
J. LOGIC PROGRAMMING 1989:3-43 3

EXTENDING SLD RESOLUTION TO EQUATIONAL HORN
CLAUSES USING E-UNIFICATION*

JEAN H. GALLIER AND STAN RAATZ

D We study the role of unification modulo a set of equations, or E-unification,
in the context of refutation methods for sets of Horn clauses with equality.
Two extensions of SLD resolution based on E-unification are presented,
and rigorous completeness results are shown, including an analysis of the
ground case for insight into the computational implications. The concept of
a congruence closure generalized to sets of ground Horn clauses is central
to these completeness results. The first method is general, in that it applies
to arbitrary sets of equational Horn clauses, but is not practical, as it
assumes a procedure which gives an explicit sequence of substitutions for
each E-unifier. A second method uses a procedure enumerating a complete
set of E-unifiers, and appears to be well suited to a class of “well-behaved”
equational logic programs which allows a clean and natural integration of
the functional and logic-programming paradigms. Using this second method,
we have formalized the refutation method used in &log for this class of
programs, and a theorem establishes rigorously the completeness of this
method. We compare these methods in detail with related work, and show
that other methods either explicitly include E-unification or simulate it in
some manner. a

1. INTRODUCTION

This paper presents two refutation methods for establishing the unsatisfiability of
sets of Horn clauses with or without equational atomic formulae. The methods are

*This research was partially supported by the National Science Foundation under Grant DCR-86.
07156.

Address correspondence ro Professor J. Galtier, Department of Computer Science, University of
Pennsylvania, Philadelphia, PA 19104.

Received 1.5 June 1987; accepted 10 September 1987

THE JOURNAL OF LOGIC PROGRAMMING

Wlsevier Science Publishing Co., Inc., 1989
655 Avenue of the Americas, New York, NY 10010 0743-1066/89/$3.50

4 JEAN H. GALLIER AND STAN RAATZ

extensions of SLD resolution which incorporate unification modulo a set E of
equations, or E-unification. We present first the SLDE-refutation method, which,
given some assumptions on the E-unification procedure used, is complete for any
arbitrary set of equational Horn clauses. After this, a refinement, called the
SLDEt-refutation method, is presented and shown to be complete given any
E-unification procedure that enumerates a complete set of E-unifiers for a class of
equational Horn-clause programs called “well-behaved” programs. This class of
programs consists of sets for which there is a procedure for enumerating a complete
set of E-unifiers, and logic programs which contain clauses of the form

or

Q:- PI,..., P,,

where s and t are first-order terms, Q is a nonequational atomic formula, and
P 1,. . . , P, are either equational or nonequational atomic formulae. This is an
important class of equational Horn-clause programs (first introduced in Eqlog [17]),
in that it subsumes the paradigms of functional, logic, and equational programming.
The methods are defined rigorously, and the completeness issues are investigated in
depth, including an analysis of the ground case, in a way that makes evident the
practical implications of including equality in logic programs.

We show that the notion of E-unification comes up naturally when the
Herbrand-Skolem-Giidel theorem is applied to a set of Horn clauses with equality,
and that other methods for establishing the unsatisfiability of equational Horn
clauses, which do not explicitly include the formalism of E-unification, can in fact
be interpreted as doing so. Two consequences of an approach based on E-unifica-
tion are that it allows a clean separation, and therefore handling, of the purely
logical features and the equational features of a logic program, and that it makes
available the fast-growing body of knowledge on the subject of E-unification in the
construction of logic interpreters. These observations turn out to be valuable when
considering the practical consequences of incorporating equality in Horn-clause
logic programs.

Let us be very clear about what is being claimed here. We do not claim to have
defined a fundamentally new form of SLD resolution with equality. Plotkin [44] in
1972 essentially laid out the basis for the incorporation of equality using E-unifica-
tion into resolution theory, and more recently, Goguen and Meseguer [17] defined a
logic-programming system, Eqlog, which incorporates E-unification into SLD reso-
lution and specifically admits the class of well-behaved programs, among others.
The claim is the following. The methods here are refutation methods for Horn
clauses with or without equality whose completeness proofs rigorously and specifi-
cally illustrate the computational implications of including equality for certain
classes of Horn clauses. In particular, we have formalized the refutation method
used in Eqlog for well-behaved programs, and Theorem 7.5 establishes rigorously
the completeness of this method for this class of programs.

There has been a substantial amount of work recently on defining integrations of
functional and logic-programming systems by equational Horn-clause programming
which either does not consider completeness issues, or considers these issues in a

EQUATIONAL HORN CLAUSES 5

manner that does not give any insight into the complexity or practical implications

of the method. Our methods allow us to identify clearly certain classes of Horn-clause

programs with equality that appear to be hopelessly impractical, and others, the
well-behaved class for instance, that are promising. Since the prime motivation of
this field of work is the natural and eficient integration of equality in logic
programs in order to design languages and their interpreters allowing the use of
functional and logic-programming paradigms, this identification is crucial.

The organization of the paper is now explained. We believe that the clearest way
to present our results is to follow the path that led us to the discovery of the
first-order refutation methods. In order to get some insight into the problem, we
started by examining the ground case. Extending some previous work on the
unsatisfiability of propositional Horn clauses without equality (Dowling and Gallier
[7]), the first author found two fast algorithms for testing the unsatisfiability of a set
of ground Horn clauses with or without equational atomic formulae. The crucial

idea is that the concept of a congruence closure (Kozen [33,34], Nelson and Oppen
[42]) can be generalized to sets of ground Horn clauses. These algorithms are
praented in Gallier [14] and are not repeated here. However, since the correctness
proof of the congruence closure method is crucial to the completeness of the
refutation methods, it will be presented in full. The ground case will be presented in

Sections 3 and 4, after a brief section of preliminaries.
Then the SLDE-refutation method will be presented for the ground case, and its

completeness will be established. In the next section, we show how the lifting of
ground SLDE refutations to the first-order case via the Herbrand-Skolem-GGdel
theorem gives rise naturally to the concept of E-unification. The SLDE-refutation
method using E-unifiers will be defined and shown to be complete. However, the
SLDE-refutation method may require the finding of arbitrary E-unifiers, which is
prohibitive in practice. In order to remedy this problem, we introduce a refinement
of the method, called SLDEt refutation, that requires “only” an explicit procedure
for enumerating a complete set of E-unifiers. This method is complete for proce-
dures enumerating all E-unifiers, but we do not know whether it is complete for all
E-unification procedures (enumerating a complete set of E-unifiers). However, we
prove that it is complete for all E-unification procedures (enumerating a complete
set of E-unifiers) for the class of well-behaved sets of Horn clauses. Finally, we
compare in detail these methods with the related work of Jaffar, Lassez, and Maher
[24], Fribourg [12,13], Dershowitz and Plaisted [6], and Goguen and Meseguer [17],
and show that all of these methods embody a form of E-unification, even if it is not
explicitly defined as such. We also review some of the numerous attempts to
combine specific features of functional and logic-programming paradigms, but not
in detail. Finally, we conclude with a discussion of the practical implications of
including equality in logic programming.

2. PRELIMINARIES

This section contains a brief review of the main concepts used in this paper. As
much as possible, we stick to the definitions used in the literature on the subject.
More specifically, we will follow Huet and Oppen [22] and Gallier [15]. The purpose
of this section is mainly to establish the terminology and the notation, and it can be

6 JEAN H. GALLIER AND STAN FUATZ

omitted by readers familiar with the literature. First, we review the basics of
many-sorted languages.

Dejmition 2.1. A set S of sorts (or types) is any nonempty set. Typically, S consists
of types in a programming language (such as integer, real, boolean, character,
etc.) An S-ranked alphabet is a pair (Z, p) consisting of a set Z together with a
function p : Z + S X S assigning a rank (u, s) to each symbol f in 1. The string
uinS*isthearityoff,andsisthesort(ortype)off.If u=s,...s,(n>l),a
symbol f of rank (u, s) is to be interpreted as an operation taking arguments, the
i th argument being of type si and yielding a result of type s. A symbol of rank
(e, s) (when u is the empty string) is called a constant of sort s. For simplicity, a
ranked alphabet (Z, p) is often denoted by Z.

Next, we review the definition of tree domains and trees (or terms). Let N denote
the set of natural numbers, and N, the set of positive natural numbers.

Definition 2.2. A tree domain D is a nonempty subset of strings in NT satisfying the
conditions:

(1) For all U, u E N:, if uu E D then u E D.

(2) For all u E D, for every i E N,, if ui E D then, for every j, 1 2 j I i, uj E D.

ForeverynEN,let[n]={1,2 ,..., n},and[O]=@.

Definition 2.3. Given an S-sorted ranked alphabet Z, a Z-tree (or term) of sort s is
any function t : D + Z, where D is a tree domain denoted by dom(t), and t
satisfies the following conditions:

(1) The root of t is labeled with a symbol t(e) in Z of sort s.

(2) For every node u E dam(t), if { i]ui E dam(t)} = [n], then if n > 0, for each
ui, i E [n], if t(ui) is a symbol of sort ui, then t(u) has rank (u, s’), with
u=u i . . . un, else if n = 0, then t(u) has rank (e, s’) for some s’ E S.

Given a tree t and some tree address u E dam(t), the subtree of t rooted at u is
the tree t/u whose domain is the set { u]uu E dam(t)} and such that t/u(u) = t(uu)
for all u in dom(t/u).

The set of all finite trees of sort s is denoted by T& and the set of all finite trees

by TX,
In this paper, it is assumed that for every S-sorted alphabet Z, there is a

distinguished sort boo1 E S. Symbols of sort boo1 are called predicate symbols.
Terms of sort boo1 will be interpreted as logical formulae.

Given an S-indexed family X = (X,), ES, we can form the sets of trees T$(X)
obtained by adjoining each set X, to the set of constants of sort s. To prevent free
algebras from having empty carriers, so that the Herbrand-Skolem-Gadel theorem
holds, we assume that every sort is nonuoid. We say that a sort s is nonuoid iE either
there is some constant of sort s, or there is some function symbol f of rank

P(f) = (%. -. s,, s) such that si, . . . , s, are nonvoid. Then, for every sort s, the set
Tg is nonempty, and it is well known that for every set X, T,(X) is the free

EQUATIONAL HORN CLAUSES I

Z-algebra generated by X (see Gallier [15]). This allows us to define substitutions.

Let X= (XJSES be an S-indexed family of countable sets of variables.

DeJinition 2.4. Given a term t, the set of variables occurring in t is the set
{x E X]3u E dam(t), t(u) =x}, and it is denoted by Var(t).

Definition 2.5. A substitution is any function a : X + Tx(X) such that a(x) # x for
only finitely many x E X. Since T,(X) is the free Z-algebra generated by X,
every substitution u : X + Tx(X) has a unique homomorphic extension a^ : Tx(X)

+ T,(X).

Definition 2.6. Given a substitution u, the support (or domain) of u is the set of
variables D(u) = { xlu(x) # x}. The set of variables introduced by u is the set of
variables I(a) = U x E ,(,,Var(u(x)). Given a substitution u, if its support is the
set {xr,...,x,}, and if ti = a(~,), 1 I i I n, then u is also denoted by
[t,/x,, . . .Y t,/x,l.

Dejinition 2.7. Given two substitutions u and 9, their composition is the :ubstitution
denoted by u 0 8, such that, for every-variable x, we have u 0 B(x) = @(u(x)) (the
composition of the functions u and t9).

Even though the notation u 0 8 is slightly misleading (since u 0 B is not the
composition of u and 8, but the composition of u and 6), it is a natural
consequence of the identification a substitution u with its homomorphic extension a^
made for notational simplicity. This convention is harmless since it is easily shown

thatao8=&08.
The operation of tree replacement (or tree substitution) will also be needed.

Definition 2.8. Given two trees t, and t, and a tree address u in t,, the result of
replacing t, at u in t,, denoted by t,[u + t2], is the function whose graph is the
set of pairs

{(~,t~(u))]uisnotaprefixof u} U {(w,t,(u))},

and it is only defined provided that the sort of the root of t, is equal to the sort
of tJu).

We also review the definition of a Horn clause. For details, see Gallier [15].

Definition 2.9. An atomic formula is either a term of the form Pt 1.. . t,, where P is
a predicate symbol of rank (sr . . . s,, bool) and each tj is a term of sort si, or a
term of the form t, A t,, where t, and t, are terms of some identical sort s. An
atomic formula of the form t, A t, is called an equation of sort s. A literal is
either an atomic formula or the negation of an atomic formula. A Horn clause is
a set of literals containing at most one positive literal (unnegated). Horn clauses
are classified into two classes. A definite clause is a Horn clause containing some
positive literal. A definite clause is denoted by

A:- B, ,..., B,, or A when n=O,

8 JEAN H. GALLIER AND STAN RAATZ

where A is the positive literal. A goal clause (or negative clause) only contains
negative literals. A goal clause is denoted by

:-B B,,, 1,“‘, or q when n=O.

The clause EI is called the empty clause.

We will often use the term equational Horn-clause language to mean a system
which admits sets of Horn clauses including equational atomic formulae, in order to
make the distinction between such systems and more conventional logic-program-
ming systems.

DeJnition 2.10. Give a clause C, the set of variables occurring in C is the union of
the sets of variables occurring in the literals in C, and it is denoted by Var(C). A
ground term t is a term such that Var(t) = 8, and similarly a ground clause C is a
clause such that Var(C) = 0. A ground substitution u is a substitution such that
a(x) is a ground term for every variable x in the support of u.

Finally, observe that the Herbrand-Skolem-Giidel theorem holds for many-sorted
languages for which all sorts are nonvoid (see Gallier [15]).

3. CONGRUENCES ASSOCIATED WITH SETS OF HORN CLAUSES

We first consider how to test the unsatisfiability of a ground set of Horn clauses
with equality. This section is not the main theme of this paper, but it is technically
important because it contains a theorem (Theorem 3.6) that plays a crucial role in
the proofs that the refutation methods presented in this paper are complete. The
central concept used in the next two sections is that of a congruence closure. It will
allow us to show that unsatisfiability of ground Horn clauses is decidable. Readers
not interested in the details of these completeness proofs can omit Sections 3 and 4
at first reading, and proceed directly to the presentation of the ground refutation
method (Section 5).

3.1. Informal Description of the Method

Testing the unsatisfiability of a set of ground Horn clauses with or with-
out equational atomic formulae is decidable, and the first author has given two
fast algorithms solving this problem [14]. If the length of the set of Horn clauses
(viewed as the string obtained by concatenating the clauses in H) is n, then the first
algorithm runs in time 0(n*) and storage O(n), and the second algorithm runs in
time O((n log* n)/log k) and storage 0(kn), for any k chosen in advance. These
algorithms are obtained by combining the methods used in two other algorithms:

(1) The linear-time algorithm of Dowling and Gallier for testing the satisfiability
of a set of propositional Horn clauses [7].

(2) The congruence closure algorithms of Kozen [33,34], Nelson and Oppen [42],
and Downey, Sethi, and Tarjan [8].

In this paper, we are not so much concerned with the algorithms themselves as
with the underlying method and its correctness proof, because it is crucial to the

EQUATIONALHORNCLAUSES 9

proof that the refutation methods presented in this paper are complete. The crucial
idea is that the concept of a congruence closure can be generalized to sets of ground
Horn clauses. In this generalization, two graphs are used. The first graph GT(H),
similar to the graph used in the congruence closure method (Kozen [33,34]; Nelson
and Oppen [42,43]) represents subterm dependencies. As in Gallier [15], an extra
node T (the constant true) is added to take care of nonequational atomic formulae.
The second graph GC(H) (similar to the graph used in Dowling and Gallier [7])
represents implications induced by the clauses.

Now, a set H of ground Horn clauses induces a relation E on the set of nodes of
the graph GT(H) defined as follows: For every clause in H consisting of an atomic
(positive) formula B

(1) if B is an atomic formula Pt, _. . t,, then (Ptl.. . t,, T) E E;

(2) if B is an equation t, A t,, then (tl, t2) E E.

Then, a certain kind of congruence closure f;E of E with respect to the graph
GT(H) can be defined. The crucial fact about this congruence is that H is
unsatisfiable iff there is some negative clause :- A,, . . . , A, E H such that, for every
i,lIiIn,ifAiisoftheform Pt,...t,,thenPt,...t,A,T elseifA,isofthe
form t, A t,, then t, AE t,.

In order to compute this congruence closure, two other closures defined in terms
of the graphs GT(H) and GC(H) are used. The equational congruence closure G is
defined in terms of the graph GT(H), and it is used to propaga!e congruence
resulting from purely equational reasons. The implicational closure =I is defined in
terms of the graph GC(H), and it is used to propagate congruence resulting from
purely implicational reasons. Then, the congruence closure AE associated with the
set H is obtained by interleaving equational congruence closure steps and implica-
tional closure steps. We now present the method rigorously.

Let H be a set of ground Horn clauses, possibly with equational atoms. First, we
make the following observation. Since our language already has the special sort
bool, we can go a little further and add the constant T interpreted as true, and treat
every atomic formula as an equation. Indeed, for every structure, the domain BOOL

of sort boo1 is the set of truth values {true, false}, and every atomic formula
Pt, . . . t, is logically equivalent to the equation (Pt, . . . t, = T), in the sense that
Pt 1 . . . t, = (Pt, . . . t, = T) is valid. Since = behaves semantically exactly as the
identity relation on BOOL, we can treat = as the equality symbol lhoO, of sort bool.
Hence, every set H of Horn clauses is equivalent to a set H’ of Horn clauses over a
many-sorted language with the special sort bool, in which every atomic formula
Pt 1.. . tk is replaced by the equation Pt, . . . t, = T .

For notational simplicity, we often denote an equation Pt, . . . tk = T of sort hoof
as Pt, . . . t, and call it a nonequational atom, and we reserve the word equation for
equations of sort fboo, . In the sequel, we assume that sets of Horn clauses have
been preprocessed as explained above.

3.2. The Graph GT(H)

The graph GT(H) represents subterm dependencies, and it is used to propagate
congruential information. This graph was first defined by Kozen (under a different
name) to study the properties of finitely presented algebras [33-361.

10 JFANH.GALL1ERANDSTANRAAl-Z

DeJinition 3.1. Given a set H of ground Horn clauses over a many-sorted language,
let TERM(H) be the set of all subterms of terms occurring in the atomic formulae
in H. Let S(H) be the set of sorts of all terms in TERM(H). For every sort s in
S(H), let TERM(H), be the set of all terms of sort s in TERM(H). Note that by
the definition, each set TERM(H), is nonempty. Let Z be the S(H)-ranked
alphabet consisting of all constant and function symbols occurring in TERM(H).
The graph GT(H) has the set TERM(H) as its set of nodes, and its edges and the
function A labeling its nodes are defined as follows:

for every node t in TERM(H), if t is a constant, then A(t) = t, else t is of the
form fyr...y, and A(t)=f;

for every node t in TERM(H), if t is of the form fvt . . . y,, then t has exactly k

successors y,, . . . , yk, else t is a constant and it is a terminal node of GT(H).

Given a node u E TERM(H), if p(A(u)) = (st . . . s,, s), n > 0, then the i th succes-
sor of u is denoted by u[i]. For every s E S(H), let Es = {(I-, t)lr As t E H}, and let
E be the S(H)-indexed family (ES)SEScHj.

Example 3.2. Consider the following set H of ground Horn clauses:

f3aaa:-fa&fb,

a A b,

Pa,

f5aAa:- Qa,

Qa:-f’a&a,

Ra :- fa’ a, Pfa,

(1)

(2)

(3)

(4)

(5)

(6)

:- Rfa. (7)

The graph GT(H) representing the subterm dependencies of the set H is shown in
Figure 1.

3.3. The Graph GC(H)

The graph GC represents implicational information, and was defined in Dowling
and Gallier [7].

Defmition 3.3. The nodes of the graph GC(H) are the atomic formulae occurring in
all clauses in the set H, plus the special nodes T and I (where I is the
constant interpreted as false). The edges and the function A labeling the edges of
GC(H) are defined as follows:

For every clause C of the form B :- A,, . . . , A, in H, for every i, 1 I i 5 n, there
is an edge from B to Aj labeled with C.

For every clause N of the form :- A,, . . . , A, in H, for every i, 1 I i I n, there is
an edge from J_ to Ai labeled with N.

For every clause C of the form B, there is one edge from B to T labeled with C.

EQUATIONAL HORN CLAUSES 11

,,i./fAfa
. fsaAa

4 1 . Qa
5

L f3a k a
I

fa G fb

FIGURE 1. Graph GT(H).

Note that since every atomic formula B is an equation t, G t, (where t2 may be
T), every node of the graph GC(H) corresponds to a unique pair of nodes in the
graph tiT(H).

Example 3.4. Consider again the set H of Horn clauses in the previous example.
This set has the graph GC(Z-Z) shown in Figure 2.

.f

I
-f

I
.f

1 ;;,gf&R_ R FIGuRE2. GraphGC(“).

. .

.T

12 JEAN H.GALLIERANDSTANRAATZ

3.4. Congruence Closure

The crucial concept in showing the decidability of unsatisfiability for ground
equational Horn clauses is a certain kind of equivalence relation on the graph
GT(H) called a congruence.

Definition 3.5. Given the graph GT(H) associated with the set H of ground Horn
clauses, an S(H)-indexed family R of relations R, over TERM(H), is a congru-
ence on GT(H) iff:

(1) Each R, is an equivalence relation.

(2) For every pair (u, u) E TERM(H)', if A(u) = A(u), p(A(u)) = (si . . . s,, s),
and for every i, 1 I i I n, u[i] R, u[i], then uR, u.

(3) For every pair (u, u) of nodes in TERM(H)* corresponding to a node u i u in
the graph GC(H):

(i) If uAsuuHH, then uR,u.
(ii) If u i u is the head of a clause u As u :- ui A;s, ui, . . . , u, As, u,, in H, and

for every i, 1 I i I n, ui R, ui, then u R, u.

In particular, note that any two nodes such that u i u is a clause are congruent.

3.5. A Method for Testing Unsatisjability

The key to the method is that the least congruence on GT(H) containing E exists,
and that there is an algorithm for computing it. Indeed, assume that this least

congruence AE containing E (called the congruence closure of E) exists and has
been computed. Then the following result holds.

Theorem 3.6 (Soundness and completeness). Let H be a set of ground Horn clauses
[w$4 equality$le\E, = {(r, t)jr gs t E H}, and let E be the S(H)-indexed farnib

s seS(H)' wE is the congruence closure on GT(H) of E, then H is
unsatisfiable iflfor some clause :- u1 i, ul,. . . , u, As, u,, in H,

for every i, lliln, we have u, f;E ui.

PROOF. The proof is obtained by combining and generalizing the techniques used in
Lemmas 10.6.2 and 10.6.4 of Gallier [15] (with some corrections). Let 9 be the
subset of H consisting of the set of definite clauses in H. Let b= {r A.s t I(r, t) E
E,, s E S(H)}. Note that Ec 9.

First, we prove that the S(H)-indexed family R of relations R, on TERM(H)

defined such that

tR,u iff 9btAsu

is a congruence on GT(H) containing E. Since 8~ 9, it is obvious that 9l= r $ t
for every (r, t) E E,, and so r R, t. Hence, R contains E. Clearly, each R, is an
equivalence relation. For every two subterms of the form fyi.. . yk and fzl.. . zk
such that f is of rank (wi . . . wkr s), with s # bool, if for every i, 1 I i I k,

gkY, &:w, 'i,

EQUATIONAL HORN CLAUSES 13

then by the definition of the semantics of equality symbols,

~~~ful...Yk~~~Z1...Zk. 

For every two subterms of the form Py, . . . y, and Pz, . _ _ zk such that P is of rank 

(WI... wk, hoof), if for every i, 1 I i I k, 

Lak y; &WI zi, 

then by the definition of the semantics of equality symbols, 

z2~Py,...yk=Pz,...zk. 

For every clause u i u in 9, by the definitions of Es and b, we have u AS u E 8, 
and since &C 9, we have 

L2!= 24 ASU. 

For every clause u AS v :- u1 GS, vl,. . . , u, As, v, in 9, if for every i, 1 I i 5 n, we 

have 23 i= ui A,, vi, then 2 l= u AS v. Hence, R is a congruence on GT( H) containing 

E. Since AE is the least congruence on GT(H) containing E, for any terms 
r, t E TERM(H),, 

if r*;,t then 9krrst. 

Then, if for some negative clause :- u1 AS, I.+, . . . , u, Asn v, in H we have ui f;E vi 
for every i, lli<n, then ~!=z~~~,~v,A ... A u, A.Sn v, holds, which implies that 

the set 9~ { :- u1 Ass, q, . . . , u, f, v, } is unsatisfiable. Consequently, H is unsatis- 

fiable. 
Conversely, assume that there is no negative clause :- u1 I, ul, . . . , u, As, v,, in H 

such that ui f;E vi for every i, 1 I i I n. We shall construct a model M of H. 

First, we make the S( H)-indexed family TERM(H) into a many-sorted Z-algebra 

H. The difficulty involved in choosing the right algebra structure is that AE must 
be a congruence on this algebra. This is not obvious, because TERM(H) is not closed 
under the term constructors, that is, for some terms t,, . . . , t, E TERM(H) and some 

function symbols f, ftl . . . tn P TERM(H). Hence, we have to be careful in defining 

the term value of fH(tl, . . . , t,). If there exist other terms rl, . . _ , r, E TERM(H) such 

that fr, . . . r, E TERM(H), and t, f;E ri for every i, 1 I i I n, then the value of 

fH(h,. . . > t,) cannot be defined arbitrarily. If we want AE to be a congruence on 
H, we must define fH(tl ,..., t,) so that fH(tl,.. ., t,) AE fH(rl,. . ., rn). The same 
difficulty exists for predicate symbols. These difficulties are overcome in the follow- 
ing two definitions. 

For each sort s # hoof in S(H), each constant t of sort s is interpreted as the 

term t itself. For every function symbol f in Z of rank (wl _ . _ wk, s), with 
s # bool, for every k terms yl,..., yk in TERM(H), each y, being of sort w,, 
l<i<k, 

/fy,...y, iffy,...y,ETERM(H),, 

fz I... zk if frl . . . y, 4 TERM(H) s and there are terms 

fH(Yl,..., Yk) = ( 
z~,..., zk such that y, AE zi and 

fzl...zkETERM(H)s, 

t0 otherwise, where to is some arbitrary term 

\ chosen in TERM( H) s. 



14 JEAN H. GALLIER AND STAN RAATZ 

For every predicate symbol P of rank (wi . . . wk, bool), for every k terms 
Yl,..., y, E TERM(H), each yi being of sort w,, 1 I i I k, 

I 

T if Py,. . . yk ETERM(H)~~~ Py,...y,&,~, 

T if Py,. . . y, 4 TERM(H) and there are terms zi, . . . , z, 

PIdY,9...7 Y/J = such that y, AE zi, Pz, . . . zk E TERM(H) 

and PZ,...ZkAET, 

F otherwise. 

Next, we prove that AE is an algebra congruence on H. There are two main 
cases: 

Case I: For every function symbol f in Z of rank (wi . . . w,, s) with s z bool, 
for every k pairs of terms (yi, zi), . . . ,(yk, zk) with yi, zi of sort wi, 1 I i < k, if 
yi A;E zi, then: 

(i) If fvi . . . y, and j-q._. zk are both in TERM(H), then 

fH(yl,..., yk) =fy, . . . y, and fH(q,..., zk) =fq... zk, 

and since fi, is a congruence on GT( H), we have fri . . . y, f;E j&. . . zk. 

Hence+ fH(~l,...,~k)(;EfH(~l,...,~k). 

(ii) hi.. . yk 4 TERM(H), or fii . . . zk B TERM( H), but there are some terms 
z;, . . . , z; E TERM(H) such that yi A;E z( and fz;. . . z; E TERM(H). Since 
yi AE zi, there are also terms z;I, . . . , zz E TERM(H) such that zi A;E z/’ and 
fz;' . . . z;’ E TERM(H). Then, 

fN(yl ,..., yk) =fz;...z; and fH(zl ,..., zk) =fz;‘...z;‘. 

Since yi AE zi, we have, z,! AE z,!‘, and so fz;. . . z; AE fz;‘. . . z;I, that is, 

fH(Y1,...,Yk)C;EfH(Zl,...,Zk). 

(iii) If neither frr . . . yk nor fzl . . . zk is in TERM(H) and (ii) does not hold, then 

fH(y1,...,Yk)=fH(z1,...,zk)=tO 

for some chosen term to in TERM(H), and we conclude using the reflexivity 
of ‘-i,. 

Case 2: For every predicate symbol P of rank (wi . . . wk, bool), for every k 

pairs of terms (yi, zi), . . . , (yk, zk), with yi, zi of sort wi, 1 I i I k, if y, f;E zi, then: 

(i) Py,. . . yk E TERM(H) and Pz,. . . zk E TERM(H). Since yi A;E zi and AE is a 
graph congruence, Pyl . . . yk AE Pz, _ . . zk. I-Ience, PyI . . . yk AE T iff 
Pz 1.. . zk *;E T , that is, P,(y,, . . . , yk) = T iK P,(z,, . . . , zk) = T. 

(ii) Py, . . . y, 4 TERM(H) or Pz, . . . zk 4 TERM(H). In this case, PH( y,, . . . , yk) = 

T implies that there are terms z;. . . z; E TERM(H) such that yi AE z;, 
Pz;. . .z; E TERM(H), and Pz;. . . z; AE T . Since yi AE zi, we also have 
zi AE z;. since Pz; . . . z; E TERM(H), and Pz;. . . zk AE T, we have, 
PH(Zi,-.., zk) = T. The same argument shows that if PH(zl,. . . , zk) = T, 

then PH( y,, . . . , yk) = T. Hence, we have shown that P&y,, . . . , yk) = T iff 
PH( zl,. . . , zk) = T. 



EQUATIONAL HORN CLAUSES 15 

This concludes the proof that AE is a congruence. 0 

Let M be the quotient of the algebra H by the congruence AE . We claim that 
for every term t E mw( H), t M = [t], the congruence class of t. This is easily shown 

by induction and is left as an exercise. By the definition of M as the quotient of H 

by +y, we also have the following property: For any two terms U, u E TERM(H),, 

Mb=uAsu iff uA,u. (*> 

We now prove that M is a model of H. 
For every clause u Gs u E H, we have (u, u) E E,, and since AE is a congruence 

containing E, we have u AE u. But then, by (*), we have M E u As u. 
For every clause u As u :- ui As1 ui, . . . , u, in u,, in H, if M k ui gt, u, for every i, 

1 I i s n, by ( * ), we have ui AE u, for every i, 1 I i I n. Since AE is a congruence 
on GT( H), we have u AE u. By ( *), this is equivalent to M I= u As u. Hence, 

M~u~~u:-u~~:,~u~ ,..., u,f,u,,. 

Finally, given any negative clause :- ui AX, ui, . . _, u, As:,, u, in H, recall that it is 
assumed that we cannot have ui AE ui for every i, 1 I i 5 n. Then, for some i, 
1 I i 5 n, ui and ui are not congruent modulo f;E , and by (*), this implies that 
M # ui As, ui, that is, M t= -,ui GJ:,, u,. But this implies that 

MI= :-u&u1 ,..., u,Q,. 

Hence, M is a model of every clause in H. This concludes the proof. 0 

It is interesting to note that the soundness part of Theorem 3.6 follows from the 

fact that fi, is the least congruence on GT(H) containing E, and that the 
completeness part follows from the fact that AE is a graph congruence. It only 
remains to prove that AE exists. 

4. EXISTENCE OF THE CONGRUENCE CLOSURE 

We now prove that the congruence closure of a relation R on the graph GT( H) 

exists. This can be done by interleaving steps in which a purely equational 
congruence closure is computed, and steps in which a purely implicational kind of 
closure is computed. The advantage of this method (even though it is not the most 
direct) is that it can be used for showing the completeness of an extension of SLD 
resolution. 

First, we define the concept of equational congruence closure. 

4. I. Equational Congruence Closure 

The notion of equational congruence closure was first introduced (under a different 
name) by Kozen [33,34]. In fact, Kozen appears to have given an O(n’)-time 
algorithm solving the word problem for finitely presented algebras before everybody 
else [33]. Independently, the concept of congruence closure was defined in Nelson 
and Oppen [42]. We have added the qualifier equational in order to distinguish it 
from the more general notion defined in Section 3.4 that applies to Horn clauses. 



16 JEANH.GALLIERANDSTANRAATZ 

For our purpose, we only need to consider the concept of equational closure on 
the graph GT(H) induced by some (fixed) set H of ground Horn clauses. In the rest 

of this section, it is assumed that a fixed set H of ground Horn clauses is given. 

DeJinition 4.1. An S(H)-indexed family R 
equational congruence on GT( H) iff: 

(1) each R, is an equivalence relation; 

(2) for every pair (u, u) E 'rElw( H)2, if 

of relations R, over TERM(H), is an 

and for every i, 1 I: i in, u[i] R, u[i], then uR, U. 

The following lemma was first shown by Kozen [33,34]. For the sake of 
completeness we present the proof given in Gallier [15]. 

Lemma 4.2. Given any S( H)-indexed family R of relations on TERM(H), there is a 
smallest equational congruence 5R on the graph GT(H) containing R. 

PROOF. We define the sequence R’ of S( H)-indexed families of relations inductively 
as follows: For every sort s E S(H), for every i 2 0, 

Ry=R,u {(~,u)~~ETERM(H),}, 

R1+‘=R${( u, u) E TERM( H)‘I( u, u) E R’,} 

U((~,NJ)ETERM(H)*~~~ETERM(H),(U,U)ER~~~~(~,W)ER~} 

U (u,u)E~E~~(H)~~A(u)=A(u),p(A(u))=(s,...s,,s), 
( 

and u[j] RL,u[j], 1 <j<n . 
> 

Let ( gR ), = Ui,,,R:. It is easily shown by induction that every equational 
congruence on GT(H) containing R contains every R’, and that AR is an 
equational congruence on GT( H). Hence, &R is the least equational congruence on 
GT(H) containing R. 0 

Since the graph GT(H) is finite, there must exist some integer i such that 
R’ = R’+‘. Hence, the equational congruence closure sR of R is computable. 

We now define the concept of implicational closure. 

4.2. Implicational Closure 

Let H be a set of equational ground Horn clauses. 

Dejinition 4.3. An S(H)-indexed family R of relations R, over TERM(H), is an 
implicational relation on GT( H) iff for every pair (u, u) of nodes in TERM( H)2 
corresponding to a node u i u in the graph GC( H): 

(1) If u i u E H, then uR, u. 

(2) If u As u is the head of a clause u $ u :- u1 i, ul,. . . , u, As, u, in H, and for 
every i, 1 I i I n, ui R,, vi, then uR, u. 

The following result holds. 



EQUATIONALHORNCLAUSES 17 

Lemma 4.4. Given a set H of equational ground Horn clauses, given any S(H)- 
indexed family R of relations on TERM(H), there is a smallest implicational relation 

l 

3R on the graph GT( H) containing R. The relation 3R is called the implicational 
closure of R on GT( H). 

PROOF. We define the sequence R’ of S( H)-indexed families of relations inductively 
as follows: For every sort s E S(H), for every i 2 0, 

Rf=R,u ((,,v)ETERM(H)~~u~,~vEH), 

R ~i1=R~U((u,v)~~~~~(H)2~~~~~isanodeinGC(H), 

and there is some clause 

u=,v:- ui =s,vi,..., u, A:s, v, in H 

suchthat u,R~,v,,l~jln . 
> 

Let ( ;R ), = Ui t 0R:. As in the previous proof, it is easily shown that ;R is the 
implicational closure of R. 

Since GT( H) is finiJe, there is a least integer i such that R’ = R”‘. Hence, the 
implicational closure 1R of R is computable. 

Note that jR is not necessarily an equivalence relation, but this does not matter, 
because we are going to interleave implicational closure steps and equational 
congruence closure steps. 

4.3. Congruence Closure for Horn Clauses 

The idea is to interleave steps in which the implicational closure is computed, and 
steps in which the equational congruence closure is computed. 

Theorem 4.5. Given a set H of equational ground Horn clauses, and given any 
S( H)-indexed family R of relations on TERM(H), there is a smallest congruence 
closure AR on the graph GT( H) containing R. 

PROOF. We define the sequence R’ of S( H)-indexed families of relations inductively 
as follows: For every sort s E S(H), for every j > 0, 

R; = R,, 

R2J+1 = j 
3 R;J 3 

R2/+2 = z 
s 

=@‘+I . 
s 

Let (AR)s=Ui20R’,. 
Since the graph GT( H) is finite, there is some integer i 2 2 such that R’ = R’+l. 

If i = 2 j, since Rtj” = jR2, and j 2 1, then RfJ is an equational congruence, and 
RsJ+’ is a congruence on GT(H). If i = 2 j + 1, since RfJ+2 = sRz,+l and j 2 1, 
then RzJ+’ is an implicational relation, and Rfj+’ is a congruence‘ on GT(H). It 
can also easily be shown by induction that any congruence on GT( H) containing R 
contains every R’. Hence, AR is the congruence of closure R on GT( H). 0 



18 JEAN H. GALLIER AND STAN RAATZ 

The above theorem gives a method for computing AR. This method is not 
efficient, but it is possible to give fast algorithms based on the equational-con- 
gruence closure algorithm for ground equations [X, 15,33,34,42,43] and Dowling 
and Gallier’s algorithm [7] for computing an implicational closure. Such algorithms 
are presented in Gallier [14]. 

5. A REFUTATION SYSTEM FOR GROUND EQUATIONAL 
HORN CLAUSES 

We now show how the results of Sections 3 and 4 can be used to prove the 
completeness of a refutation system for ground equational Horn clauses. First, as in 
Kozen [33,34], we show that equational congruence can be expressed using the 
notion of term rewriting. Technically, this is an important step, because the notion 
of term rewriting can be generalized to nonground terms, whereas it is not known 
how to generalize the congruence-closure concept to nonground terms. Hence, the 
reader should not be too surprised if the concept of congruence closure is not used 
in the rest of this paper, but rather the concept of term rewriting. The main role of 
the congruence closure concept is to establish the decidability of unsatisfiability for 
ground Horn clauses, and it also plays a crucial role in the proof of Theorem 5.7. 

Definition 5.1. Let E be a finite set of equations. We define the relation aE on the 
set of terms as follows. Let t,, t, be any two terms; then t, aE t, iff there is some 
equation s A t E E, some trees address (Y in ti,_ and some substitution u such that 
if t,/cw denotes the subterm of t, rooted at (Y, we have 

t,/a:=a(s) and t,=t,[cuta(t)]. 

When t, -E t,, we say that t, rewrites to t,. In words, t1 rewrites to t, iff t, is 
obtained from t, by finding a subterm of t, which is equal to a substitution 
instance a(s) of the left-hand side s of some equation s A t E E, and replacing it 
by the substitution instance u(t) of the right-hand side t of the equation. 
Let GE be the reflexive and transitive closure of aE. The relation eE is 
defined as follows: for every pair of terms s, t, 

soEt iff saEt or t-Es. 

Let AE be the transitive and reflexive closure of eE . When we want to fully 
specify a rewrite step, we use the notation t, *ca,sAr,ol t2, or more simply 

t1 *[s&r o] t,, and similarly for e . When E consists of ground equations and the 
terms s ‘and t are ground, the substitution u is the identity and is omitted. 

The following easy lemma will be needed in the next section, 

Lemma 5.2. Let E be a jinite set of equations, and s and t two ground terms. Then 
s A, t if there is a jinite set E’ of ground instances of equations in E such that 
s +’ t. 

PROOF. Both directions are easy inductions on the number of rewrite steps. The 
details are left to the reader. 0 



EQUATIONALHORNCLAUSES 19 

The following lemma, analogous to Kozen’s first theorem [33, p. 81 formalizes the 
equivalence of the congruence-closure method and ground-term rewriting. 

Lemma 5.3. Let E be a finite set of ground equations, and s A t be any arbitrary 
ground equation. Let H be the set of Horn clauses E U { :- s A t }, and let sE be 

the equational-congruence closure of E on GT( H). Then, 

s&Et iff sA,t. 

PROOF. The proof proceeds by induction on the number of rewrite steps and on the 
number of congruence-closure steps. The details are straightforward and are left to 
the reader. 0 

We are now in a position to define our refutation system. This system is an 
extension of SLD resolution in which both standard SLD resolution steps and 
conditional rewrite steps are performed. 

Definition 5.4. Let H be a set of ground Horn clauses with equality consisting of a 
set D of definite clauses and a set {G,, . . _, G,} of goals. A ground SLDE 

derivation for H is a sequence (N,, N,, . . . , N,) of negative clauses satisfying the 
following properties: 

(1) N, = G,, where G, is one of the goals; 

(2) For every Ni, 0 I i <p, if N, = :-A, ,..., A,_,&, Ak+i ,._. , A, (where A, is 
of any sort, including boo/), then either 

(9 

(ii) 

there is some definite clause C, = A, :- B,, . . . , B,,, in D such that, if 
m > 0, then 

N,,, = :-A, ,..., Ak-l, B, ,..., B,,,, Ak+l ,..., A,, 

else if m = 0 then 

N;+r = :-A, ,..., Ak-l, &+I ,..., A,; 

or 
Letting A, = s A t (where s A t is of any sort, including boot), there is 

some finite set 

9= {syt,:- rl,...,S,~tm:-rm} 

of definite clauses in D, such that, letting E= (si A t,, . . . , s, --I t,}, we 

have 

s A, t and N,,, = :-A, ,..., A,_,, Tl,.. ., IY,, Ak+l,. . ., A, 

(where any of the I’/‘s may be empty). 

A ground SLDE derivation is a ground SLDE-refutation iff NP = 0 (the empty 
clause). 

A step as in (i) is called an SLD step, and a step as in (ii) is called a conditionaf 
rewrite step. It is in step (ii) that A, is treated as an equation, possibly of sort bool. 
Note that cases (i) and (ii) are not mutually exclusive, that is, one may have the 
choice of applying a standard SLD step or a conditional rewrite step to the same 



20 JEAN H. GALLIER AND STAN RAATZ 

atom A, = s G t. Also, if H does not have any equations, then a ground SLDE 
derivation is an SLD refutation, and if all definite clauses in H are equations, a 
ground SLDE refutation consists of rewrite steps only. Such a refutation method is 
a form of linear input refutation, because it resolves the current clause Nk with some 
clause(s) in the input set D. Our method can be viewed as a special version of the 
paramodulation method of Robinson and Wos [49], or of the E-resolution method 
of Anderson [l]. The crucial difference is that many paramodulation steps can be 
performed in one SLDE step. Before showing the completeness of this method, we 
give an extended example. 

Example 5.5. Consider the following set H of ground equational Horn clauses: 

f3aa’ :-fa&fb, 

a A b, 

Pa, 

f ‘a A a :- Qa, 

Qa:-f3aAaa, 

Ra:-faGa, Pfa, 

:- Rfa. 

Recall that Pa, Qa, Ra, Pfa, and Rfa are abbreviations for Pa AT, Qa A T, Ra 
= ’ T , Pfu L T , and Rfa A T . Since there is no definite clause of the form Rfa A T 

._ . B,, . . . , B, in H, an SLD step is not applicable. However, if we let 

D,= {Ru&T :-faAa,Pfa, 

f3aAaa-faAfi, 

f’u+z:- Qu} 

and thus &‘r = { Ra A T , f 3u A a, f ‘a A a }, a conditional rewrite step is applicable, 
and Rfa can be rewritten to T by the following sequence of rewrite steps: 

T A&, Ra Aal Rf 3a A81 Rf 6a A&, Rfa. 

Note that the equations in 8r have been used as two-way rewrite rules (and that 
Rfa is an abbreviation for Rfa A T). Collecting the premises used in these steps, we 
have the following step in the derivation, where N, stands for the ith step: 

Nr :- Rfa, 

N2 :- fa&a, Pfa, faA@,Qa. 

Let us choose fu Afl as the next current subgoal. Since there is no definite clause 
with fa Gfi as its head, an SLD step is again not applicable. Letting g2 = D, = 
{a&b} allows fuA,2 jb immediately, and thus 

N3 :- faGa, Pfa,Qa 

Again, no SLD step applies. Letting 

D,= {f3u+z:-fu~@, 

f5a+z:- Qu) 



EQUATIONAL HORN CLAUSES 21 

and g3 = { f3u A a, f5a 1 a}, rewriting, we have 

a A83 f 3a A83 f 6a &8x fa 

and thus 

N4 :- Qu, fa Aj.3, Pfa, Qa, 

N.4’ :- Qa, fa Afb, Pfa. 

N4, is derived from N4 by simplification, i.e., dropping the duplicate Qu. Similarly 
to the derivation of N2 from N,, fu Afl can be eliminated, yielding 

N, :- Qa, Pfa. 

Continuing, by letting 

D4= {f3a~a:-fa~fi, 

f5ara:-Qa, 

Pa&T} 

and g4 = {f 3a A a, f ‘a G a, Pa A T}, rewriting 

T.;SR4 Pa AR4 Pf 3a C;84 Pf 6a C;84 Pfa 

yields 

N6 :- Qa, fa A@. 

Eliminating fu Ifi is again immediate, and thus the next step in the derivation is 

N7 :- Qa. 

An SLD step is now applicable using the definite clause Qu :-f 3u L a, and yields 

N8 :-f3aGa. 

Finally, using the clause f 3a k a :- fu Afb, the negative clause :- fa Gfi is derived 
by another SLD step, which as above can be eliminated, yielding a refutation 

N9:-faAjb, 

NM 0. 

The reader has probably noticed that there has been a tremendous amount of 
redundant computation in this refutation; in particular, the implication 

f3aGaAf5aAa3faGa 

has occurred three times. This is an issue that would have to be addressed in an 
implementation. 

In order to prove the completeness of the above method, we need the following 
lemma establishing the completeness of ground SLD refutations. 

Lemma 5.6. Let H = D U { :- u A v } be a set of ground Horn clauses, where D is a 
set of dejinite clauses with equality, let E = {(u’, v’)(u’~ V’E D}, and let SE be 

the implicational closure of E on GC( H). If u ;E v, then there is an SLD 
refutation for the set D U { :- u A v }. 



22 JEANH.GALLIERANDSTANRAATZ 

PROOF. By Lemma 4.4, for every sort s, (SE ), = Ui 2 OR’,, where the R’s are defined 
inductively. We proceed by induction on the least i such that u R’ u. 

If i = 0, then tl A u E E, and we have an obvious SLD refutation from :- u A u 
and u&u. 

If i > 0, then there is some definite clause u G u :- ui A ui,. . . , un A u,, in H such 
that, for everyj, 1 <j<n, we have ujR’-’ uj. By the induction hypothesis, there is 
an SLD refutation for each set D U { :- uj L u,}, 1 I j 5 n. Using the definite clause 
u&u:--i;u i,. . . , u, G u,,, it is obvious that an SLD refutation for the set D U 
{ :- u ; u} can be constructed from these SLD refutations. 0 

We now prove the completeness of the ground SLDE-refutation method. 

Theorem 5.7 (Completeness of ground SLDE refutations). Let H be a finite set of 
ground Horn clauses with equality, and let D be the set of de$nite clauses in H. If H 
is unsatisjable, then H contains some negative clause :- u1 A ul,. . . , u, G u,,,, and 
there is some ground SLDE refutation for the set D U { :- u1 A ul,. . . , u, A u,,,}. 

PROOF. From the completeness theorem 3.6, H is unsatisfiable iff there is some 
negative clause :- ui A ui, . . . , 24, G u, in H such that, for every i, 1 I i I m, we 
have ui f;E ui. Then, for every i, 1 I i I m, the set D U { :- u1 A ui} is unsatisfiable. 

Let E = {(u’, u’)Ju’ G u’ E H}. By Lemma 4.5, for every sort s, (AE)s = Uiz_oR’,, 
where 

R2j+l l 

s 
=I R:' 3 

R2j+2 =2: 
s fRf,+’ . 

Since ui A, ui, we prove that there is an SLDE refutation for the set D U { :- ui G 
ui} by induction on the least k such that ui Rk ui. 

Case 1: If k = 0, then ui A ui E H, and so we have an SLD-refutation for the set 
{ :- ui ; ui, ui ; Ui}. 

Case 2: If k = 2j + 1, then R:j+‘= jR2 . By Lemma 5.6, there is an SLD- 
refutation 9 for theset DU{u~u~uR2iu}U{:-~i~ui}. Let {xr’y,,...,x,~ 
yr} be set of equations used in the SLD refutation 9. Since x, R2j y,, by the 
induction hypothesis there is an SLDE-refutation for each set D U { :- x, A y!}, 
1 I 1 I r. By combining these refutations and the SLD-refutation 9, we obtain a 
SLDE-refutation for the set D U { :- ui A vi}. 

Case 3: If k = 2 j + 2, then Rtj+2 = sR2,+l . 
of rewrite steps ui ARzi+l ui. Let {xi ; y,, . .‘. , 

By Lemma 5.3, there is a sequence 
x, G y,} be the set of equations used 

in the sequence of rewrite steps. Since x, R2j+’ y,, by the induction hypothesis there 
is an SLDE-refutation for each set D U { :- x, A yl}, 1 I 1s r. But since R2j+’ is an 
implicational closure, by case (2) this implies that for every :- x, A y,, the first step 
of the SLDE refutation for the set D U { :- xl A yl} uses some definite clause 
x, A y, :- I’, (where I, may be empty). Hence, performing conditional rewriting steps 
using the set {xi;yi:-Ii,..., x, i y, :- I’,} and the above SLDE refutations, it is 
possible to construct an SLDE-refutation for the set D U { :- ui A ui}, whose first 



EQUATIONAL HORN CLAUSES 23 

step is 

:- u; A Vi, 

:- r,, . . .) r,. 

From the SLDE refutations for the sets D U { :- ui L u;}, we obtain an SLDE 
refutation for the set D U { :- uI g ul, . . . , u, A u,}. 0 

We leave the soundness of the ground SLDE-refutation method as an exercise. 

6. A GENERAL REFUTATION METHOD USING E-UNIFICATION 

In order to generalize the results of the previous section to the first-order case, we 
shall need the notion of unification modulo a set of equations. This concept comes 
up naturally when we apply the Herbrand-Skolem-Godel theorem (see Gallier [15], 
or Shoenfield [51]) to a set of universal Horn clauses with equality, in order to 
reduce unsatisfiability in the first-order case to unsatisfiability in the ground case. 
Recall that this theorem states that a set of universal prenex sentences is unsatisfi- 
able if and only if some set of ground substitution instances of the matrices of these 
sentences is unsatisfiable. 

Applying the Herbrand-Skolem-Godel theorem to a set H of first-order universal 
Horn clauses with equality, by Theorem 5.7, there is a ground SLDE refutation of a 
certain set H’ of ground instances of the clauses in H. It is easily seen by induction 
on the number of refutation steps that every goal clause in this refutation is of the 
form (I(:-_~,..., A,) for some ground substitution CJ and some goal clause 
.- . A 1,. . . , A, (not necessarily in H). Hence, every refutation step is in one of the 

following two forms: 

(i) There is some goal Nj = a( :-A,, . . . , Ak_l, A,, Ak+l,. . . , A,), and some 
definite clause C, = &A :- B,, . . . , B,), where A :- B,, . . . , B, is some defi- 
nite clause in H and 8 is some ground substitution, and 

u(Ak) =0(A). 

(ii) 4 = a( :- A,,. . . , A,_,, A,, Ak+l,. . ., A,), and letting A, =s h t, there is 
some finite set 

of ground definite clauses, some finite set Y= { 8,, . . . , O,} of ground substi- 
tutions, and some finite set 

9= {SiIti:-r~,...,S,Ltr:-rr} 
of clauses in H, such that, for every sjl A t; :- I; E Q’, there is some 
substitution dj E 9’ and some clause s L t :- I’ E $3 such that s,! A tj :- I; = 
ej(s A t :- I’), and, letting 8’ = {s; A t;, . . . , S; 2 t;}, we have U(S) A&, a(t). 

By Lemma 5.2, this is equivalent to 

4s) +# a(t), 

where &‘={~~;t~,_..,~~~t~}. 

(**) 



24 JEAN H. GALLIER AND STAN RAATZ 

In case (*), A and A, are unifiable, and since it can be assumed that A and A, 
have no variables in common, it is well known that A and A, have a most general 
unifier (see [15]). In case (* *), we have a generalization of the concept of a unifier. 
We say that a is a unifier of s and t module the set of equations 6. Unfortunately, 
unification modulo a set of equations does not enjoy the nice properties of standard 
unification. In particular, there is in general no algorithm for deciding whether two 
terms are unifiable modulo I, and if two terms are unifiable modulo &, there is in 
general no single most general unifier, but instead, a possibly infinite set. Neverthe- 
less, there is always a procedure for enumerating a complete set of unifiers modulo 
8. The problem is that such a procedure may generate a highly redundant set of 
&unifiers. First, we give a precise definition of a E-unifier, and then we generalize 
Definition 5.4 to the first-order case. Some auxiliary definitions are also needed. 

Dejinition 6.1. Given a Horn clause C, a Horn clause C’ is a variant of C iff there 
is an injective substitution u such that u(x) is a variable for every x E D(u), 

C’ = u(C), and Var(C) n Var( u(C)) = 0. We say that u is a renaming. 

Dejinition 6.2. Let E be a finite set of equations. Given two terms s and t, we say 
that a substitution u is a unifier of s and t modulo E-for short, an E-unijier of s 

and t-iff u(s) AE u(t). 

Note that when E = 0, an E-unifier is just a standard unifier. In the following 
definition, E-unification is integrated into SLD resolution. 

Dejinition 6.3. Let H be a set of first-order Horn clauses with equality consisting of 
a set D of definite clauses and a set {G,, . . . , G,} of goals. An SLDE-derivation 

for H is a sequence (N,, N,, . . . , A’,) of negative clauses satisfying the following 
properties: 

(1) N, = Gj, where Gj is one of the goals. 

(2) For every Ni, 0 5 i <p, if N, = :-A,,. . ., A,_,, A,, JI~+~,. . ., A, (where A, 
is of any sort, including bool), then either 

(0 

(3 

there is some definite clause C, = A :- B,, . . . , B,,, in D and some most 
general unifier ui of A and A, (assuming that the variables in C, have 
been renamed so that they do not occur in Ni, which is always possible), 
such that, if m > 0, then 

Ni+i=ei( :-A,,***, A,-,, Bi,..., Bm, Ak+i,..-, A,), 

else if m = 0 then 

Ni+, = ui( :- A,,. .., A,_,, Aktl,. . ., A,); 

or 
letting A, = s A t (where s L t is of any sort, including bool), there is 
some finite set 

9= {S1~ttl:-rl,...,S,~tt,:-rm} 

of variants of definite clauses in D (such that any two clauses in this set 
have disjoint sets of variables, also disjoint from the set of variables in 



EQUATIONAL HORN CLAUSES 25 

Iv;) and some finite set P= { 8,, . . . , 0,) of substitutions, and, letting 

Q= { s,-ri,...,s m 4 t,} 

for some &-unifier u, of s and t, we have 

and 

Ni+l = :-u&4,),..., ui(Ak~l),el(rl),...,em(rm), 

ui(Ak+l),“‘T ‘fCAn) 
(where any of the Ij’s may be empty). 

An SLDE-derivation is an SLDE refutation iff NP = 0 (the empty clause). 

Again, note that cases (i) and (ii) are not mutually exclusive. Also, note what is 
involved in step (ii). It is necessary to find: 

(1) somefiniteset .9={~i~:~:--I~,...,.s, A t, :- r,} of variants of clauses in 
D, and some finite set Y= { Oi,. . . , d,,,} of substitutions; 

(2) an &unifier ui of s and t such that 

uii(s) cj[s,-t,,fl,] “. ~[s,~r,,e,] ah 

where E={~i~ti,...,~~~~,,,}. 

The point is that it is not sufficient to simply find some set 9 and some &-unifier 

ui of s and t. In order to identify the premises O,( I?,), . . . , O,( r,), we also need to 
find the set Y= { Oi,. . . , em} of substitutions applied in some sequence of rewrite 

steps u,(s) A8 ai( 
Hence, the method requires not just a procedure for enumerating E-unifiers, but 

also one for producing an explicit sequence of substitutions for every &unifier, 
which is prohibitive in practice. In the next section, we shall consider subcases for 
which it is not necessary to produce the sets 8. First, we give an example and 
establish the completeness of the above method. 

Example 6.4. Consider the following set H of equational Horn clauses, where 
x, y, z denote variables: 

f3y &y :-fv G:fb, 

a A b, 

Pa, 

f ‘x A x :- Qx, 

Qa:-f3aAaa, 

Ra:-faGa, Pfa, 

:- Rfz, Pz. 

Recall that Pa, Qx, Qa, Ra, Pfa, Rfz, and Pz are abbreviations for Pa A T , Qx A T , 
Qa A T , Ra G T , Pfa L T , Rfz A T , and Pz A T . Now Rfz A T is not unifiable with 



26 JEANH.GALLIERANDSTANRAATZ 

the head of any clause in H. However, if we let 

D= {RUST :-fa&a, Pfa, 

f3yGy::-fY&jb, 

f5xAx:- Qx}; 

9’= { L’+ = Id, 8, = [a/y], 0, = [a/x]} w h ere Id stands for the identity substitution; 
and 8= {Ra ATT, f3yAyy, f 5x A x}, then a conditional rewriting step is applicable, 
since ui = [a/z] is an &unifier of T and Rfz by the following sequence of rewrite 
steps: 

T Cj[Ra;.~,B,]Ra~[f'y'y,ez] Rf 3a *[f3YAY,e,l Rf % *[~G~,E,I Rfa. 

Thus ui( Rfz) e; I Us. Again, as in the ground case, the equations have been used 
as two-way rewrite rules. Collecting the premises used in these steps, we have the 
following step in the derivation: 

Ni :- Rfz, Pz 

N2 :- 4(fa ; 4, e,(Pf4, e,(fy 34, e,W, ul(Pz). 

This simplifies by substitution to 

NY :- fa G a, Pfa, fa A@, Qa, Pa. 

Since the derivation step illustrated shows case (ii) of the definition in its full 
generality, and case (i) is the standard SLD-resolution step, we will not complete the 

derivation beyond this point. 

The completeness of the above method is now established. 

Theorem 6.5 (Completeness of SLDE refutations). Let H be a finite set of first-order 
Horn clauses with equality. If H is unsatisjable, then there is an SLDE refutation 
for H. 

PROOF. As indicated at the beginning of Section 6, we apply the Herbrand-Skolem- 
Gijdel theorem (see Gallier [15] or Shoenfield [51]) to H. According to this theorem, 
H is unsatisfiable iff some set H’ of ground-substitution instances of the matrices of 
the clauses in H is unsatisfiable. Since H’ is unsatisfiable by Theorem 5.7 there is 
some ground SLDE refutation for the set H’ from some goal N,,’ in H’. We prove 
the following claim. 

Claim. For every ground SLDE derivation (Nd’, N[, . . . , N,‘) for the set of ground 
instances H’, there is an SLDE derivation (N,, N,, . . . , NP) for the set H, and 
some sequence ( qO, . . . , q,) of ground substitutions, such that, Nj’ = vj( N,) for 
everyj, OIjlp. 

PROOF OF CLAIM. We proceed by induction on the length of derivations. The claim 
is trivial for p = 0. Next, we prove the claim for p + 1. In the rest of this proof, 
“derivation” will mean SLDE derivation (and similarly for refutation). By the 
induction hypothesis, there is a derivation (N,,, . . _ , NP) satisfying the claim, and in 
particular, N; = nP(NP), where N, is some goal clause :- 
A 1,. . ., Ak_i, A,, Ak+i ,..., A,,. There are two cases: 



EQUATIONAL HORN CLAUSES 21 

Case I: N; = q,(N,) as above, C’ = B(A :- B,, . . . , B,) for some ground substi- 
tution 19 and some definite clause A :- B,, . . . , B,,, in D, and 

N’ P+i = :-7&4,),..., ~7p(&i)>(%),..., B(B,),~I,(A,+,),...,~I,(A,), 

where TJ~(A~) = 8(A). It can be assumed by renaming variables if necessary that qP 
and 8 have disjoint support. Then, we can let uP+i denote the union of q, and 8, so 
that N,‘,, = u,+i( :- A,, . . . , A,_,, B,, . . . , B,,,, Ak+l,. . . , A,) and u,+,(A,) = 
u,+,(A). If u is a most general unifier of A and A,, there is a substitution qP+ 1 
such that a,,, = u 0 vP+i. Then, there is an SLD-resolution step from NP = 
._ 

A 
A,, . . . , A,_,, A,, Ak+l,. . . , A, to N,,, = 4 :-A,, . . . , A,-,, B,, . . . , B,, 

k+p...,A,) and N;,, = TI~+,<N,+,>. Hence, (No,. . . , N,+J and (Q,. . . , vp+d 
also satisfy the claim. 

Case 2: N; = vP(NP) as above, and letting A, = s A C, there is some finite set 

g= {S1;tl:-r~,...,S,~ft,:-rr,} 

of variants of definite clauses in D (such that any two clauses in this set have 
disjoint sets of variables, also disjoint from the set of variables in N,), and some 
finite set Y= { 8,, . . . , S,} of ground substitutions; and, letting 

b= { St%r,...,S,%,}, 

we have 

and 

N’ 
P+l 

= :-q,(A,),..., vp(Ak-&4(G),...> e,(r,),q,(A,+,),...,q,(A,). 

Then, note that qP is a &unifier of s and f, and, letting NP+ r = Ni+, and qP+ 1 = Id 
(where Id denotes the identity substitution), (N,, . . . , N,,,) and (~a,. . . , v,+~) also 
satisfy the claim. This concludes the proof of the claim. 0 

Applying the claim to a refutation, the theorem is provided. 17 

The soundness of the SLDE-refutation method is left as an exercise. 

7. A REFUTATION METHOD USING EUNIFICATION PROCEDURES 

In this section, we present a refinement of the SLDE-refutation method that uses an 
explicit procedure for enumerating a complete set of E-unifiers. Stimulated mostly 
by work on the Knuth-Bendix procedure, E-unification has been investigated 
extensively in the past few years. Siekmann [50] contains an excellent survey, and 
the state of the art in this domain is described in Kirchner [27]. The main problem is 
to generalize the concept of a most general unifier. To this effect, we need some 
definitions, most of which are taken from Kirchner and Kirchner [29]. First, we need 
to define when two substitutions are equal modulo E. 

DeJnition 7.1. Given a finite set E of equations, and given any set W of variables, 
we say that two substitutions u and 13 are equal module E over W, denoted by 
u =E e[W], iff for every variable x E W, u(x) AE B(x). 



28 JEAN H. GALLIER AND STAN RAATZ 

We say that a is more general than 8 over W, denoted by u sE O[W], iff there is 
some substitution n such that 0 =E u 0 q[W]. 

We say that a and 0 are congruent modulo E over W, denoted by u =E 0[ W], iff 
u sE O[W] and 8 5E u[W]. 

When either u SE e[W] or 6 gE u[W], we use the notation u fE QW], and we 
say that u and 0 are noncongruent modulo E over W. When W is the set of all 
variables, it is omitted, and similarly when E = 0. 

Note that in general, =E and =E are distinct relations, as shown by Fages and 
Huet [lo]. In the next definition, the concept of a most general unifier is generalized 
to E-unifiers. Unlike standard unification, it is necessary to consider a set of 
substitutions. 

DeJinition 7.2. Given a finite set E of equations, for any two terms s and t, and for 
any finite set W of variables such that Var(s) U Var(t) c W, a set S of substitu- 
tions is a complete set of E-uni$ers for s and t away from W iff: 

(i) for every u E S, one has D(u) G Var(s) U Var( t) and I( a) n W = 0; 

(ii) for every u E S, one has u(s) AE u(t); 

(iii) for every E-unifier 0 of s and t, there is some u E S such that u I, e[ W]. 

Condition (i) is the purity condition, condition (ii) the coherence condition, and 
condition (iii) the completeness condition. Condition (i) will be needed in the proof 
of the completeness theorem for SLDE? refutations. It is needed to ensure that the 
variables appearing in a resolvent clause are disjoint from the variables in the 
original literals being resolved on. 

Unfortunately, it is undecidable whether two terms are unifiable modulo a set of 
equations. This can be shown by choosing the set of equations to contain the axioms 
for monoids. Then, the word problem for monoids is as an instance of the 
E-unification problem. Since the word problem for monoids is undecidable [39], so 
is E-unification. However, using a simple dovetailing argument, it can be shown that 
for every finite set E of equations and any two terms s and t, the set UE(s, t) of all 
E-unifiers of s and t is recursively enumerable. Note that for any finite set W 
containing Var(s) U Var( t), the subset of U&s, t) satisfying the purity condition 
with respect to W is a complete set of E-unifiers away from W. However, even 
though such a set is recursively enumerable, it may be highly redundant. It would be 
desirable, as in the case where E = 8, to show the existence of complete sets of 
unifiers from which UE(s, t) can be generated by instantiations, and even better, 
complete sets of E-unifiers satisfying some minimality conditions. Such conditions 
were proposed by Huet in the framework of higher-order unification [20]. 

Let S be a complete set of E-unifiers of s and t away from W. Two minimality 
conditions can be defined. 

Minimality: For any two substitutions u, 6 E S, if u sE 8[ W], then u = 8. 

Noncongruence : For any two substitutions U, 8 E S, if u =E fI[W], then u = 0. 

Note that minimality implies noncongruence. Unfortunately, there are difficulties 
with both concepts. Minimality cannot always be achieved, and noncongruence may 



EQUATIONAL HORN CLAUSES 29 

not be recursively enumerable. Fages and Huet [lo] have shown that there exists a 
set of equations E and two terms s and t such that there is no complete and 

minimal set of E-unifiers for s and t. The reason why complete minimal sets of 
E-unifiers do not always exist is that the ordering induced by I, on the set of 
equivalence classes of UE(s, t) modulo =E may not be well founded. When I, is 
well founded (that is, every strictly decreasing chain is finite), for every 0 E U&s, t) 
there is some element u E UE(s, t) minimal with respect to I, , and such that 
u I, B[W]. In this case, a complete and minimal set of E-unifiers exists. More 
generally, if every decreasing chain (with respect to I, , and even infinite), has a 

lower bound (the ordering sE is inductive), then using Zorn’s lemma, it is not 
difficult to see that for every BE UE(s, t), the set {u E UE(s, t)]a sE 0[B’]} has a 
minimal element. Hence, in this case, a complete minimal set of E-unifiers also 
exists. 

The above discussion suggests to relax the condition of minimality as follows: 

Weak minimality: For any two substitutions u, B E S, if u I, 8[ W], then either 
u = 13 (e is minimal), or there is no minimal element p E U&s, t) such that 

P sE e[W]. 

By “weeding out” elements of UE(s, t) greater than some minimal element, we 
can always show that a complete and weakly minimal set of E-unifiers exists. 

However, the argument below implies that some complete and weakly minimal sets 
of E-unifiers are not recursively enumerable. 

For any finite set W containing Var(s) U Var(t), by considering any set satisfying 
the purity condition with respect to W and obtained by selecting some substitution 
in each equivalence class of UE(s, t) modulo -E , a complete and noncongruent set 
of E-unifiers of s and 1 away from W is shown to exist. However, such a set may 
not be recursively enumerable. This is because if the word problem for E is 
undecidable, the restriction of =E to UE(s, t) may not be recursive (but it is 
recursively enumerable). For example, we can choose E such that E = &U {axioms 
for monoids}, where 8 is a set of equations such that deciding whether any two 
strings are congruent modulo s8 is undecidable. Such a set 8 is given in Machtey 
and Young [39], where it is shown that for some fixed term uO, the set of all terms u 
such that u G8 u,, is not recursive. Then, for the terms s = x and t = u. (where x is a 
variable), s and t are E-unifiable iff for some substitution u, u(x) &E uO. Hence, 
& 

E is not recursive. Observe that every substitution u with support {x} can be 
identified with the term u(x). Using this identification, note that UE(x, uo) contains 
(among other things) the set of all ground terms u such that u g E uO. Hence, 
UE(x, uO) is not recursive. But then, given any two ground substitutions u1 and u2 
with support {x }, u1 zE u2 iff ui(x) SE u2(x). If the restriction of -E to UE(x, uo) 
were recursive, then by choosing u2 such that uz(x) = uO, we could show that 
UE(x, uo) is recursive, a contradiction. Hence, the restriction of =E to U,(x, uO) is 
not recursive. But since -E is recursively enumerable, the restriction of its comple- 
ment f, to UE(x, uo) is not recursively enumerable. 

When E consists of ground equations, it has been shown by Kozen that 
E-unification is NP-complete [33,34]. Kozen’s proof consists in showing that if two 
terms are E-unifiable (with E ground), then there is some E-unifier u satisfying the 
following property: There is a function q : Var( s) u Var( t) + Subterms( E u { s, t }), 
where Subterms( E U {s, t }) denotes the set of subterms occurring in terms in 



30 JEAN H. GALLIER AND STAN RAATZ 

E U {s, t } such that for every x E Var(s) U Var( t), cp defines a (unique) substitution 
u such that a(x) = cp 0 a(x). Hence, u is completely determined by the function 
cp : Var(s) U Var( t) + Subterms( E U {s, t }). The above yields a nondeterministic 
polynomial-time algorithm for deciding E-unifiability: “Guess” (p, and check that 
a(s) AE o(t), using the congruence closure algorithm. NP-completeness is easily 
shown because one can reduce the satisfiability problem to E-unifiability by choos- 
ing the equations in E to be an encoding of the truth tables for the logical 
connectives A, V, and -, (for details, see Kozen [33,34]). However, Kozen’s proof 
does not show that a finite complete set of E-unifiers exists (for a ground set E). It 
is possible to prove this stronger result, and the first author has, in fact, extracted a 
complete E-unification procedure based on this proof [16]. 

We now consider the case in which an explicit procedure for enumerating 
complete sets of E-unifiers is available. The following definitions will be needed. 

Dejinition 7.3. 

(1) 

(2) 

Given a set H of Horn clauses, let EH be the set of equations occurring as 
the head of some clause in H. We say that H is acceptable iff we have some 
procedure UNIF( EH) such that for any two terms s and t, and for any finite 
set W such that Var( s) U Var( t) c w, the procedure UNIF( EH)( s, t, W) enu- 
merates a complete set of E~unifiers for s, t away from W. [As noted earlier, 
such a procedure always exists, but in practice, UNIF( EH) generates complete 
sets of unifiers having some special properties.] 

Given a set H of Horn clauses, we say that H is well-behaved iff 

(i) H = E U C and E n C = fl, where E is a set of equations (that is, atoms 
of sort # bool) and C is a set of Horn clauses such that the head of each 
such clause is not an equation (that is, an atom of sort bool). 

(ii) H is acceptable. Note that EH = E. 

The class of well-behaved Horn clauses was introduced by Goguen and Meseguer, 
who have also investigated some of its properties [17]. For this class, only equations 
in EH can be used in step (ii) of Definition 6.3. Hence, the search space required for 
constructing refutations is reduced. Actually, it is possible to define a refinement of 
the SLDE-refutation method applying to arbitrary acceptable sets of Horn clauses. 

Definition 7.4. Let H be an acceptable set of first-order Horn clauses with equality 
consisting of a set D of definite clauses and a set {G,, . . . , G,} of goals. An 
SLDEt derivation for H is a sequence (N,, N,, , . . , N,) of negative clauses 
satisfying the following properties: 

(1) N, = Gj, where Gj is one of the goals. 

(2) For every Ni, 0 I i <p, if iv; = :-A,, . . ., A,_,, A,, Ak+l,. . ., A, (where A, 
is of any sort, including bool), then either 

(i) there is some definite clause C, = A :- B,, . . . , II,,, in D, some finite set 

9= {Slitl:-r~,...,S,~rt,:-rrr} 

of variants of definite clauses in D (such that any two clauses in this set 
have disjoint sets of variables, also disjoint from the set of variables in 



EQUATIONAL HORN CLAUSES 31 

fl.), and some finite set Y= { 8,, . . . , Or} of substitutions; and, letting 

b= { s, G t 1,“‘, 3, h t, > 3 

for some E,-unifier ai of A, and A given by the procedure UNIFY, 

we have 

'it Ak) *[slLtl,Bl] * ’ . e[s,;t,,8,] ui(A) 

and 

Ni+r= :-u;(A,),...,‘,(A~-~),U~(B~),...,U;(B,), 

4(I,),..., ‘rtrr)? ui(Ak+l)~~~~~ui(An) 

(where any of the I”‘s or B,, . _ . , B,,, may be empty); or 
(ii) Letting A, = s G t (where s L t is of any sort, including boo/), there is 

some finite set 

9= { s1 A t, :- rl, . . . , S, A t, :- r, } 
of variants of definite clauses in D (such that any two clauses in this set 
have disjoint sets of variables, also disjoint from the set of variables in 
N,);and some finite set 9= { 8,, . . . , Br} of substitutions; and, letting 

b= {S1~tl,...,Sr~ttr}, 

for some E,-unifier a, of s and t given by the procedure UNIF(E,), we 

have 

and 

N;+i= :-ai(A,), ~;(A~_~),e,(r,),...,e,(r,), 

Ui(A/c+,),**.,u;(A,) 

(where any of the I/‘s may be empty). 

An SLDEt derivation is an SLDEt-refutation iff NP = •I (the empty clause). 

Note that when H is well behaved, 9 is a set of equations, and there is no need 
for the set Y, since all the rj’s are empty. 

In the case of arbitrary acceptable sets, the completeness of the SLDEt method 
depends on the procedure UNIF( EH) used. This means that completeness cannot be 
guaranteed for UN procedures enumerating a complete set of E,-unifiers [but it is 
complete for the systematic procedures enumerating each set UEJs, t); see below]. 
The problem is the following. Assume that for some terms s, t and some set W, we 
have UNIF(E~)(S, t, W) # UEH(s, t) [of course, UNIF(E~)(S, t, W) G UEH(s, t)]. Since 
UNIF( EH) enumerates complete sets of E,-unifiers, for every E,-unifier 8 of s and 
t, there is some E,-unifier u E UNIF( EH)(s, t, W) and some substitution 11 such that 

e =E,, u 0 q. However, the proof that UNIF( EH) enumerates complete sets of E,-uni- 
fiers may not yield enough information about the substitutions 17 to establish the 
completeness of the SLDE+-refutation method. 

If we choose the procedure UNIF( EH) to be the systematic procedure enumerating 
UEM(s, t) for every pair of terms s and t, the proof of Theorem 6.5 goes through. 



32 JEAN H.GALLIERANDSTANRAATZ 

Hence, the SLDEt-refutation method is complete for uni$cation procedures enumerat- 

ing all E-uniJers. Unfortunately, this is not an improvement over the previous 
method, since such an enumeration procedure is a “brute force” procedure with no 
minimality properties at all. 

However, we can show that the SLDEt-refutation method is complete for all 

well-behaved sets of Horn clauses, for all procedures UNIF(E~) enumerating com- 
plete sets of E,-unifiers. Hence, in this case, one can use procedures generating 
complete sets having some minimality conditions. 

Theorem 7.5 (Completeness of SLDEt refutations for well-behaved sets of Horn 
clauses). Let H be a finite well-behaved set of jirst-order Horn clauses with equality. 

If H is unsatisfiable, then there is an SLDE t refutation for H. 

PROOF. The proof is similar to that of Theorem 6.5, but that the following claim is 

used. 

Claim. For every ground SLDE derivation (N,‘, N[, . . . , Nr’) for the set of ground 

instances H’, there is a SLDET derivation (No, N,,. . , , Nr) for the set H, and 

some sequence (q,, . . . , 17,) of ground substitutions, such that Nj’ AEH qj(Nj) for 

everyj,OIjIp. 

PROOF OF CLAIM. We proceed by induction on the length of derivations. The claim 
is trivial for p = 0. Next, we prove the claim for p + 1. In this proof, “derivation” 
means SLDEt derivation. By the induction hypothesis, there is a derivation 

(N,, . . . , N,) satisfying the claim, and in particular, N; AE, q,(N,). Let NP = 
:-A 1,“‘, Ak_l, A,, Ak+l ,..., A,,, and Np’ = :-A;,. . ., A;_,, A;, Ai+l,.. ., AA. 

There are two cases: 
Case 1: Np’= :-A;,.. ., A;_,, A;, A;+1 ,..., A;, there is some definite clause 

CP = 8( A :- B,, . . . , B,) for some definite clause C = A :- B,, . . . , B,,, in D and some 

ground substitution 8, and 

N’ P+l= :- A;,..., A;_1,e(B1),...,8(B,),A;+1,...,A:,, 

where A;, = B(A). It can be assumed by renaming variables if necessary that qP and 
8 have disjoint support. Then, we can let u denote the union of -ran and 8, and since 
A;& EH vJA& we have 

o(A) %/(A& 

Hence, u is an E,-unifier of A and A,. Since H is well behaved, letting WP+ i = 
Var( N,) u Var(C), there is some E,-unifier up+ i of A and A, away from Wp+ 1 
given by the procedure UNIF( En) and some substitution 7)r+i, such that u =EH 

U,+P ~p+l[Wp+ll. Then, 

N p+1=(lp+1 (:-A1,...,Ak_l,B1,..., B,, Ak+l,..., A,) 

and 

N’ 
P+l %” 71p+,(Np+1)* 

Hence, (NO,. . . , Nr+ 1) and (~a,. . . , Y,+~) also satisfy the claim. 



EQUATIONAL HORN CLAUSES 33 

Case 2: N; AEH qp( N,) as above, A;, = s’ A t’, there is some finite set 

b= {S1+tl,...,S,%,} 

of variants of equations in D (such that any two equations in this set have disjoint 
sets of variables, also disjoint from the set of variables in N,) and some finite set 
Y= {&..., 0,} of ground substitutions, and we have 

St As t’ and N;‘,, = :-A; ,..., Ak_l, Ak+l ,..., A,. 

Since s’ AE, ql,(s), t’ AEH q,(t), s’ As t’, and &c EH, we have 

Ii,(s) %” n,(r). 

Hence, 7, is an E,-unifier of s and t. Since H is well behaved, letting W,+ 1 = 

Var( N,), there is some E,-unifier ap+ 1 of s and t away from Wp+ 1 given by the 
procedure UNIF( EH) and some substitution q, + i, such that q, =EH up+ 1 0 9, + J W, + J. 

Then, 

N p+1= a,+1 (:-Al,...,Ak-l,Ak+l,...,An) 

and 

Np’+ 1 %/# 77p+lP.P+l)* 

Hence, (N, ,..., N,,,) and (no ,..., vp + i) also satisfy the claim. This concludes the 
proof of the claim. 0 

Applying the claim to a refutation, the theorem is proved. 0 

The soundness of the SLDE+-refutation method is left as an exercise. 
When the procedure UNIF(E~) is an algorithm, and any two terms have a finite 

complete set of unifiers, the search space for the SLDET-refutation method is further 
reduced. Fay [ll] and Hullot [23] have given well-known algorithms to compute 
E-unifiers based on the concept of a narrowing substitution [52], and generalizations 
of these algorithms have been given by Kirchner and Kirchner [27-291. The 
procedure of Martelli, Moiso, and Rossi [40] can also be nicely integrated with the 
SLDET-refutation method in the case of canonical sets of equations. 

8. COMPARISON WITH RELATED WORK 

We have been able to identify four other approaches to handling equational Horn 
clauses which include rigorous completeness results. We now point out the main 
differences between these approaches and the methods defined in this paper. In 
particular, it is shown that E-unification is either incorporated or simulated in some 
form in each of these four approaches. 

Jaffar, Lassez, and Maher [24] define a logic program as a pair (P, E) where P is 
the usual set of (nonequational) definite clauses and E is a set of definite equality 
clauses of the form 

e+e,,e,,...,e, 

m 2 0, where each e is an equation of the form s 2 t for terms s and t (but e cannot 
be a nonequational atom). A (P, E)-derivation sequence is a (finite or infinite) 



34 JEAN H. GALLIER AND STAN RAATZ 

sequence of triples (Gi, 2,, 0,), i = 0, 1, . . . , such that 

(a) Gi is of the form Bi,. . . , B,,, where m 2 0 and each Bj is an atom, for all j, 
OIj<m; 

(b) ei is a list of m clauses 

A(“) + D,cm), . . . , D;,"', 

where each clause above is a clause in P with variables renamed; 

(c) 0, is an E-unifier of (B,, . . . , B,) and (A(‘), . . . , A(*)); 

(d) Gj+i is (Di’), . . . , Dn(i), D$‘), . . . , D$, . . . , D,(“), . . . , D,‘r))0,. 

A derivation sequence is jinitely failed with length i if 19, cannot be formed, and 
is successful if some Gi is empty (i.e, m = 0). The authors are able to show that the 
classic soundness and completeness results associated with standard logic programs 
[2] also hold in the above more general framework-in particular, that the least 
model of (P, E) is equal to the least fixpoint of TcP, E), where T is an operator 
defined analogously to the T-operator in Apt and van Emden [2]. 

It is important to point out that this method assumes a uev powerful form of 
E-unification, namely unification modulo equational theories consisting of arbitrary 
definite equality clauses. Also, although they partition a logic program into definite 
clauses and definite equality clauses, it is easy to see that adding the distinguished 
term T to the term algebra over E and allowing equations of the form s A T 

collapses this partition, and results in a system that admits Horn clauses with 
equality in their full generality. Such a system is closely related to the SLDE-refuta- 
tion method presented in this paper. As the authors themselves point out, and as we 
observed in Sections 6 and 7 when discussing the SLDE-refutation system, these 
definitions do not shed much insight on corresponding computational methods 
implementing them. The problems are hidden in the complexities of the E-unifica- 
tion step. Finally, we note that the authors extend their results to include the 
soundness and completeness of the negation-by-failure rule for completed logic 
programs in the manner of Clark [5]. 

Goguen and Meseguer [17] define Eqlog, a logic-programming language that 
includes equality, types, and generic modules. This important work appears to 
represent the current state of the art in defining and implementing a logic-program- 
ming system with modern language features. The authors give a rigorous semantics 
for Eqlog, but their approach does not show the completeness of the inference 
procedure. To clarify this point, the authors prove that for predicate symbol Q and 
terms tl,..., t, containing free variables Y,, . . . , Y,, 

Ck3Y, -..3Y,Q(t,,..., t,) 

iff there is a substitution u sending Y to ground terms such that Q([rr( tr)], . . . , [ a( t,)]) 
is true in an initial model for C. This version of Herbrand’s theorem characterizes 
the abstract properties of the underlying logic. However, it is independent of the 



EQUATIONAL HORN CLAUSES 35 

mechanics of the inference method used to compute the operational semantics; 
the proof does not include a lifting of a ground case to the first-order case. In fact, 
the actual inference method used in Eqlog, as reported in [17], is described (Section 
4) in woru!~. After quoting a passage by Warren [56] on the computation algorithm 
or ordinary PROLOG, and defining the concept of an E-unification algorithm SOLN, 

the following paragraph occurs: 

The assumption that the set C of clauses decomposes into disjoint sets E of equations and P of 
predicate-headed clauses has the desirable effect of isolating the solution of equations into a separate 
E-unification algorithm SOLN, which is then called by the PROLOG search algorithm described above. Of 
course, SOLN must be called in a way that can be backtracked and is fair, in the sense that every 
substitution gets tried. This gives a semidecision procedure that may not halt; but if soln is r.e. complete, 
then a general proof of correctness of the algorithm can be given along standard lines. 

As the proofs in Sections 6 and 7 illustrate, such a general proof must be handled 
very carefully if it is to result in insight for subsequent implementations. We also 
note that the authors subsequently extend by stages the definition of logic programs 
from the base case of C = E U P (what we have called the class of well-behaved 
logic programs) to Horn-clause logic with equality in its full generality. They also 
give examples in Eqlog of these extensions. As in the case of Jaffar, Lassez, and 
Maher, and in our own analysis of acceptable logic programs in their full generality, 
such extensions seem to require forms of E-unification which appear to make 
completeness and tractability results problematical. 

Dershowitz and Plaisted [6] define a system of conditional directed equations of 
the form 

/[Xl:-p[X,Y] +r[X,L], 
where 1 and r are first-order terms, p a predicate, and x and L are sets of 
variables. The interpretation here is p I I + r. Summarizing from [6], computation 
is performed by using an equation either (1) to simplify a subterm that matches its 
left-hand side, or (2) to narrow a subterm that unifies with its left-hand side. A 
computation begins with a goal rule of the form 

g[X, Z] +answer(Z), 

where g contains irreducible input terms x and output variables 2. At each step in 
the computation, if the current subgoal is 

h:-ql,...,qn+answer(S) 

and a rule I :- p + r whose left-hand side can be unified with a nonvariable subterm 
of q1 via a most general unifier u at some context t (i.e., term address), then the 
subgoal q1 is conditionally narrowed to 

u(h):-a(p),t[o(r)l,a(q,),...,a(q,) -answer(o(i>). 
This goal is then simplified by term rewriting as much as is possible. Only when all 
the conditions become true, and the subgoal is of the conditional form h’ --) 
answer(?), are narrowing substitutions attempted for h’. The computation ends 
when a solution rule of the form true + answer(i) is derived. 

This system can be viewed as a restriction of case (ii) of the SLDE-refutation 
method in which equational Horn clauses are restricted to clauses of the form 

I(X) A r(Z, F) :-p(X, Y) 



36 JEAN H. GALLIER AND STAN RAATZ 

whose heads are oriented left to right, i.e., they represent one-way rewrite rules 
rather than two-way rewrite rules as in the SLDE-refutation method. The system 

tries to E-unify the head of the goal rule with T , and all the narrowing substitutions 
in the computation sequence are steps on the way to doing this. Indeed, the authors’ 
description (p. 58) of the method of computing narrowing substitutions is very 
reminiscent of Fay’s [ll] algorithm for finding E-unifiers: “Since, in general, there 
may be many ways to achieve a subgoal, alternative narrowing computations must 
be attempted, either in parallel (until one succeeds) or sequentially (by backtracking 
upon failure).” Since the set E upon which E-unification takes place can change, 
this is again as in the Jaffar case, a very powerful form of E-unification. This work 
represents an intelligent and practical restriction of equational Horn clauses. 

Fribourg in [12,13] describes SLOG, an equational Horn-clause interpreter based 
on a form of clausal superposition and term rewriting. The method is general in that 
it applies to arbitrary equational Horn clauses, but he concentrates his discussion on 
programs containing clauses of the form 

where n 2 0. A goal in this system is a clause of the above form in which the head is 
empty. For simplicity, we will abbreviate a term Qj A T with the usual form Qi. We 

note also that Fribourg actually gives a series of definitions, each assuming specific 
restrictions or properties on the input equational Horn clauses or on the superposi- 
tion operation. We have extracted a simplified but “representative” definition and 
refer the reader to the Fribourg’s papers for actual definitions. 

Summarizing from [13], let G be a goal of the form :- Q,, . . . , Q,, and P be a set 
of definite equational clauses of the form L G R :- B,, . . . , B,. Then, G’ is an 
innermost goal superposant of P into G at address (Y using most general unifier u iff 
Q, has a nonvariable subterm M “which itself contains no matchable proper 

subterm” such that a(M) = a(L), and G’ is 

.-- . a(B1,..., B,,Q,[~~R],Q,,...,Q,>. 

A substitution u is defined as a GC-substitution if it substitutes ground terms 
defined only on the constructors in P U G. The constructors [21] are (loosely) the set 
of non-user-defined symbols. C is an inductive consequence of P iff for any 
GC-substitution u, P U E k u(C), where E is the set of equality axioms. Finally, if 
R denotes the rewrite system composed of the inductive consequences of P, an SLOG 

program is a pair (P, R). R is usually taken to be canonical via completion by the 
Knuth-Bendix algorithm. 

Let A : (P, R) be an SLOG program. An S-derivation of G’ from P U G via a 
superposant selection function + consists of a finite sequence G,, G,, . . . , G,, of goals 
and a sequence ui, u2,. . . , a, of most general unifiers such that 

(1) G, is the R-normal form of G, and G, is G’; 

(2) for all i, 1 5 i I n, Gj is the R-normal form of a +superposant of a clause in 
P into G,_,. 

Finally, an S-refutation is an S-derivation of the empty clause. Note that in this 
system, the clauses in P are used not only in superposition on the “leftmost-inner- 
most” literal of the goal, but also as rewrite rules to simplify all literals in the goal as 
well. 



EQUATIONAL HORN CLAUSES 37 

Fribourg gives a rigorous and stepwise development of this system, and gives 
completeness results, including an analysis of the ground case with lifting lemmas, 
for each step. Note that as in the case with the Dershowitz-Plaisted system, it is 
possible to interpret this system as including a form of E-unification by viewing goal 
superposition as an instance of the narrowing operation, and describing the aim of 
the system as attempting to find an E-unifier for each literal of the goal and T . It is 
again a very powerful form of E-unification, since this system applies to arbitrary 
equational Horn clauses. Finally, Fribourg extends his results by formalizing the 
closed-world assumption [47] in the above framework and considers implementation 
methods. 

We also mention the work of Kaplan [25], who presents a conditional term- 
rewriting system which allows the simulation of conditional equational Horn 
theories. This system consists of rules of the form 

G + D + u1 = ul,. . . , u, = u,, 

with the restriction that Var( D) c Var(G), for every i, 1 I i I n, Var(uj) U Var( u,) 
c Var(G). He shows that this formalism is too general, in the sense that for any 
given set of conditional rules, the rewriting of any term is in general an undecidable 
problem, even if the system is canonical. The paper also contains a review of related 
efforts to cope with the undecidability phenomenon by restrictions to the above 
formalism. This work is relevant to the work involving E-unification in that the 

standard E-unification algorithm is based on the canonical unconditional term- 
rewriting systems. It is possible that canonical conditional systems could form the 
basis for more efficient or general E-unification algorithms, and in fact there has 
been some encouraging recent progress on checking confluence for conditional 
rewrite rules [46]. 

It is worth noting that there are important semantic and computational differ- 
ences between the use of equational Horn-clause languages (as in [17] and [6]), and 
the use of conditional rewrite systems (as in Kaplan [25])-even though the 
problems addressed in both cases are undecidable for the general case. In an 
equational Horn-clause language, one attempts to show 

kEEj32, -*3z,(s~t), 

where { zi, . . . , zn} is set of free variables in (s A t), and find explicit terms t,, . . . , t, 
such that 

I=E~(~~t)[t~/z~,...,t,/z,]. 

This can be accomplished by refutation by showing that 

E A Vz, . . * vz,+ A t) 

is unsatisfiable, which implies, by the Herbrand-Skolem-Godel theorem and theo- 
rem 3.6 that there exists a substitution u = [tl/zl,. . . , t,/z,] and a set E’ of ground 
instances of E such that 

E ’ A -, u (s A t ) is unsatisfiable 

iff E’~a(s~t)isvalid 

iff Eku(s~t), 



38 JEAN H. GALLIER AND STAN RAATZ 

which implies that a(s) rewrites to a(t) for some sequence of rewrite steps using the 
equations in E. (Note: (I is an E-unifier of s and t.) 

The concept of narrowing occurs naturally when we attempt to convert a 
sequence of rewrite steps from a(s) to u(t) into a sequence of extended rewrite 

steps between the original terms s and t. Such extended rewrite steps, called 
narrowing steps, must incorporate unification, because the term u(s) can be rewrit- 
ten using a rule I + r iff some instance 8(r) of 1 is equal to some subterm u(s)/u of 
u(s). If u E dam(s), then u(s)/u = u(s/u), and we have 6(l) = u(s/u), that is, S/U 
and I are unifiable. [The case where u @ dam(s) is more difficult, and will not be 
discussed here. Note that a way to prevent this case from happening is to assume 
that E is in fact a set of confluent and Noetherian rewrite rules. Then, we can 
assume that the substitution u is reduced, that is, every u(x) is irreducible for every 
x E D(u). In such a case, if we had u 6C dam(s), then if u(s) were reducible, u(x) 
would be reducible for some variable x E dam(s), which contradicts the fact that u 
is reduced.] A narrowing substitution is in fact a most general unifier of S/U and 1. 
Such a substitution allows the substitution instance u(s) of a term s to be further 
reduced. Since any term may have multiple narrowing substitutions, the computa- 
tion of an E-unifier u = [t,/z,, . . . , t,/z,] such that b E I u(s L t) involves finding 
a specific sequence of narrowing steps (and reductions). 

In a conditional rewrite system, one wanis to know whether an equation s L t is 

a logical consequence of a theory E, that is, for terms s and t, whether 

F EIVzl -4fzn(s~t), 

where {zr,..., zn} is a set of variables free in s and t. A refutation thus verifies that 

E A 32, . . * 3z& s L t ) 

is unsatisfiable, which after skolemizing is equivalent to verifying that 

E A T( s’ A t ‘) 

is unsatisfiable, where s’ and t’ are ground terms obtained by substituting constant 
symbols for the variables (“freezing the free variables”). Again, applying the 
Herbrand-Skolem-Gbdel theorem, there is a set E’ of ground instances of E such 
that 

E’ A 7( s’ A t ‘) is unsatisfiable 

iff E’~s’At’isvalid 

iff EI=s’At’, 

which as before, implies that s’ rewrites to t’ for some sequence of rewrite steps 
using the equations in E. But since s’ and t’ are ground (since they are the result of 
substituting constants for the variables in s and t), there is no need to extend the 
rewrite steps from s’ to t’ to narrowing steps from s to t (provided that we always 
rename the variables occurring in the equations in E used as rewrite rules away 
from the variables in s A t). This observation, together with the completeness of the 
rewrite-rule method in the ground case, can be used to give an alternate proof of the 
completeness of the rewrite-rule method for equational logic. 

Another interesting approach worth noting is that of Miller and Nadathur. In 
their paper [41], Miller and Nadathur present a higher-order extension of PROLOG 



EQUATIONALHORNCLAUSES 39 

that includes predicate and function variables, and typed A-terms. Although their 
language does not include equality, their proof procedure is similar in spirit to our 
method, because the presence of typed X-terms requires the use of a procedure for 
enumerating unifiers. Hence, their proof procedure also mixes backchaining steps 
and enumerations of (higher-order) unifiers. Technically, the main difference is the 
use of Huet’s unification procedure for typed A-terms [20], instead of an E-unifica- 
tion procedure. In some sense, they are dealing with a fixed set E of equations 
corresponding to the rules of X-conversion. This approach appears quite promising, 
since Huet showed that his procedure enumerates a complete and minimal set of 
preuni$ers [20]. 

Finally, we note that there has also been substantial work relevant to this paper 
which attempts to combine features of logic programming with functional program- 
ming, or to include facilities for solving equations. We distinguish this work from 
the methods above (and our own methods), in that the emphasis is not on defining 
and showing completeness results of a proof system for the underlying equational 
Horn-clause logic.’ Komfeld [32], who appears to have been the first to explicitly 
consider incorporating equality into logic programming, extends PROLOG by 
allowing the inclusion of assertions about equality. He does not attempt to provide a 
theoretical foundation for this extension, and in fact, the method does not appear to 
be complete. Reddy [45] subsequently gave a correct computation method for 
assertions about equality, reduction by narrowing, and the related semantics in the 
context of including logical variables in functional languages. Lindstrom [37] 
describes FLG + LV, a functional language that includes logical variables, in which 
terms are simplified before unification. Funlog [53], defined without formal seman- 
tics, also combines the functional- and logic-programming paradigms. Hansson, 
Haridi, and Tamlund [18] define a superset of Horn-clause logic which includes 
negation, equality, and explicit universal quantifiers based on a natural deduction 
system; however, again no formal semantics is given. Also based on natural 
deduction semantics is the language LEAF [3], which extends the logic programming 
to provide functional notation. Tamaki [54] describes a system requiring the 
addition of the equality axioms which includes a reducibility predicate which can 
simulate narrowing. FPL [4] is essentially a logic-programming notation for a 
functional programming language, in that it does not support logical variables. 
LOGLISP [48] and QLOG [31] define essentially embeddings of PROLOG in LISP. 

Hoffmann and O’Donnell [19] define a purely equational language which supports 
user-defined abstract data types by regarding the equations as rewrite rules. Finally, 
in promising recent work, Kieburtz [26] defines a functional language, F + L, with 
interpreted equality which has both an efficient implementation by compiled graph 
reduction and a well-defined semantics. 

9. CONCLUSIONS 

We have presented two methods based on SLD resolution with E-unification for 
establishing the unsatisfiability of equational Horn clauses. The completeness proofs 
for these methods are based in the ground case on a generalization.of the idea of a 

because of the volume of work on this topic, our list can only be representative. 



40 JEAN H. GALLIER AND STAN RAATZ 

congruence closure to sets of ground Horn clauses. The SLDE-refutation method 
applies to arbitrary sets of equational Horn clauses, but is not practical in that it 
assumes a procedure which gives an explicit sequence of substitutions for each 
E-unifier. The SLDEt-refutation method applies to sets of equational Horn clauses 
which admit a procedure enumerating a complete set of E-unifiers, and is shown to 
be complete for sets of well-behaved equational Horn clauses. 

The above methods and their completeness proofs illustrate the computational 
implications of including equality for specific classes of equational Horn-clause logic 
programs. Specifically: 

(1) 

(2) 

For the class of well-behaved sets of equational Horn clauses, i.e. sets which 
admit a procedure enumerating a complete set of E-unifiers, and contain 
clauses of the form 

s A t not of sort boo1 

or 

Q:- PI,..., P,, 

where s and t are first-order terms, Q is a nonequational atomic formula, 
and P,, . . . , P,, are either equational or nonequational atomic formulae, the 
E-unification algorithm due to Fay [ll] or Hullot [23] coupled with SLD 
resolution can be used as a relatively efficient interpreter. This is an impor- 
tant observation, since this class of equational Horn-clause programs sub- 
sumes the paradigms of functional, logic, and equational programming. 

For larger classes, the issues relating to efficient implementations are com- 
plex. A simple extension of the above approach to conditionally well-behaved 
sets of equational Horn clauses, which include clauses of the form 

s&t::-Qi,...,Q,, 

where Q,, . . . , Q, are nonequational atomic formula, seems to demand a SLD 
interpreter which must backtrack over calls to the E-unification algorithm on 
different sets of equations. Stated in another way, if E, is the set of equations 
occurring in the head of some clause, a system using the E-unification 
algorithm of Fay would be forced to consider different canonical subsets of 
E H’ 

It is clear that logic programming can benefit from the inclusion of equality. 
However, this inclusion must not compromise the inherent efficiency that allows this 
paradigm to be used as a programming language. Our results indicate that for 
systems involving E-unification, including the SLDE- and SLDET-refutation meth- 
ods, and the related work reviewed in the last section, the inclusion of equality for 
classes of programs larger than the well-behaved class appears to compromise this 
efficiency. It remains to be seen how applying intelligent restrictions to these larger 
classes, as in Dershowitz and Plaisted’s work, or “distributing” the E-unification 
process across other operations, for instance superposition with term rewriting as in 
Fribourg, affects this issue. 

We wish to thank Gopalan Nadathur for reading the manuscript very carefully, and for some incisive 
comments, particularly regarding the discussion on minimal&y conditions. 



EQUATIONAL HORN CLAUSES 41 

REFERENCES 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Anderson, R., Completeness Results for E-Resolution, in Proceedings AFIPS 1970, 
Spring Joint Computer Conference, Vol. 36, AFIPS Press, Montvale, NJ; 1970, 
pp. 653-656. 

Apt, K. and van Emden, M., Contributions to the Theory of Logic Programming, 
J. Assoc. Comput. Mach. 29:841-862 (July 1982). 

Barbutti, R., Bellia, M., Levi, G., and Martelli, M., LEAF: A Language Which Integrates 
Logic, Equations, and Functions, in: D. Degroot and G. Lindstrom (eds.), Functional and 
Logic Programming, Prentice-Hall, 1985. 

Bellia, M., Degano, P., and Levi, G., Call by Name Semantics of a Clause Language with 
Functions, in: K. L. Clark and S.-A. Tarlund (eds.), Logic Programming, Academic, New 
York, 1982. 

Clark, K. L., Negation as Failure, in H. Gallaire and J. Minker (eds.), Logic and 
Databases, Plenum Press, New York, 1978, pp. 293-322. 

Dershowitz, N. and P&ted, D. A., Logic Programming cum Applicative Programming, 
in: 1985 IEEE Symposium on Logic Programming, Boston, pp. 54-67. 

Dowling, W. F., and Gallier, J. H., Linear-Time Algorithms for Testing the Satisfiability 
of Propositional Horn Formulae, J. Logic Programming 3:267-284 (1984). 

Downey, P. J., Sethi, R., and Tarjan, E. R., Variations on the Common Subexpressions 
Problem, J. Assoc. Comput. Mach. 27(4):758-771 (1980). 

Fages, F., Associate-Commutative Unification, in: Proceedings of CADE-7, Napa, 1984, 
pp. 194-208. 

Fages, F. and Huet, G., Unification and Matching in Equational Theories, in: Proceed- 
ings of CAAP 83, Vol. 159, Springer, l’Aquilla, Italy, 1983, pp. 205-220. 

Fay, M., First-Order Unification in an Equational Theory, in: Proceedings of the 4th 
Workshop on Automated Deduction, Austin, Texas, 1979. 

Fribourg, L., Oriented Equational Clauses as a Programming Language, J. Logic Pro- 
gramming 2:165-177 (1984). 

Fribourg, L., SLOG: A Logic Programming Language Interpreter Based on Clausal 
Superposition and Rewriting, in: 1985 IEEE Symposium on Logic Programming Boston, 
pp. 172-184. 

Gallier, J. H., Fast Algorithms for Testing Unsatisfiability of Ground Horn Clauses with 
Equations, J. Symbolic Comput. to appear. 

Gallier, J. H. Logic for Computer Science: Foundations of Automatic Theorem Proving, 
Harper and Row, New York, 1986. 

Gallier, J. H., and Snyder, W., A General, Complete E-unification Procedure, presented 
at RTA ‘87, Bordeaux, France, May 1987. 

Goguen, J. A. and Meseguer, J., Eqlog: Equality, Types, and Generic Modules for Logic 
Programming, in: D. Degroot and G. Lindstrom (eds.), Functional and Logic Program- 
ming, Prentice-Hall, 1985; short version, J. Logic Programming 2:179-210 (1984). 

Hansson, A., Haridi, S., and Tamlund, S.-A., Properties of a Logic Programming 
Language, in: K. L. Clark and S.-A. Tamlund (eds.), Logic Programming Academic, 
New York, 1982. 

Hoffman, C. M. and O’Donnell, M. J., Programming with Equations, TOPLAS 4:83-112 
(1982). 

Huet, G. Resolution d’Equations dam les Langages d’Ordre 1,2,. . , w, These d’Etat, 
Univ. de Paris VII, 1976. 

Huet, G. and Hullot, J. M. Proofs by Induction in Equational Theories with Construc- 
tors, J. Comput. System Sci. 25:239-266 (1982). 

Huet, G. and Oppen, D. C., Equations and Rewrite Rules: A Survey, in: R. V. Book 
(ed.), Formal Languages: Perspectives and Open Problems, Academic, New York, 1982. 



JEAN H. GALLIER AND STAN RAATZ 42 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

Hullot, J.-M., Canonical Forms and Unification, in: Proceedings of CADE-5, 1980, 
pp. 318-334. 

JafI’ar, J., Lassez, J.-L., and Maher, M. J., A Theory of Complete Logic Programs with 
Equality, J. Logic Programming 3:211-223 (1984). 

Kaplan, S., Conditional Rewrite Rules, Theoret. Comput. Sci. 33:175-193 (1984). 

Kieburtz, R., Functions + Logic in Theory and Practice, Tech. Rep., Oregon Graduate 
Center, Feb. 1987. 

Kirchner, C., Methodes et Outils de Conception Systematique d’Algorithmes d’Unifica- 
tion dans les Theories Equationnelles, These d’Etat, Univ. de Nancy I, 1985. 

Kirchner, H., Preuves Par Completion dans les Varietes d’AIgebres, These d’Etat, Univ. 
de Nancy I, 1985. 

Kirchner, C. and Kirchner, H., Contribution a la Resolution d’Equations dans les 
Algebres Libres et les VariCtes Equatiomrelles d’AIg&bres, These de 3’ cycle, Univ. de 
Nancy I, 1982. 

Knuth, D. E. and Bendix, P. B., Simple word problems in universal algebras, in: J. Leech 
(ed.), Computational Problems in Abstract Algebra, Pergamon, 1970, pp. 263-297. 

Komorowski, H. J., QLOG--The Programming Environment for PROLOG in LISP, in: 

K. L. Clark and S.-A. Tarnlund (eds.), Logic Programming, Academic, 1982, pp. 
315-322. 

Komfeld, W. A. Equality for Prolog, in: Proceedings of 8th ZJCAZ, Karlsruhe, 1983, 
pp. 514-519. 

Kozen, D., Complexity of Finitely Presented Algebras, Tech. Rep. TR 76-294, Dept. of 
Computer Science, Cornell Univ., Ithaca, NY, 1976. 

Kozen, D., Complexity of Finitely Presented Algebras, in: 9th STOC Symposium, 
Boulder, CO, May 1977, pp. 164-177. 

Kozen, D., Finitely Presented Algebras and the Polynomial Time Hierarchy, Technical 
Report TR 77-303, Dept. of Computer Science, Cornell Univ., Ithaca, NY, 1977. 

Kozen, D., First-Order Predicate Logic Without Negation is NP-Complete, Technical 
Report TR 77-307, Dept. of Computer Science, Cornell Univ., Ithaca, NY, 1977. 

Lindstrom, G., Functional Programming and the Logical Variable in: Proceedings of the 
ACM Symposium on Principles of Programming Languages, 1985. 

Lloyd, J. W. Foundations of Logic Programming, Springer, New York, 1984. 

Machtey, M. and Young, P. R., An Introduction to the General Theory of Algorithms, 
Elsevier North-Holland, New York, 1977. 

Martelli, A., Moiso, C., and Rossi, G. F., An Algorithm for Unification in Equational 
Theories, in: Third IEEE Symposium on Logic Programming, Salt Lake City, Sept. 1986, 
pp. 180-186. 

Miller, D., and Nadathur, G., Higher-Order Logic Programming, in: Proceedings of the 
Third International Conference on Logic Programmming, London, July 1986. 

Nelson G., and Oppen, D. C., Fast Decision Procedures Based on Congruence Closure, 
J. Assoc. Comput. Mach. 27(2):356-364 (1980). 

Oppen, D. C., Reasoning about Recursively Defined Data Structures, J. Assoc. Comput. 
Mach. 27(3):403-411 (1980). 

Plotkin, G., Building in Equational Theories, Mach. Intell. 7:73-90 (1972). 

Reddy, U.S., Narrowing as the Operational Semantics of Functional Languages, in: 1985 
IEEE Symposium on Logic Programming, Boston, pp. 138-155. 

Remy, J. L., Etude des Systemes de Retcriture Conditionnels et Application aux Types 
Abstraits Algebriques, Ph.D. Thesis, Centre de Recherche en Informatique de Nancy, 
1982. 

Reiter, R., On Closed World Data Bases, in: H. Gallaire and J. Minker (eds.), Logic and 
Databases, Plenum, New York, 1980, pp. 55-76. 



EQUATIONAL HORN CLAUSES 43 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

Robinson, J. A. and Sibert, E. E., LOGLISP: An Alternative to PROLOG, in: Machine 
Intelligence 10, Ellis Horwood, 1982, pp. 399-419. 

Robinson, G. A. and Wos, L., Paramodulation and Theorem-Proving in First-order Logic 
with Equality, Mach. Intell. 4:135-150 (1969). 

Siekmann, J. H., Universal Unification, in: Proceedings CADE-7, Napa, 1984, pp. l-42. 

Shoenfield, J. R., MathematicaI Logic, Addison-Wesley, Reading, MA, 1967. 

Slagle, J. R., Automated Theorem Proving for Theories with Simplifiers, Commutativity, 
and Associativity, J. Assoc. Comput. Mach. 21:622-642 (1974). 

Subrahmanyam, P. A. and You, J.-H., Conceptual Basis and Evaluation Strategies for 
Integrating Functional and Logic Programming, in: 1984 IEEE Symposium on Logic 
Programming, Atlantic City, pp. 144-153. 

Tan&i, H., Semantics of a Logic Programming Language with a Reducibility Predicate, 
in: 1984 IEEE Symposium on Logic Programming, Atlantic City, pp. 259-264. 

Tarjan, R. E., Efficiency of a Good but not Linear Set Union Algorithm, J. Assoc. 
Comput. Mach. 22(2):215-225 (1975). 

Warren, D., Logic Programming and Compiler Writing, Software Practice and Experience 
10:97-125 (1980). 


