fact for soundness of that 8'(&£)
and 0'(R(&;, O;)) are rigid equivalent provided that 0" unifies TU,,. The (/s
are needed only for the completeness of the method, and to make sure that
the reduction procedure terminates. This will be clarified by the proof of
the completeness theorem. What is true is that for any mgu 6’ obtained in
the soundness theorem, there is another ground substitution 8, such that
6,= 0, and there is another sequence of steps as in the soundness
theorem such that #, is a unifier of %, (the last triangular system in the
second sequence) and realizes all the ¢’s of the second sequence.

We now turn to the completeness part. The main technique is roughly
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the removal of peaks by the use of critical pairs (Bachmair [3], Bachmair,
Dershowitz, and Plasted [4], Bachmair, Dershowitz, and Hsiang [5]).

THEOREM 8.2 (Completeness). Let E be a set of equations over Tx(X)
and u, v two terms in T (X). If 0 is any rigid E-unifier of u and v, then there
is an order assignment (y on E, ., and letting %, =TU,,, 6,=R(E, ., (),
m the number of variables in R(E, ,, G,), and V =Var(E)u Var(u, v), there
is a sequence of transformations

<‘%’ g{)* (90> :>+<'56(’ (Dﬁka Cﬂk>,

where k<m, % is unifiable, F=Teé,, F=T¢6&, for all i,0<i<k, and
Oy 1y <z O[V], where 8, is the mgu of &, over Tx(X). Furthermore, 0|,
is a rigid E-unifier of u and v.

Proof. First, since it is clear that the method satisfies the condition of
Definition 4.9. by Lemma 4.10, it can be assumed that 6 is a ground sub-
stitution and that V' < D(#). By lemma 6.3, 8 can be extended to a substitu-
tion 6" such that 6=0"|,,,_ .., and 0" is a rigid E, ,-unifier of T and F,
where E, ,=Eu {eq(u, v)=F, eq(z,z)=T} and z is a new variable not in
V. By Lemma 5.4, there is a minimal ground substitution 8, such that
6, cE, 0,0, is a rigid E, cunifier of T and F, 6, is reduced w.r.t.
6,(E, ,), and since D(#)=D(0,) and V< D(f), we also have V< D(0,).
Let O, < <y, ,, be some order assignment garanteed to exist by Lemma
6.13. Since 6, reahzes (%, by Lemma 6.26(ii), 0,(&,)=0,(R(E, ,, (,)) and
6,(E, .) are rigid equivalent. It is also true that 6, unifies T7U,,. We claim
that 9 must be reduced w.r.t. 0,(&). Otherwise, as in the proof of Lemma
5.4, we would be able to form a substitution ) << @, such that 8/, 0,.
Since 6,(E, ,) and 6,(é,) are rigid equivalent, we would have 0/, ,0,,
and with 6, g, 0, using the transitivity of =  shown in Lemma 4. 4 we
would have 8} : Cp, 0, and so 01€Sg g ro, contradlctmg the minimality
of 6,. We shall prove the following claim.

Claim. Given a ground substitution 6, such that V< D(8,), letting
Gy S <, 5. be some order assignment garanteed to exist by lemma 6.13,
&y= R(&, () where & =6&xu {eq(u, v)=F, eq(z,z)=T}, with & a set of
equations over Tx(X) and u, ve Tx(X), and % a triangular form contain-
ing TU,, if #; is reduced w.r.t. 6,(6,), a unifier of %, and a &-unifier of
T and F, then there is a sequence of transformations

<'%’ (50‘0’ 60)3+<‘%\7 gka (Ok>,

where k <m, % is unifiable, F=Te &, F=T¢ &, for all i, 0<i<k, and 8,
unifies %, (over Tx(X)). Furthermore, 6, realizes all ¢, 0<i<k.
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Proof of Claim. Let
T=1ug 80 U1 o80) " “0180) Un—1 T oysg) Un=F

be a proof that T é@l( ¢ F. We proceed by induction on the pair
{m, {ug, ..., u,} >, where m is the number of variables in &, and {u, ..., u,}
is the multiset of terms occurring in the proof. We use the well-founded
ordering on pairs where the ordering on the first component is the ordering
on the natural numbers, and the ordering on the second component is the
multiset ordering <,, extending <. First, observe that since T< F<r<
eq(s, t) for all r, s, te Ty, the above proof must have some peak because
oriented instances of the equations eq(u, v)=F and eq(z, z)=T are of the
form eq(s, 1) » F and eq(s, s) > T. Thus, in the base case, we have m= 1,
n=2, and u, =0,(eq(u, v))=0,(eq(z, z)). Hence, 0, is a unifier of eg(z, z)
and eq(u, v). Since 6, is also a unifier of ,%, it is obvious that 6, is a unifier
of HuTU(eq(z, z), eq(u, v)). Let & =0((6 — {eq(z,z)=T})U {F=T})
and O, < <0, ,; be some order assignment guaranteed to exist by Lemma
6.13, where o is associated with TU(eq(z, z), eq(u, v)). Clearly, 8, is a
unifier of TU,,. Hence, 6, unifies %, U TU(eq(z, z), eq(u, v)) v TU,,, and
we have
<%9 éaO! (90> = <<%’ 21> (91 >’

with A =S40 TU(eq(z, z), eq(u, v)) U TU,, and &, = R(&}, ). Note that
R(&, 0,) does not fail because for every round of the reduction procedure,
we can choose some order assignment ¢, € <4 , induced by 8, on the
current set of equations &', Since 0, also realizes (/1 S X, ¢, (and G), the
claim holds.

For the induction step, consider a peak u; | < (g0 U; = 0,04 Ui+ 1, NOtE
that u;>u,; , and u,>>u,, ;. Assume that

Ui =y, 000 =rp1 Hi i
and
Ui =18, 015 = rp)] Uit 15

where I, =r,, ,=r,eé,u &, " and B, and B, are addresses in u;. We need
to examine overlaps carefully. There are three cases.

Case 1. B, and B, are independent. Then, letting v=u,[f, < 0,(r,),
By« 0,(ry)], we have u;_ | =440 s, %41, and u,;>>v. We obtain a
proof with associated sequence {ug, ..., U;_ 1, U, U;, 15 ..., U, ». Since u, > v,

{U0sewes U} > (g s Uy 1 0 Uy s e u,,

and we conclude by applying the induction hypothesis.
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Case 2. f, is an ancestor of f§, (the case where f, is an ancestor of §,
is similar), and letting 8, =8, 8, 0,({,)/f = 0,(/,), and f occurs in some sub-
term of the form 6,(x) in #,(/,), where x is a variable in /,.!* Because 8,
is rigid reduced w.r.t. 6,(&,), by Lemma 5.4, 6,(/,)/8 cannot be a proper
subterm of 6,(x). Thus, the only possibility is that 6,(/,)/f=6,(x). By
Lemma 5.4, /,=r, must be a degenerate equation, and we have /, =y for
some variable y. The case y = x is impossible because &, is rigid reduced.
Thus y # x, and since 6,(/,)/f=0,(x)=8,(/,), 8, is a unifier of {x, y>. The
rest of this case proceeds as in Case 3, below.

Case 3. B, is an ancestor of f, (the case where B, is an ancestor of f3,
is similar), and letting 8, = 8,8, 6,({,/8)=0,(/,), and either /,/8 is not a
variable, or /,/f=x and /,=r, is a degenerate equation y=r, with y#x
In either case, 6, unifies /,/§ and /,. Since &, is rigid reduced, we must have
l/B#1,. Let TU(l,/B, ;) be a triangular representation of the mgu of /B
and /,, and 6=[1,/x,,..,1,/x,], with TU(,/B, L,)={{x{, t,), .. {x,, t,> }.
Since 6, unifies TU(/,/B, [;), by Lemma 3.5, ¢; 6,=0,. Since o; 91 =6,,
and 0, unifies /,/f and [, as in the proof of Theorem 8.1, we can show that
0,(&}) and 0,(&,) are rigid equivalent, where

E1=0((&o— {l1ir1})+u {LIB=r1=r})

Since 0,(&) and 6,(&)) are rigid equivalent and 6, is minimal in
Sk, v 1. F ¢ as shown just before the claim, 6, is also reduced w.r.t. 6,(£7).
Since 6, unifies % and TU(/,/B, [,), it unifies FHw TU(L,/B, 1,).

Let 0, < <, s, be some order assignment guaranteed to exist by
Lemma 6.13. Clearly, 8, unifies TU,,, and so 8, unifies %0 TU(!,/B, [,) v
TU,,. We have

<%’ (”'@O’ (90>:<‘%»éal’(pl>’

where KU TU(,/B, 1) uTU, and & =R(&, ;). The reason why
R(&, 0,) does not fail is that for every round of the reduction procedure,
we can choose some order assignment ¢/} = <(, 4 induced by 6, on the
current set of equations &’. Since ¢, unifies TU@I, by Lemma 6.26(i),

14 Readers familiar with this kind of argument might wonder why we are not elminating the
peak by finding a v such that u,_, 5, v <*¢ u,. , as in the nonrigid case (Knuth and Bendix
[18], Huet [16], Bachmair [3], Bachmair, Dershowitz, and Plaisted [4]). This is because
the above rewrite proof uses a new instance n(/,=r,) of the equation /,=r, e §u &, ' with
a matching substitution # that has been obtained from 68, by reducing #,(x) by the instance
6,(/,=r,). However, in the rigid case, n(/, =r,) may not be in 6,(&). This is the reason why
we need Lemma 5.4, and fortunately, degenerate equations do not cause trouble because the
total number of variables is reduced as shown in case (3).



RIGID E-UNIFICATION 185

0,(8,)=0,(R(&}, ©))) and 0,(&}) are rigid equivalent. Since 6,(&,) and
0,(&) are rigid equivalent, then #,(&) and 6,(&,) are rigid equivalent.
Since 0, is a rigid &-unifier of T and F, 8, is aiso a rigid &-unifier of T
and F. Since 8, is minimal in Sz _, ;. r ¢, 0,(E, ), 0,(&), and 0,(&)) are
rigid equivalent, and 8, ,0’, as argued previously, 0, is also reduced
w.rt. ,(6;). Also note that at least one variable in the set {x,, .., x,} does
not occur in /(g) (as noted after Lemma 3.5). Thus, this variable does not
occur in &, and m’ <m, where m’ is the number of variables in &,. There-
fore, we can apply the induction hypothesis to 6,, %, &,, and ¢, and
obtain a sequence

<%’é‘71, (91>:+ <‘%{’o@k’ (Ck>7

where k <m’, &, is unifiable, F=Te &, F=T¢ & forall i, 0<i<k, and 8,
is a unifier of &%. The induction hypothesis also tells us that 8, realizes
all O; for 1 <i<k, and since 6, also realizes (), (by its definition), this
concludes the induction step and the proof of the claim. §

From the claim applied to % =1TU, and &=R(E, ,, (;), there is a
sequence of at most m transformations as stated in the theorem, and 6, is
a unifier of %. Since 0., <0,[ V] where 8, is the mgu of % and we know
that 0,cp, 6, we have 0, <E,, 0[V]. Therefore, 0],<,0[V].
Finally, by Theorem 8.1, we see that 6|, is a rigid E-unifier of u
and v. |}

We are now in a position to prove the claim made just after the proof
of the soundness theorem and justify the remark about order assignments
made just before stating Lemma 6.26.

COROLLARY 8.3. If 0" is the mgu produced by a sequence of steps as in
the soundness theorem, there is a ground substitution 6, such that V< D(,)
and a sequence of steps

<%’ éaO» (90> $+ <‘%{’ gka (Ok5>

such that 0, ;0',0, is a unifier of &,, and 0, realizes all the O’s in the
above sequence. In particular, the method is still complete if we restrict our-
selves to order assignments O such that T<,; F< , 5=z eq(u, v) for all s, u,
ve Tx(X). In view of part (ii) of Lemma 6.13, the method is also complete
if we restrict ourselves to order assignments O that are partial orderings (that
is, when =, is the identity relation).

Theorem 8.2 also shows that rigid E-unification is decidable.

CoROLLARY 8.4. Rigid E-unification is decidable.



186 GALLIER ET AL.

Proof. By Theorem 8.2, a (ground) rigid E-unifier § of u and v exists iff
there is some sequence of transformations

<‘%’ éd()’ CﬁO> g +<<%m gk’ (Qk>

of at most kK <m steps, where m is the number of variables in &,, and
such that & is unifiable (over T (X)), F=Teé&, and F=T¢¢, for all i,
0 <i<k. Clearly, all these conditions are finitary and can be tested. Thus,
rigid FE-unification is decidable. ||

Combining the results of Theorems 8.1 and 8.2 we also obtain the fact
that for any E, u, v, there is always a finite complete set of rigid E-unifiers.

THEOREM 8.5. Let E be a set of equations over Ts(X), u, v two terms in
T (X), m the number of variables in E {u, v}, and V =Var(E) U Var(u, v).
There is a finite complete set of rigid E-unifiers for u and v given by the set

{09’le| <‘%’ (5607 (90> :+ <‘%{7 gk? @k>’k<m}a

for any order assignment &, on E, ,, with $%=TU,, , é,=R(E, ,, O), and
where &, is unifiable, F=Tec &, F=T¢& for all i, 0<i<k, and 0, is the
mgu of %, over Tx(X).

Proof. Follows immediately from Theorems 8.1 and 8.2 and the fact
that m is an upper bound on the length of such sequences. |

Theorem 8.2 shows that rigid E-unification is not only decidable but also
in NP.

9, NP-COMPLETENESS OF RIGID E-UNIFICATION

First, recall that rigid E-unification is NP-hard. This holds even for
ground sets of equations, as shown by Kozen [19, 20]. Indeed, it is easy
to reduce the satisfiability problem to rigid E-unification modulo a set E of
ground equations.

THEOREM 9.1. Rigid E-unification is NP-complete.

Proof. We already know that rigid E-unification is NP-hard. By
Corollary 8.4, the problem is decidable. It remains to show that it is in NP.
From Corollary 8.4, u and v have some rigid E-unifier iff there is some
sequence of transformations

<%, éﬁo’ (90> =" <<%(’ gk’ 01()
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of at most k < m steps, where m is the number of variables in &,, and such
that &, is unifiable (over T (X)), F=Ted, and F=T¢ & forall ,0<i<k.
We need to verify that it is possible to check these conditions in polyno-
mial time. First, observe that a triangular form can be computed in polyno-
mial time, applying the substitutions associated with triangular forms can
also be done in polynomial time, and checking that a preorder is an order
assignment can be done in polynomial time. Finally, we need to show that
the total cost of producing reduced systems is polynomial. This is a crucial
point that had been overlooked in a previous version of this paper, and we
thank Leo Bachmair for pointing out this subtlety to us. We use two facts
that have to do with implementing the steps of the algorithms using term
DAGs.

(1) We have already noted (see Theorem 6.7) that the size of the term
DAG associated with a reduced system equivalent to an input set of equa-
tions is no greater than the size of the input term DAG, the number of
rules no greater that the number of input equations, and that the reduction
procedure runs in O((m+n+ p)*), where (m, n) is the size of the input
term DAG and p the number of equations in E.

(2) The term DAG associated with the system &}, , obtained from &, by
a transformation step can be obtained from the term DAG associated with
é; by moving pointers, and if (m’, n’) and (m, n) are the sizes of the term
DAGs of the systems &, and &, respectively, and p’ and p the numbers
of equations in these systems, then m’ <m, n’ <n, and p’ <p.

The reason why (2) holds is that the terms occurring in the triangular
form of the substitution ¢ associated with the transformation step all
belong to the term DAG associated with &;. For instance, this is easily seen
if one uses Paterson and Wegman’s method [25]. Now, forming /,[f « r,]
involves only pointer redirection, and so does the application of ¢. Thus,
the size of the resulting term DAG cannot increase. By the definition of the
transformations, it is also obvious that p’ < p.

Because the number of steps is at most the number of variables in &,
the total cost of producing reduced systems is indeed polynomial in the size
of the input.

It is interesting to note the analogy of this part of our proof with
Kozen’s proof that his method is in NP [20]. Both use the term DAG
representation in a crucial way. In this way, we avoid the potential
exponential explosion that can take place during reductions if identical
subterms are not shared. |

If E is a set of ground equations, the (s are useless and the reduction
procedure R need only be applied once at the beginning to E. Thus, we
obtain the following corollary of Theorem 9.1 which provides another

543/87/1/2-13
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proof of a result first established by Kozen [19, 207]. Actually, in view of
Theorem 8.5, we have shown a result stronger than Kozen’s.

COROLLARY 9.2. Given a finite set E of ground equations and any two
terms u and v, rigid E-unification is NP-complete. Furthermore, the proce-
dure of Definition 7.3 yields a finite complete set of rigid E-unifiers of u and
v, the reduction procedure R need only be applied once to E, and the €]s are
unnecessary.

10. APPLICATIONS OF RIGID E-UNIFICATION TO EQUATIONAL MATINGS

Rigid FE-unification came up naturally in the process of generalizing
Andrews’ method of matings to first-order languages with equality (Gallier,
Raatz, and Snyder [10], Gallier, Narendran, Raatz, and Snyder [13]).
Actually, what is needed is a generalization of rigid E-unification involving
several sets of equations and pairs of terms. In this section, it is shown that
the method developed for one set of equations and one pair can be easily
generalized to tackle the more general problem. In fact, we shall give an
algorithm to decide whether a family of mated sets is an equational
(pre)mating that is in NP.

DerINITION 10.1. Let E={E;|1 <i<n} be a family of n sets of equa-
tions (over Tr(X)) and S={<{u,, v,>|1<i<n} a set of n pairs of terms
(over Tx(X)). A substitution 8 (over T5(X)) is a rigid E-unifier of S iff

0(E)) 0(v;)

for every i, 1 <i<n. A pair {(E, S) such that S has some rigid E-unifier is
called an equational premating."

[fes

0(u,)

The suitable generalization of the preorder <, to a family
E={E;|1<i<n} of n sets of equations turns out to be the following.

DerINITION 10.2.  Given a family E= {E,|1<i<n} of n sets of equa-
tions, for any (finite) set of variables V, for any two substitutions ¢ and 6,
o < 0 iff there is some # such that g; n= ¢ [ V] for every i, 1 <i<n.

Note that this condition is stronger than the condition ¢ < 8[ V] for
every i, 1 <i<n, because with this second condition we know only that
there are substitutions #,,.., 4, such that o;n,=FE,0[V] for every i

15We chose the terminology equational premating because an equational mating is an
equational premating satisfying some extra properties; see Gallier, Raatz, and Snyder [10],
or Gallier, Narendran, Raatz, and Snyder [13].
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1<i<n In Definition 10.2, it is required that 5,= -.- =n,. The
generalization of Theorem 8.2 goes through with the stronger definition
10.2, which is obviously preferable.

Complete sets of rigid E-unifiers for S are defined as follows.

DErFINITION 103, Let E={E/|1<i<n} and S={{u,v,)|1<i<n}
as in Definition 10.1, and let V' = Var(E)u Var(S). A set U of substitutions
is a complete set of rigid E-unifiers for S iff: For every g€ U,

(i) D(o)=V and D(o)n l(0) = I (idempotence);
(ii) o is a rigid E-unifier of S;

(iii} for every rigid E-unifier 6 of S, there is some o€ U such that
o< 0[V].

Minimal rigid E-unifiers also exist and are defined as follows.

DerINITION 104, Let E be a set of sets of equations and S a term
system as in Definition 10.1. For any ground rigid E-unifier 6 of S, let

Se.s.0=1p1D(p)=D(0), pu) £,z p(v). p=; 0, 1 <i<n, and p ground}.

Since << is total and well-founded on ground substitutions with domain
D(8), the set S s o contains some least element ¢ (w.r.t. <<).

It is easy to see that Lemma 5.4 can be generalized as follows.

LEMMA 10.5 Let E be a set of sets of equations and S a term system as
in Definition 10.1. For any ground rigid E-unifier 0 of S, if ¢ is the least
element of the set Sg s 4 of Definition 10.4, then the following properties
hold:

(1) o= 0 for every i, 1 <i<n,
(2) every term of the form o(x) is irreducible by every oriented
instance a(l) - a(r) of a nondegenerate equation I=re ELE~", and

(3) every proper subterm of a term of the form o(x) is irreducible by
every oriented instance a(l) — o(r) of a degenerate equation (=re EUE ™"

Lemma 6.3 is easily generalized as follows. We let eq,, ..., eq, be n new
distinct binary function symbols not in X (and distinct from 7" and F).

LEMMA 10.6. Let E be a-set of sets equations and S a term system as
in Definition 10.1. A substitution 8 over Ts(X) is a rigid F-unifier of S iff
there is some substitution 0' over Tz(X) such that 0=0"|p4)_ (. _ .,
and T égw) F for every i, 1<i<n, where E'=E; U {eq{u;,v;)=F,
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eqz;,z,)=T}, and {z,.,z,} is a set of new variables not in
Var(E) u Var(S).

The total simplification ordering < is extended to the set

Tyu{T, F} U’Q” {eq:(u,v)|u,ve Ty}

i=1

as follows:
For any terms s, t, u, ve Ty,

(@) T<F<u<eq,(s 1);

(b) eq,(s,t)<eq.(u,v) iff {s, 1} <,y {u,v}, where <, is the
lexicographic extension of < to pairs;

(€) eq(s,1)<eq;(u,v)iff 1 <i<j<n.

Clearly, this extension of < is a total simplification ordering. We define
a transformation on systems as follows.

DEFINITION 10.7. Let < be a total simplification ordering on ground
terms. We shall be considering n-tuples & = (&',..., &> of finite sets of
equations of the form &'=&% U {eq,(u, v)=F, eq,(z;, z;)= T}, where & is
a set of equations over T;(X) and u, ve T5(X). We define a transforma-
tion on systems of the form (%, &, (0>, where & is a term system, & an
n-tuple of sets of equations as above, and ¢ an order assignment:

<(9ﬂ(’)’ (/)ﬁ L] ({0> = <‘%s 6019 ('(’?l >a

where [, =r,, L=r,e&{u (&) ' for some i, 1 <i<n, either [,/f is not a
variable or /,=r, is degenerate, [,/ #{,, TU(l,/B, [,) represents a mgu of
l,/f and [, in triangular form, ¢ =[¢,/x,, .., t,/x,], where TU(I,/B, ;)=
{<xlv tl >’ R <xp» tp>}’

“(uii:‘T((‘”@g_ {l,ir,})+u {ll[ﬁ“‘rz]irl})
and &Y =a(é) forevery j#i,

¢, is an order assignment on &) compatible with ¢,, ¥, =S,u
TU(1/B, 1) o TU,,, and & = (&, .., &), where & =R(&7, ¢,) for all j,
lsj<n

The method for finding rigid E-unifiers of S is the following.
DerFINITION 10.8 (Method). Let E={E;|1<i<n} and S= {{u;, v;>|

1 <i<n} as in Definition 10.1, let E'= E, U {eq,(u,;, v,)=F, eq(z;, z;)=T}
for every i, 1<i<n, (), an order assignment on {E', .., E"), %=TU,,,
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&1 = R(E', @) for every i, 1 <i<n, &= (&}, .., €y), m the total number
of variables in &,, and V= Var(E)u Var(S). For any sequence

<'%9 g09 (90> =>+<9;(, éaka (Ok>

consisting of at most m transformation steps, if %, is unifiable and k <m
is the first integer in the sequence such that F=Te &/, for every i, | <i<n,
return the substitution 6, |,, where 0, is the mgu of &% (over T (X)).

The proofs of Theorems 8.1 and 8.2 can be easily adapted to prove that
the finite set of all substitutions returned by the method of Definition 10.8
forms a complete set of rigid E-unifiers for S. In particular, the method
provides a decision procedure for deciding whether a family of mated sets
is an equational premating that is in NP.

THEOREM 10.9 (Soundness). Let E={E;|1<i<n} and S= {{u;, v;)|
1 <i<n} as in Definition 10.1, let E'=E;u {eq(u;, v,)=F, eq,(z;, z)=T}
for every i, 1<i<n, U, an order assignment on (E', . E">, %= TUg,,
&L= R(E', O) for every i, 1 <i<n, &={&), .., &4, m the total number of
variables in &, and V =Var(E)u Var(S). If

<%’ éﬁO’ (90> :+<‘S€m éaka (pk>7

where , is unifiable, F=Te &) and F=T¢ &’ for all i and j, 0<i<k <m,
L<j<n, then 04|y, is a rigid E-unifier of S, where 0, is the mgu of %
(over Ts(X)).

Proof. It is essentially the same as the proof of Theorem 8.1, except that
Lemma 10.6 is used instead of Lemma 6.3. }

THEOREM 10.10 (Completeness). Let E = {E;|1 < i< n} and S =
{{u, v,y 1<i<n} as in Definition 10.1, and let E'=E,u {eq;(u;, v;)=F,
eq:(z;,2,)=T} for every i, 1<i<n. If 8 is any rigid E-unifier of S, then
there is an order assignment €, on (E',..,E"), and letting S=TUg,
€4 =R(E', Gy) for every i, 1 <i<n, E={E}, ., ELY, m the total number
of variables in &, and V=Var(E)u Var(S), there is a sequence of
transformations

(S by, G =S, 6, O,

where k<m, % is unifiable, F=Te &, F=T¢&, for all i and j,
O0<i<k, 1<j<n, and 04|, <z0[V], where 8, is the mgu of &, over
T (X). Furthermore, 0, is a rigid E-unifier of S.

Proof. It is a simple generalization of the proof of Theorem 8.2.
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Lemma 10.5 is used instead of Lemma 5.4. In the proof of the claim, we
also need to consider the a-tuple of proofs

i i i i
T—“o‘—’olmg. Uy 20180 01065 Uy 1 *"mmg)“n,—F~

showing that T 2 avety Ffor all i, 1 <i<n. We proceed by induction on the
pair {m, M >, where m is the number of variables in &, and

i=n

M=) (et

i=1

is the union of the multisets {uy, ..., u}, } of terms occurring in the ith proof.
The details are straightforward. |

Actually, Theorem 10.10 can be sharpened. Examination of the induction
proof reveals that for any rigid E-unifier 6 of S, a rigid E-unifier more
general than 6 can be found, even if the transformations are applied in a
certain order.

DEerINITION 10.11.  We say that a derivation
(HFos 60, O =" (L', 6,0, 6
is an [lr-derivation iff for every subderivation

<(%’é90,(§0>:*<9;’f”€>:< i+ 1 1+17C‘1+1>

in the step from i to i+ 1 (0<i<m), the equations /,=r, and /,=r, are
chosen in the set &/ such that j>1 is the least index such that F=Te &’
for every I<j and F=T¢ &’.

In some sense, such derivations compute rigid E-unifiers incrementally
from left to right.

THEOREM 10.12 (Incremental Completeness). Theorem 10.10 holds with
Ir-derivations instead of arbitrary derivations.

This sharpening of Theorem 10.10 is very useful in practice, because it
yields an incremental way of finding rigid E-unifiers. From Theorem 10.10,
it is obvious that Theorem 8.5 also holds for a set of sets of equations E
and a term system S.

THEOREM 10.13. Let E= {E;|1<i<n} and S={{u;, v,>|1<i<n} as
in Definition 10.1, E'=E,u {eq;(u;,v,)=F, eq,(z;,z,)=T} for every i,
1<i<n, m the number of variables in Ew S, and V =Var(E)u Var(S).
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There is a finite complete set of rigid E-unifiers for S given by the set
{Hfl’ki V| <‘9(;)’ éaOa @0> = * <‘%<’ éﬁk) (fk>a k Sm},

for any order assignment Gy on (E', ..., E"), with %,=TU,,, ;= R(E', ;)
for every i, 1 <i<n, &={E}, ... 8}, and where F, is unifiable, F=Te &,
F=T¢¢&’ for all i and j, 0<i<k, 1 <j<n, and 0, is the mgu of &, over
T(X).

Finally, it is obvious that Theorem 10.10 yields a generalization of
Theorem 9.1 to equational prematings.

THEOREM 10.14. Finding whether a pair {(E, S (as in definition 10.1) is
an equational premating is NP-complete.

As a consequence, since the problem of deciding whether a family of
mated sets forms an equational mating is precisely the problem of finding
whether a pair {E, S) (as in Definition 10.1) is an equational premating,'¢
the former problem is also NP-complete.

11. CONCLUSION AND FURTHER WORK

We have shown that both rigid E-unification and finding whether a pair
(E, S) is an equational premating are NP-complete problems. We also
have shown that finite complete sets of rigid E-unifiers always exist.
Theorem 10.14 has important implications regarding the computational
complexity of theorem proving for first-order languages with equality using
the method of matings. It shows that there is an algorithm for finding
equational matings, but not only is the problem of deciding whether an
equational mating is p-acceptable co-NP-complete; the problem of deciding
that a family of mated sets is an equational mating is also NP-complete.
For languages without equality, the first problem is still co-NP-complete,
but the second can be solved in polynomial time using standard unifica-
tion, and in fact in linear time.

In view of Example 7.6, it is essential to find ways of trimming the search
space of order assignments. When a reduction ordering < is available and
all subterms in &; are ordered by <, (), is completely determined. It would
be interesting to investigate subcases where order assignments can be found
quickly. An actual implementation of the algorithm would also be interest-
ing. In a different direction, it is clear that a rigid E-unification algorithm
can be used for general F-unification. One simply runs the rigid E-unifica-
tion algorithm incrementally, fixing the number of instances of equations

16 See Gallier, Raatz, and Snyder [10], or Gallier, Narendran, Raatz, and Snyder [13].
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allowed at the beginning, and increasing this number gradually until
enough FE-unifiers are found (or running forever). There is however a
problem of redundancy: a member of a complete set found at some stage
can be subsumed by a rigid E-unifier produced at a later stage. It would
be interesting to investigate this problem and see how this method com-
pares with other E-unification procedures. The above questions are left for
further research.
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