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EXTENDING SLD RESOLUTION TO EQUATIONAL HORN
CLAUSES USING E-UNIFICATION*

JEAN H. GALLIER AND STAN RAATZ

> We study the role of unification modulo a set of equations, or E-unification,
in the context of refutation methods for sets of Horn clauses with equality.
Two extensions of SLD resolution based on E-unification are presented,
and rigorous completeness results are shown, including an analysis of the
ground case for insight into the computational implications. The concept of
a congruence closure generalized to sets of ground Horn clauses is central
to these completeness results. The first method is general, in that it applies
to arbitrary sets of equational Horn clauses, but is not practical, as it
assumes a procedure which gives an explicit sequence of substitutions for
each E-unmifier. A second method uses a procedure enumerating a complete
set of E-unifiers, and appears to be well suited to a class of “well-behaved”
equational logic programs which allows a clean and natural integration of
the functional and logic-programming paradigms. Using this second method,
we have formalized the refutation method used in Eqlog for this class of
programs, and a theorem establishes rigorously the completeness of this
method. We compare these methods in detail with related work, and show
that other methods either explicitly include E-unification or simulate it in
some manner. ) 4

1. INTRODUCTION

This paper presents two refutation methods for establishing the unsatisfiability of
sets of Horn clauses with or without equational atomic formulae. The methods are
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extensions of SLD resolution which incorporate unification modulo a set E of
equations, or E-unification. We present first the SLDE-refutation method, which,
given some assumptions on the E-unification procedure used, is complete for any
arbitrary set of equational Horn clauses. After this, a refinement, called the
SLDE'-refutation method, is presented and shown to be complete given any
E-unification procedure that enumerates a complete set of E-unifiers for a class of
equational Horn-clause programs called “well-behaved” programs. This class of
programs consists of sets for which there is a procedure for enumerating a complete
set of E-unifiers, and logic programs which contain clauses of the form

s=1,
or

Q:—P,...,P,

where s and ¢ are first-order terms, @ is a nonequational atomic formula, and
P,,..., P, are either equational or nonequational atomic formulae. This is an
important class of equational Horn-clause programs (first introduced in Eqlog [17]),
in that it subsumes the paradigms of functional, logic, and equational programming.
The methods are defined rigorously, and the completeness issues are investigated in
depth, including an analysis of the ground case, in a way that makes evident the
practical implications of including equality in logic programs.

We show that the notion of E-unification comes up naturally when the
Herbrand-Skolem-Godel theorem is applied to a set of Horn ciauses with equaiity,
and that other methods for establishing the unsatisfiability of equational Horn
clauses, which do not explicitly include the formalism of E-unification, can in fact
be interpreted as doing so. Two consequences of an approach based on E-unifica-
tion are that it allows a clean separation, and therefore handling, of the purely
logical features and the equational features of a logic program, and that it makes
available the fast-growing body of knowledge on the subject of E-unification in the
construction of logic interpreters. These observations turn out to be valuable when
considering the practical consequences of incorporating equality in Horn-clause
logic programs.

Let us be very clear about what is being claimed here. We do not claim to have
defined a fundamentally new form of SLD resolution with equality. Plotkin [44] in
1972 essentially laid out the basis for the incorporation of equality using E-unifica-
tion into resolution theory, and more recently, Goguen and Meseguer [17] defined a
logic-programming system, Eqlog, which incorporates E-unification into SLD reso-
lution and specifically admits the class of well-behaved programs, among others.
The claim is the following. The methods here are refutation methods for Horn
clauses with or without equality whose completeness proofs rigorously and specifi-
cally illustrate the computational implications of including equality for certain
classes of Horn clauses. In particular, we have formalized the refutation method
used in Eqlog for well-behaved programs, and Theorem 7.5 establishes rigorously
the completeness of this method for this class of programs.

There has been a substantial amount of work recently on defining integrations of
functional and logic-programming systems by equational Horn-clause programming
which either does not consider completeness issues, or considers these issues in a
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manner that does not give any insight into the complexity or practical implications
of the method. Our methods allow us to identify clearly certain classes of Horn-clause
programs with equality that appear to be hopelessly impractical, and others, the
well-behaved class for instance, that are promising. Since the prime motivation of
this field of work is the natural and efficient integration of equality in logic
programs in order to design languages and their interpreters allowing the use of
functional and logic-programming paradigms, this identification is crucial.

The organization of the paper is now explained. We believe that the clearest way
to present our results is to follow the path that led us to the discovery of the
first-order refutation methods. In order to get some insight into the problem, we
started hv an_n’unlno the ormmd case. Fxtendmo some nrevrous work on the
unsatrsﬁabrhty of proposmonal Horn clauses w1thout equality (Dowling and Gallier
[7]), the first author found two fast algorithms for testing the unsatisfiability of a set
of ground Horn clauses with or without equational atomic formulae. The crucial

idea is that the concept of a congruence closure (Kozen [33,34], Nelson and Oppen
[42]) can be generalized to sets of ground Horn clauses. These algorithms are

presented n Galher [14] and are not repeated here. However, since the correctness
proof of the congruence closure method is crucial to the completeness of the
refutation methods, it will be presented in full. The ground case will be presented in

Sections 3 and 4, after a brief section of preliminaries.
Then the SLDE-refutation method will be presented for the sround case, and its
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completeness will be established. In the next section, we show how the lrftlng of
ground SLDE refutations to the first-order case via the Herbrand-Skolem-Gdodel
theorem gives rise naturally to the concept of E-unification. The SLDE-refutation
method using E-unifiers will be deﬁned and shown to be complete However the
SandndEEticd A A b iy UL &iliuialy ST
prohrbmve in practrce. In order to remedy this problem, we mtroduce a reﬁnement
of the method, called SLDE refutation, that requires “only” an explicit procedure
for enumerating a complete set of E-unifiers. This method is complete for proce-
dures enumerating al/ E-unifiers, but we do not know whether it is complete for all

E-unification procedures (enumerating a complete set of E-unifiers). However, we

prove that it is complete for all E-unification procedures (enumerating a complete
set of E-unifiers) for the class of well-behaved sets of Horn clauses. Finally, we
compare in detail these methods with the related work of Jaffar, Lassez, and Maher
[24], Fribourg [12,13], Dershowitz and Plaisted [6], and Goguen and Meseguer [17],

and show that all of these methods embody a form of F-unification, even if it is not

explicitly defined as such. We also review some of the numerous attempts to
combine specific features of functional and logic-programming paradigms, but not
in detail. Finally, we conclude with a discussion of the practical implications of
including equality in logic programming.

This section contains a brief review of the main concepts used in this paper. As
much as nncmhlp we stick to the definitions used in the literature on the cnhrf-rt

More specrﬁcally, we will follow Huet and Oppen [22] and Gallier [15]. The purpose
of this section is mainly to establish the terminology and the notation, and it can be
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omitted by readers familiar with the literature. First, we review the basics of
many-sorted languages.

Definition 2.1. A set S of sorts (or types) is any nonempty set. Typically, § consists
of types in a programming language (such as integer, real, boolean, character,
etc.) An S-ranked alphabet is a pair (Z, p) consisting of a set 2 together with a
function p: 2 — S X § assigning a rank (u, s) to each symbol f in 2. The string
u in S* is the arity of f, and s is the sort (or type) of f. f u=s,...5,(n=>1),a
symbol f of rank (u, s) is to be interpreted as an operation taking arguments, the
ith argument being of type s; and yielding a result of type s. A symbol of rank
(e, s) (when u is the empty string) is called a constant of sort s. For simplicity, a
ranked alphabet (Z, p) is often denoted by =.

Next, we review the definition of tree domains and trees (or terms). Let N denote
the set of natural numbers, and N, the set of positive natural numbers.

Definition 2.2. A tree domain D is a nonempty subset of strings in N* satisfying the
conditions:

(1) For all u,v€N*, if uwe D then u€ D.
(2) For all u€ D, for every i € N, if wi € D then, for every j, 1 <j<i,u € D.

For every n€N, let [n] = {1,2,..., n}, and [0] = 4.

Definition 2.3. Given an S-sorted ranked alphabet 2, a 2-tree (or term) of sort s is
any function ¢: D —» =, where D is a tree domain denoted by dom(t), and ¢
satisfies the following conditions:

(1) The root of ¢ is labeled with a symbol #(¢e) in 2 of sort s.

(2) For every node u € dom(t), if {i|wi € dom(?)} = [n], then if n> 0, for each
ui, i €[n], if t(ui) is a symbol of sort v, then #(u) has rank (v, s’), with
v=0,...0, else if n=0, then #(«) has rank (e, s") for some s’ € S.

Given a tree ¢t and some tree address u € dom(t), the subtree of t rooted at u is
the tree ¢/u whose domain is the set { v|uv € dom(¢)} and such that ¢/u(v) = t(uv)
for all v in dom(t/u).

The set of all finite trees of sort s is denoted by T3, and the set of all finite trees
by Ts.

In this paper, it is assumed that for every S-sorted alphabet X, there is a
distinguished sort bool € S. Symbols of sort bool are called predicate symbols.
Terms of sort bool will be interpreted as logical formulae.

Given an S-indexed family X = (X,),cs, We can form the sets of trees 7T3(X)
obtained by adjoining each set X, to the set of constants of sort s. To prevent free
algebras from having empty carriers, so that the Herbrand-Skolem-Gddel theorem
holds, we assume that every sort is nonvoid. We say that a sort s is nonvoid iff either
there is some constant of sort s, or there is some function symbol f of rank
p(f)=(s,...s,,s) such that s,,..., s, are nonvoid. Then, for every sort s, the set
T is nonempty, and it is well known that for every set X, Ts(X) is the free
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Z-algebra generated by X (see Gallier [15]). This allows us to define substitutions.
Let X =(X,),cs be an S-indexed family of countable sets of variables.

Definition 2.4. Given a term ¢, the set of variables occurring in ¢ is the set
{x € X|3u € dom(t), t(u) = x}, and it is denoted by Var(z).

Definition 2.5. A substitution is any function ¢ : X = T5(X) such that ¢(x) # x for
only finitely many x € X. Since Ts(X) is the free Z-algebra generated by X,
every substitution o : X — T5(X) has a unique homomorphic extension 6 : Ts( X)
- Ts(X).

Definition 2.6. Given a substitution o, the support (or domain) of o is the set of
variables D(o) = { x|o(x) # x }. The set of variables introduced by o is the set of
variables I(¢) =U, ¢ p(,Var(a(x)). Given a substitution o, if its support is the
set {x,...,x,}, and if r,=0(x;), 1<i<n, then o is also denoted by

[t1/%X05 st/ X, )

Definition 2.7. Given two substitutions ¢ and 8, their composition is the substitution
denoted by o ° 6, such that, for every variable x, we have g o 8(x) = 8(a(x)) (the
composition of the functions o and 8).

Even though the notation o8 is slightly misleading (since o is not the
composition of ¢ and 6, but the composition of o and 9), it is a natural
consequence of the identification a substitution ¢ with its homomorphic extension ¢
made for notational simplicity. This convention is harmless since it is easily shown
that g0 §=604.

The operation of tree replacement (or tree substitution) will also be needed.

Definition 2.8. Given two trees t; and ¢, and a tree address u in t,, the result of
replacing t, at u in t,, denoted by t,[u < t,], is the function whose graph is the
set of pairs

{(v, ,(v))|u is not a prefix of v} U {(wv, t,(v))},

and it is only defined provided that the sort of the root of ¢, is equal to the sort
of 1,(u).

We also review the definition of a Horn clause. For details, see Gallier [15].

Definition 2.9. An atomic formula is either a term of the form Pt ...t,, where P is
a predicate symbol of rank (s, ...s,, bool) and each ¢; is a term of sort s,, or a
term of the form ¢, =¢,, where 1, and ¢, are terms of some identical sort s. An
atomic formula of the form ¢, =1, is called an equation of sort s. A literal is
either an atomic formula or the negation of an atomic formula. A Horn clause is
a set of literals containing at most one positive literal (unnegated). Horn clauses
are classified into two classes. A definite clause is a Horn clause containing some
positive literal. A definite clause is denoted by

A:—B,,...,B,, or A when n=0,
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where A4 is the positive literal. A goal clause (or negative clause) only contains
negative literals. A goal clause is denoted by

—B,,..., B, or O when n=0.

n

The clause O is called the empty clause.

We will often use the term equational Horn-clause language to mean a system
which admits sets of Horn clauses including equational atomic formulae, in order to
make the distinction between such systems and more conventional logic-program-
ming systems.

Definition 2.10. Give a clause C, the set of variables occurring in C is the union of
the sets of variables occurring in the literals in C, and it is denoted by Var(C). A
ground term t is a term such that Var(¢) =, and similarly a ground clause C is a
clause such that Var(C)=#. A ground substitution ¢ is a substitution such that
o(x) is a ground term for every variable x in the support of o.

Finally, observe that the Herbrand-Skolem-Gdodel theorem holds for many-sorted
languages for which all sorts are nonvoid (see Gallier [15}).

3. CONGRUENCES ASSOCIATED WITH SETS OF HORN CLAUSES

We first consider how to test the unsatisfiability of a ground set of Horn clauses
with equality. This section is not the main theme of this paper, but it is technically
important because it contains a theorem (Theorem 3.6) that plays a crucial role in
the proofs that the refutation methods presented in this paper are complete. The
central concept used in the next two sections is that of a congruence closure. It will
allow us to show that unsatisfiability of ground Horn clauses is decidable. Readers
not interested in the details of these completeness proofs can omit Sections 3 and 4
at first reading, and proceed directly to the presentation of the ground refutation
method (Section 5).

3.1. Informal Description of the Method

Testing the unsatisfiability of a set of ground Horn clauses with or with-
out equational atomic formulae is decidable, and the first author has given two
fast algorithms solving this problem {14]. If the length of the set of Horn clauses
(viewed as the string obtained by concatenating the clauses in H') is n, then the first
algorithm runs in time O(n?) and storage O(n), and the second algorithm runs in
time O((nlog?n)/logk) and storage O(kn), for any k chosen in advance. These
algorithms are obtained by combining the methods used in two other algorithms:

(1) The linear-time algorithm of Dowling and Gallier for testing the satisfiability
of a set of propositional Horn clauses {7].

(2) The congruence closure algorithms of Kozen [33,34], Nelson and Oppen [42],
and Downey, Sethi, and Tarjan [8].

In this paper, we are not so much concerned with the algorithms themselves as
with the underlying method and its correctness proof, because it is crucial to the
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proof that the refutation methods presented in this paper are complete. The crucial
idea is that the concept of a congruence closure can be generalized to sets of ground
Horn clauses. In this generalization, two graphs are used. The first graph GT(H),
similar to the graph used in the congruence closure method (Kozen [33, 34]; Nelson
and Oppen [42,43]) represents subterm dependencies. As in Gallier [15], an extra
node T (the constant true) is added to take care of nonequational atomic formulae.
The second graph GC(H) (similar to the graph used in Dowling and Gallier [7])
represents implications induced by the clauses.

Now, a set H of ground Horn clauses induces a relation E on the set of nodes of
the graph GT(H) defined as follows: For every clause in H consisting of an atomic
(positive) formula B

(1) if B is an atomic formula Pi,...¢,, then (Pt,...t,, T)EE;
(2) if B is an equation t, = t,, then (#,1,) € E.

Then, a certain kind of congruence closure <>, of E with respect to the graph
GT(H) can be defined. The crucial fact about this congruence is that H is
unsatisfiable iff there is some negative clause :(— A4,,..., 4, € H such that, for every
i, 1<i<n,if A, is of the form Pt ...t,, then Pt,...1, S, T else if A, is of the
form 1, = ¢, then 1, & 1,.

In order to compute this congruence closure, two other closures defined in terms
of the graphs GT(H) and GC(H) are used. The equational congruence closure = is
defined in terms of the graph GT(H), and it is used to propagate congruence
resulting from purely equational reasons. The implicational closure O is defined in
terms of the graph GC(H), and it is used to propagate congruence resulting from
purely implicational reasons. Then, the congruence closure < associated with the
set H is obtained by interleaving equational congruence closure steps and implica-
tional closure steps. We now present the method rigorously.

Let H be a set of ground Horn clauses, possibly with equational atoms. First, we
make the following observation. Since our language already has the special sort
bool, we can go a little further and add the constant T interpreted as true, and treat
every atomic formula as an equation. Indeed, for every structure, the domain BOOL
of sort bool is the set of truth values {true, false}, and every atomic formula
Pt ...t is logically equivalent to the equation (Pz;...7, =T), in the sense that
Ptp...t,=(Pt;...t,=T) is valid. Since = behaves semantically exactly as the
identity relation on BOOL, we can treat = as the equality symbol =, , of sort bool.
Hence, every set H of Horn clauses is equivalent to a set H' of Horn clauses over a
many-sorted language with the special sort bool, in which every atomic formula
Pt ...t is replaced by the equation Pry...t,=T.

For notational simplicity, we often denote an equation Pt,...t, =T of sort bool
as Pt,...t, and call it a nonequational atom, and we reserve the word equation for
equations of sort #,,,. In the sequel, we assume that sets of Horn clauses have
been preprocessed as explained above.

3.2. The Graph GT(H)

The graph GT(H) represents subterm dependencies, and it is used to propagate
congruential information. This graph was first defined by Kozen (under a different
name) to study the properties of finitely presented algebras [33-36].



10 JEAN H. GALLIER AND STAN RAATZ

Definition 3.1. Given a set H of ground Horn clauses over a many-sorted language,
let TERM( H ) be the set of all subterms of terms occurring in the atomic formulae
in H. Let S(H) be the set of sorts of all terms in TERM( H ). For every sort s in
S(H), let TERM(H), be the set of all terms of sort s in TERM(H ). Note that by
the definition, each set TERM(H ), is nonempty. Let 2 be the S(H)-ranked
alphabet consisting of all constant and function symbols occurring in TERM(H).
The graph GT(H) has the set TERM(H ) as its set of nodes, and its edges and the
function A labeling its nodes are defined as follows:

for every node ¢ in TERM(H), if ¢ is a constant, then A(z) =1, else ¢ is of the
form fy,... y, and A(t) =f;

for every node ¢ in TERM(H), if ¢ is of the form fy,... y,, then ¢ has exactly k&
SUCCESSOIS y,..., Yy, else ¢ is a constant and it is a terminal node of GT(H).

Given a node u € TERM(H), if p(A(u)) =(5;...5,,5), n > 0, then the ith succes-
sor of u is denoted by u[i]. For every s € S(H), let E,= {(r,t)|r=,t € H}, and let
E be the S(H )-indexed family (E,), ¢ sx)-

Example 3.2. Consider the following set H of ground Horn clauses:

flfa=a:—fa=fb, (1)

a=b, (2)

Pa, (3)

fa=a:— Qa, (4)

Qa:—fa=a, (5)

Ra:— fa=a, Pfa, (6)

-~ Rfa. (7)

The graph GT(H) representing the subterm dependencies of the set H is shown in
Figure 1.

3.3. The Graph GC(H)

The graph GC represents implicational information, and was defined in Dowling
and Gallier [7].

Definition 3.3. The nodes of the graph GC(H) are the atomic formulae occurring in
all clauses in the set H, plus the special nodes T and 1 (where L is the
constant interpreted as false). The edges and the function A labeling the edges of
GC(H) are defined as follows:

For every clause C of the form B:— A4,,..., 4, in H, for every i, 1 <i <n, there
is an edge from B to A, labeled with C.

For every clause N of the form :— 4,,..., 4, in H, for every i, 1 <i < n, there is
an edge from L to A4, labeled with N.

For every clause C of the form B, there is one edge from B to T labeled with C.
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L

71 Rfa

. Ra
fa=a .y\GPfa

fla=a
4 FIGURE 1. Graph GT(H).
v Qa

r fla=a

f fa = fb

aébé\ / };a
T

Note that since every atomic formula B is an equation 7, = ¢, (where ¢, may be
T), every node of the graph GC(H) corresponds to a unique pair of nodes in the
graph GT(H).

Example 3.4. Consider again the set H of Horn clauses in the previous example.
This set has the graph GC(H ) shown in Figure 2.

P. l- f R FIGURE 2. Graph GC(H).
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3.4. Congruence Closure

The crucial concept in showing the decidability of unsatisfiability for ground
equational Horn clauses is a certain kind of equivalence relation on the graph
GT(H) called a congruence.

Definition 3.5. Given the graph GT(H) associated with the set H of ground Horn
clauses, an S(H)-indexed family R of relations R, over TERM(H), is a congru-
ence on GT(H) iff:

(1) Each R| is an equivalence relation.

(2) For every pair (u,v) € TERM(H)?, if A(u)=A(v), p(A(u)) =(s,...5,,5),
and for every i, 1 <i <n, u[i] R, v[i], then uR 0.

(3) For every pair (u, v) of nodes in TERM( H )? corresponding to a node u =, v in
the graph GC(H):
() If u=,v€ H, then uR v.
(i) If u = v is the head of a clause u = v:—u, =

forevery i, 1<i<n, u;R, v, then uRv.

5 Uts -+ U, = U, in H, and

In particular, note that any two nodes such that u =, v is a clause are congruent.

5

3.5. A Method for Testing Unsatisfiability

The key to the method is that the least congruence on GT(H ) containing E exists,
and that there is an algorithm for computing it. Indeed, assume that this least
congruence <, containing E (called the congruence closure of E) exists and has
been computed. Then the following result holds.

Theorem 3.6 (Soundness and completeness). Let H be a set of ground Horn clauses
(with equality), let E.= {(r,t){r =,t € H}, and let E be the S(H )-indexed family
(E));esny If &y is the congruence closure on GT(H) of E, then H is

unsatisfiable iff for some clause :— u; = v,,...,u, = v, in H,

foreveryi, 1<i<n, wehave u, v,

PROOF. The proof is obtained by combining and generalizing the techniques used in
Lemmas 10.6.2 and 10.6.4 of Gallier [15] (with some corrections). Let 2 be the
subset of H consisting of the set of definite clauses in H. Let &= {r= ¢t|(r, 1) €
E.,s€ S(H)}. Note that £C 2.

First, we prove that the S(H )-indexed family R of relations R, on TERM(H)
defined such that

tR,u iff 2Et= u

is a congruence on GT(H) containing E. Since £C 2, it is obvious that ZEr = 1
for every (r,t) € E,, and so rR,t. Hence, R contains E. Clearly, each R, is an
equivalence relation. For every two subterms of the form fy,... y, and fz;...z;
such that f is of rank (w,...w,, s), with s+ bool, if for every i, 1 <i <k,

gt:yi éw, zi9



EQUATIONAL HORN CLAUSES 13

then by the definition of the semantics of equality symbols,
DEf .y = f7. 2,
For every two subterms of the form Py,... y, and Pz, ...z, such that P is of rank
(wy...wy, bool), if for every i, 1 <i <k,
DEy =

w; Zjs

then by the definition of the semantics of equality symbols,

D Py,...y,=Pz...2,.
For every clause u=v in 2, by the definitions of E, and &, we have u=v €4,
and since £C 9, we have

DEu=v.
For every clause = v:—u, Vs Uy = U, in 2, if for every i, 1 <i<n, we
have 2= u, = v, then & u=_v. Hence, R is a congruence on GT(H) containing
E. Since & is the least congruence on GT(H) containing E, for any terms
r,t € TERM(H),,

if r&pr then PEr= 1

Then, if for some negative clause —u, = v,,...,u,= v, in H we have u, &, v,
for every i, 1 <i<n, then DE=u, = v; A --+ Au,= v, holds, which implies that
the set 2U {:—u; = v;,...,u, =, v,} is unsatisfiable. Consequently, H is unsatis-
fiable.

Conversely, assume that there is no negative clause :— u; = vy,..., 4, = v, in H
such that u; & v, for every i, 1 <i < n. We shall construct a model M of H.

First, we make the S(H )-indexed family TERM( H) into a many-sorted Z-algebra
H. The difficulty involved in choosing the right algebra structure is that <, must

be a congruence on this algebra. This is not obvious, because TERM(H ) is not closed

under the term constructors, that is, for some terms z,,..., t, € TERM( H) and some
function symbols f, ft,...1, & TERM(H). Hence, we have to be careful in defining
the term value of f;(¢,,..., t,). If there exist other terms r,..., r, € TERM(H ) such

that fr,...r, € TERM(H), and t, &, r, for every i, 1 <i<n, then the value of
fu(ty,....t,) cannot be defined arbitrarily. If we want &, to be a congruence on
H, we must define fy(t,,...,1,) so that fy(ty,...,1,) g fu(r,..., r,). The same
difficulty exists for predicate symbols. These difficulties are overcome in the follow-
ing two definitions.

For each sort s+ bool in S(H), each constant ¢ of sort s is interpreted as the
term ¢ itself. For every function symbol f in 2 of rank (w;...w,,s), with
s # bool, for every k terms y,,..., y, in TERM(H ), each y, being of sort w,
l<i<k,

M-y ...y, eTERM(H),,
fzy... 2z, if fy... y, € TERM(H ), and there are terms

Zy5..., z; such that y, & z, and
fa(e m) =
fzy...z, e TERM(H ),
to otherwise, where ¢ is some arbitrary term

chosen in TERM( H ) ;.
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For every predicate symbol P of rank (w,...w,, bool), for every k terms
Yis---» Vi € TERM(H ), each y, being of sort w, 1 <i<k,

T ifPy,...y,€TERM(H)and Py,... y, S T,
T if Py,... y, & TERM( H ) and there are terms z,,..., z,
Pa(yis-s i) = such that y, &, z,, Pz,...z, € TERM( H)
and Pz,...2; &, T,
F otherwise.
Next, we prove that <, is an algebra congruence on H. There are two main
cases:

Case 1: For every function symbol f in 2 of rank (w,...w,, s) with s # bool,

for every k pairs of terms (y;, z;),...,( ¥, 2;) With y, z; of sort w,, 1 <i<k, if
¥, © z,, then:

@) If fy,... y, and fz,... z, are both in TERM(H ), then
faOse ) =Py and fulzy,..,20) =fzy... 2,
and since & is a congruence on GT(H), we have fy,... y, & fz;... z,.
Hence, fu(11s---5 ¥i) €& fuZis---5 20)-
(i) fy... y, € TERM(H), or fz,...z, & TERM(H), but there are some terms
2{,...,z; € TERM(H) such that y, &,z and fz{...z; < TERM(H). Since

¥: € z,, there are also terms z{’,..., z;/ € TERM( H) such that z; & z; and
fz{’ ...z}’ € TERM(H). Then,

Tau(ise-s ) =fzf ...z and  fy(zy,...,z,.)=fz]'... z}'.
Since y, & z;, we have, z/ S5z, and so fz{...z[ S, fz{'... z}/, that is,

Tu(is-s ) éE fu(zi,--52,).

(iii) If neither fy,... y, nor fz,...z, is in TERM(H) and (ii) does not hold, then
fa(yis-- 5 0) =fulen.. 2) =1,

for some chosen term ¢, in TERM( H ), and we conclude using the reflexivity
of &p.

Case 2: For every predicate symbol P of rank (w;...w,, bool), for every k
pairs of terms (y,, 2,),---,( Vi, 2;), With y,, z; of sort w;, 1 <i <k, if y, & z,, then:

G) Py,...y, € TERM(H) and Pz, ...z, € TERM(H). Since y, &z, and & isa
graph congruence, Py,...y, < Pz;...z,. Hence, Py,...y, &y Tiff
Pzy...z, &7, thatis, Py(yy,..., ) =T iff Py(zy,...,2,)=T.

(i) Py,...y, € TERM(H) or Pz, ... z;, & TERM(H). In this case, Py(y,..., Ye) =
T implies that there are terms z{...z] <€ TERM(H) such that y, &g z/,
Pz{...z; € TERM(H), and Pz{...z] <, T. Since y, &5z, we also have
2, z]. Since Pz]...z;€TERM(H), and Pz{...z, & T, we have,
Py(zy,...,2;,)=T. The same argument shows that if Py(zy,...,2.)=T,

then Py(y;,..., ¥.) =T. Hence, we have shown that Py(y,,..., ¥) =T iff
Py(zy---,2,)=T.
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This concludes the proof that < is a congruence. O

Let M be the quotient of the algebra H by the congruence &, . We claim that
for every term t € TERM( H ), t,, = [#], the congruence class of . This is easily shown
by induction and is left as an exercise. By the definition of M as the quotient of H
by &, we also have the following property: For any two terms u, v € TERM(H ),

MEu=v iff udgo. (*)

We now prove that M is a model of H.

For every clause u =,v € H, we have (u,v) € E,, and since < is a congruence
containing E, we have u &, v. But then, by (%), we have M= u = v.

For every clause u =v:—u; = vy,...,u, = v, in H,if MEu,; = v, for every i,

1<i<n,by(*), we have u, &, v, for every i, 1 <i <n. Since & is a congruence
on GT(H), we have u <, v. By (*), this is equivalent to M = u = v. Hence,

MEu=vi—u = vy,...,u,= U

n"s,“n°

Finally, given any negative clause:—u; = vy,...,u,=, v, in H, recall that it is
assumed that we cannot have u, & v, for every i, 1 <i<n. Then, for some i,
1<i<n, u; and v; are not congruent modulo &y, and by (*), this implies that
M u; = v, that is, M= —u; = v, But this implies that

ME (—u = vy, u, = 0,

n s, "’n*

Hence, M is a model of every clause in H. This concludes the proof. O

It is interesting to note that the soundness part of Theorem 3.6 follows from the
fact that &, is the least congruence on GT(H) containing E, and that the
completeness part follows from the fact that <, is a graph congruence. It only
remains to prove that <. exists.

4. EXISTENCE OF THE CONGRUENCE CLOSURE

We now prove that the congruence closure of a relation R on the graph GT(H)
exists. This can be done by interleaving steps in which a purely equational
congruence closure is computed, and steps in which a purely implicational kind of
closure is computed. The advantage of this method (even though it is not the most
direct) is that it can be used for showing the completeness of an extension of SLD
resolution.

First, we define the concept of equational congruence closure.

4.1. Equational Congruence Closure

The notion of equational congruence closure was first introduced (under a different
name) by Kozen [33,34]. In fact, Kozen appears to have given an O(n?)-time
algorithm solving the word problem for finitely presented algebras before everybody
else [33]. Independently, the concept of congruence closure was defined in Nelson
and Oppen [42]. We have added the qualifier equational in order to distinguish it
from the more general notion defined in Section 3.4 that applies to Horn clauses.
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For our purpose, we only need to consider the concept of equational closure on
the graph GT(H ) induced by some (fixed) set H of ground Horn clauses. In the rest
of this section, it is assumed that a fixed set H of ground Horn clauses is given.

Definition 4.1. An S(H)-indexed family R of relations R, over TERM(H), is an
equational congruence on GT(H) iff:

(1) each R, is an equivalence relation;
(2) for every pair (u,v) € TERM(H)?, if A(u)=A(u), p(A(u))=(s;...5,,5),
and for every i, 1 <i <n, u[i] R, v[i], then uR;v.

The following lemma was first shown by Kozen [33,34]. For the sake of
completeness we present the proof given in Gallier [15].

Lemma 4.2. Given any S(H )-indexed family R of relations on TERM(H), there is a
smallest equational congruence =, on the graph GT(H) containing R.

PROOF. We define the sequence R’ of S(H )-indexed families of relations inductively
as follows: For every sort s € S(H), for every i > 0,

RY=R, U {(u,u)|ucstErM(H),},
Ri*'=RiU {(v,u) e TerM( H )?|(u, v) eRi}
u{(u,w) e TerM( H )’|3v € TERM(H ), (u, v) € R’ and (v, w) eR”s}
u{(u, v) e term(H)?|A(2) = A(v), p(A(u)) = (5;...5,, ),
and u[ j] R} o[ j],1<j<n}.

Let (£x),=U,,oR.. It is easily shown by induction that every equational
congruence on GT(H) containing R contains every R, and that £, is an
equational congruence on GT(H). Hence, £, is the least equational congruence on
GT(H) containing R. O

Since the graph GT(H) is finite, there must exist some integer / such that
R'= R'*!. Hence, the equational congruence closure £, of R is computable.
We now define the concept of implicational closure.

4.2. Implicational Closure

Let H be a set of equational ground Horn clauses.

Definition 4.3. An S(H)-indexed family R of relations R, over TERM(H ), is an
implicational relation on GT(H) iff for every pair (u, v) of nodes in TERM(H )2
corresponding to a node u =,v in the graph GC(H):

(1) If u=,v€ H, then uRv.
(2) If u=v is the head of a clause u =v:—u; = v),...,u,=
every i,1<i<n,u;R, v, then uR v.

s;

v, in H, and for

8

The following result holds.
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Lemma 4.4. Given a set H of equational ground Horn clauses, given any S(H)-
indexed family R of relations on TERM(H ), there is a smallest implicational relation
Sy on the graph GT(H) containing R. The relation 5 r is called the implicational
closure of R on GT(H).

PROOF. We define the sequence R’ of S( H )-indexed families of relations inductively
as follows: For every sort s € S(H), for every i > 0,

R2=R,U {(u,v) eTerm(H ) |lu=ve H},
RiI*'=RLU {(u,v) ETERM(H)Z‘LI = v is a node in GC(H ),

and there is some clause

U 0= U = 0y, U v,in H

nés,,
such that u; R{ v, 1 stn}.

Let (55),=U,.R.. As in the previous proof, it is easily shown that D, is the
implicational closure of R.

Since GT(H) is finite, there is a least integer / such that R'= R'*'. Hence, the
implicational closure D of R is computable.

Note that > & is not necessarlly an equivalence relation, but this does not matter,
because we are going to interleave implicational closure steps and equational
congruence closure steps.

4.3. Congruence Closure for Horn Clauses

The idea is to interleave steps in which the implicational closure is computed, and
steps in which the equational congruence closure is computed.

Theorem 4.5. Given a set H of equational ground Horn clauses, and given any
S(H )-indexed family R of relations on TERM(H ), there is a smallest congruence
closure <y on the graph GT(H) containing R.

PROOF. We define the sequence R’ of S(H )-indexed families of relations inductively
as follows: For every sort s € S(H), for every j >0,

0_
Rs - Rs’
R2j+1 5
s — —RY >
2j+2_ 2
Rs R2/+1

Let (S2),=U,, (R

Since the graph GT(H ) is finite, there is some 1nteger i > 2 such that R' = R'*!,
If i=2j, since R¥*1=> g and j=>1, then RY is an equauonal congruence, and
R?/*1 is a congruence on GT(H). If i=2j+ 1 since R3/"2 =221 and j21,
then R2/*1 js an implicational relation, and RZJ” is a congruence on GT(H). It
can also easily be shown by induction that any congruence on GT(H) containing R
contains every R'. Hence, <>, is the congruence of closure R on GT(H). O
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efficient, but it is possible to give fast algorithms based on the equational-con-
gruence closure algorithm for ground equations [8,15,33,34,42,43] and Dowling
and Gallier’s algorithm [7] for computing an implicational closure. Such algorithms
are presented in Gallier [14].

5. A REFUTATION SYSTEM FOR GROUND EQUATIONAL
HORN CLAUSES

We now show how the results of Sections 3 and 4 can be used to prove the
completeness of a refutation system for ground equational Horn clauses. First, as in
Kozen [33,34], we show that equational congruence can be expressed using the
notion of term rewriting. Technically, this is an important step, because the notion
of term rewriting can be generalized to nonground terms, whereas it is not known
how to generalize the congruence-closure concept to nonground terms. Hence, the
reader should not be too surprised if the concept of congruence closure is not used
in the rest of this paper, but rather the concept of term rewriting. The main role of
the congruence closure concept is to establish the decidability of unsatisfiability for

ground Horn clauses, and it also plays a crucial role in the proof of Theorem 5.7.

Definition 5.1. Let E be a finite set of equations. We define the relation = on the
set of terms as follows. Let ¢,, ¢, be any two terms; then ¢; = ¢, iff there is some

nnnahnn s =t F. come treec addracs o in and come snbstitntion o ench that
CyuauLn S ¢ = &, SOMIC UCCS aGUICsSS ( 1 »1, ang some supstitution ¢ sucn that

if ¢, /a denotes the subterm of ¢, rooted at a, we have
.7 FAPRN I . 1 7.\
Lh/a=a(s) and t,=t|a<o(1)}.

When t; = t,, we say that t; rewrites to t,. In words, #, rewrites to ¢, iff 1, is
obtained from ¢; by finding a subterm of #; which is equal to a substitution

instance ¢(s) of the left-hand side s of some equation s =t € E, and replacing it
]-\v the substitution instance n(t\ of the right-hand side 7 of the eguation

Aie SUUBLIVLAVEL ISRV L1 WL HiEmaanne S il SAqrearail.

Let =, be the reflexive and transitive closure of =, . The relation < is
defined as follows: for every pair of terms s, ¢,

st Mff s=gtor t=gs.

Let <, be the transitive and refiexive closure of <. When we want to fuily
specify a rewrite step, we use the notation f; =, ;., .1, or more simply
1) =(;, 4] t2> and similarly for e . When E consists of ground equations and the

terms s and ¢ are ground, the substitution o is the identity and is omitted.

e T f o macy Tarmira il ha mandad e dha eact cmed iy
10€ I010OWLNZ €asy I€ININd wiil DC necaceda 11 Uic next SeCuoil.

<3

Lemma 5.2. Let E be a finite set of equations, and s and t two ground terms. Then
5 S t iff there is a finite set E’ of ground instances of equations in E such that

sl

PROOF. Both directions are easy inductions on the number of rewrite steps. The
details are left to the reader. O
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equivalence of the congruence-closure method and ground-term rewriting.

Lemma 5.3. Let E be a ﬁnite set of ground equations, and s =1t be any arbitrary
ground equation. Let H be the set of Horn clauses EVU {:—s =1}, and let £ be

Loy smasrdinzacd ansenweinmng alaceima ~ A (Y D
ine equationai-congruence closure ufE on GT(H). Then,

sEpt iff sSot

PROOF. The proof proceeds by induction on the number of rewrite steps and on the
number of congruence-closure steps. The details are straightforward and are left to

the rnnﬂnr m
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We are now in a position to define our refutation system. This system is an
extension of SLD resolution in which both standard SLD resolution steps and
conditional rewrite steps are performed.

Definition 5.4. Let H be a set of ground Horn clauses with equality consisting of a
set D of definite clauses and a set {Gy,...,G,} of goals. A ground SLDE
derivation for H is a sequence (N,, N;,..., N,) of negative clauses satisfying the
following properties:

(1) Ny= G, where G, is one of the goals;
(2) Forevery N,O0<i<p, f Ny=—A,,..., A, Ay, Apiys--., A, (Where 4, is
of any sort, including bool), then either
(i) there is some definite clause C;=4,:— B,,..., B

n

in D such that, if

m»ﬂ then

Vs wailix

Nog=+—4,...,A,_,B,....,B,, A ,1,.-.. 4,,

{
else if m =0 then
N—+1= :-Al""’Ak-*l’ Ak+l"“’A N

I n’
or
(i1) Letting A4, =5 =1t (where s =1 is of any sort, including boo/), there is
some finite set
D= {s,=t,:—T,...s
of definite clauses in D, such that, letting £= {5, =
have

se,t and N, =:—A,..., 4, . I,....T,,4,.1,..., 4

toeo s Sy =1}, we

(where any of the T;’s may be empty).

A ground SLDE derivation is a ground SLDE-refutation ifft N, =0 (the empty
clause).

A step as in (i) is called an SLD step, and a step as in (ii) is called a conditional

rewrite step. It is in sten (ii) that 4. is treated as an eguation, nossiblv of sort bool.

T S5ilp. 13 A SIVP i1 Gl A 15 utaQilll s all LyuauiUil, puUssiUsy SLIR

Note that cases (i) and (ii) are not mutually exclusive, that is, one may have the
choice of applying a standard SLD' step or a conditional rewrite step to the same
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atom A, =s=t. Also, if H does not have any equations, then a ground SLDE
derivation is an SLD refutation, and if all definite clauses in H are equations, a
ground SLDE refutation consists of rewrite steps only. Such a refutation method is
a form of linear input refutation, because it resolves the current clause N, with some
clause(s) in the input set D. Our method can be viewed as a special version of the
paramodulation method of Robinson and Wos [49], or of the E-resolution method
of Anderson [1]. The crucial difference is that many paramodulation steps can be
performed in one SLDE step. Before showing the completeness of this method, we
give an extended example.

Example 5.5. Consider the following set H of ground equational Horn clauses:

flaz —fa=pb,
a=b,
Pa,
f’a=a:— Qa,
Qa:—fa=a,
Ra:—fa=a, Pfa,
:— Rfa.

Recall that Pa,Qa, Ra, Pfa, and Rfa are abbreviations for Pa=T,Qa=T, Ra
=T, Pfa=T, and Rfa=T. Since there is no definite clause of the form Rfa=T
:— B,,..., B, in H, an SLD step is not applicable. However, if we let

D,={Ra=T :~fa=a, Pfa,
flaza—fa=pb,
fla=a:— Qa}
and thus &, = {Ra=T, f3a=a, f’a = a), a conditional rewrite step is applicable,
and Rfa can be rewritten to T by the following sequence of rewrite steps:
T, Rad, Rf’as, Rf%as, Rfa.

Note that the equations in &, have been used as two-way rewrite rules (and that
Rfa is an abbreviation for Rfa = T). Collecting the premises used in these steps, we
have the following step in the derivation, where N, stands for the ith step:

N, :— Rfa,
N, :—fa=a, Pfa, fa=fb,Qa.

Let us choose fa = fb as the next current subgoal. Since there is no definite clause
with fa = fb as its head, an SLD step is again not applicable. Letting &, = D, =
{a=b) allows fa &, fb immediately, and thus

N, i—fa=a, Pfa,Qa
Again, no SLD step applies. Letting
Dy={fa=a:—fa=fb,
flaza:— Qa}
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and &, = {f’a=a, f’a = a}, rewriting, we have
a é’ag fa é’osg fla é’gg fa

and thus
N, :— Qa, fa=fb, Pfa, Qa,
N, =~ Qa, fa=fb, Pfa.

N, is derived from N, by simplification, i.e., dropping the duplicate Qa. Similarly
to the derivation of N, from N,, fa = fb can be eliminated, yielding

Ny :— Qa, Pfa.
Continuing, by letting
Q={f%£m‘ﬁéﬁs
f’a=a:— Qa,
Pa=T}
and & ={f’a=a, f’a=a, Pa=T), rewriting

TS, Pas, Pf’a S, Pffa &, Pfa

yields
N = Qa, fa=/b.

Eliminating fa = fb is again immediate, and thus the next step in the derivation is
N, = Qa.

An SLD step is now applicable using the definite clause Qa:— f%a = a, and yields
N, —flaza.
Finally, using the clause f3a = a:~ fa = fb, the negative clause :— fa = fb is derived
by another SLD step, which as above can be eliminated, yielding a refutation
N, 9~ f a= fb ’
Ny 0.
The reader has probably noticed that there has been a tremendous amount of
redundant computation in this refutation; in particular, the implication
flatanfla=adfa=a

has occurred three times. This is an issue that would have to be addressed in an
implementation.

In order to prove the completeness of the above method, we need the following
lemma establishing the completeness of ground SLD refutations.

Lemma 5.6. Let H=DU {:—u=v} be a set of ground Horn clauses, where Disa
set of definite clauses with equality, let E = {(u’,v")|{u’=v’ €D}, and let D, be

the implicational closure of E on GC(H). If uD, v, then there is an SLD
refutation for the set DU { :—u=v).
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PROOF. By Lemma 4.4, for every sort s, (D), =U,. (R’, where the R’ are defined
inductively. We proceed by induction on the least i such that u R’ v.

If i=0, then u=v € E, and we have an obvious SLD refutation from :(—u=v
and u=v.

If i > 0, then there is some definite clause u =v:— u; =v,,...,u,=v, in H such
that, for every j, 1 <j <n, we have u, R~ 1 v, By the mductlon hypothesis, there is
an SLD refutation for each set DU {:—u;=v;},1 <j < n. Using the definite clause
U=v:i—u; =v,...,u,=v,, it is obvious that an SLD refutation for the set DU
{:— u=1v} can be constructed from these SLD refutations. 0O

We now prove the completeness of the ground SLDE-refutation method.

Theorem 5.7 (Completeness of ground SLDE refutations). Let H be a finite set of
ground Horn clauses with equality, and let D be the set of definite clauses in H. If H
is unsatisfiable, then H contains some negative clause :— u, =v,,...,u, =uv,, and
there is some ground SLDE refutation for the set DU { \—u; =v,,...,u,=v,}.

PROOF. From the completeness theorem 3.6, H is unsatisfiable iff there is some
negative clause :—u; =v,,...,u,,=v, in H such that, for every i, 1 <i<m, we
have u; & ¢ v,. Then, for every i, 1 <i < m, the set DU {:— u; =v,} is unsatisfiable.

Let E = {(u’,v")|u’ = v’ € H}. By Lemma 4.5, for every sort 5, (&), =U,, (R,
where

2j41 — =
st —DR}I’,

RY*2=Zp .

Since u; & v;, we prove that there is an SLDE refutation for the set DU { :— u, =
v;} by induction on the least k such that u, R*v,

Case I1: If k 0, then u, = v, € H, and so we have an SLD-refutation for the set
{—u,=v,u;=v;}.

Case 2: If k= 2j+1, then R2*'=5,, By Lemma 5.6, there is an SLD-
refutation # for the set DU {u= v|uR2/v} U{—u;=v,}. Let {x;=y,,..
¥,} be set of equations used in the SLD refutatlon R. Since x,R¥ y, by the
induction hypothesis there is an SLDE-refutation for each set DU {:~x,=y,},
1 <! < r. By combining these refutations and the SLD-refutation %, we obtain a
SLDE-refutation for the set DU { :~ u, =v,}.

Case 3: If k=2j+2, then RY*?=2%,,41 . By Lemma 5.3, there is a sequence
of rewrite steps u; < p2;+1 v,. Let {x1 Y1---» X, =y} be the set of equations used
in the sequence of rewrite steps. Since x; R*/*! y,, by the induction hypothesis there
is an SLDE-refutation for each set DU {:— x;=y,},1 </ <r. But since R**! is an
implicational closure, by case (2) this implies that for every :— x,= y,, the first step
of the SLDE refutation for the set DU {:—x,=y,} uses some definite clause
x,;=y,— I, (where I, may be empty). Hence, performing conditional rewriting steps
using the set {x, =y,:— I[},..., x,;=y,:— I,} and the above SLDE refutations, it is
possible to construct an SLDE-refutation for the set DU {:— u,; =v,}, whose first
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step is
—u,=v,
=I,..., T,

From the SLDE refutations for the sets DU {:—u,=v;}, we obtain an SLDE
refutation for the set DU {:—u; =v,,...,u,,=v,}. O

We leave the soundness of the ground SLDE-refutation method as an exercise.

6. A GENERAL REFUTATION METHOD USING E-UNIFICATION

In order to generalize the results of the previous section to the first-order case, we
shall need the notion of unification modulo a set of equations. This concept comes
up naturally when we apply the Herbrand-Skolem-Gddel theorem (see Gallier [15],
or Shoenfield [S1]) to a set of universal Horn clauses with equality, in order to
reduce unsatisfiability in the first-order case to unsatisfiability in the ground case.
Recall that this theorem states that a set of universal prenex sentences is unsatisfi-
able if and only if some set of ground substitution instances of the matrices of these
sentences is unsatisfiable.

Applying the Herbrand-Skolem-Gdédel theorem to a set H of first-order universal
Horn clauses with equality, by Theorem 5.7, there is a ground SLDE refutation of a
certain set H’ of ground instances of the clauses in H. It is easily seen by induction
on the number of refutation steps that every goal clause in this refutation is of the
form o(:~A,,..., 4,) for some ground substitution o and some goal clause
i—A,,..., A, (not necessarily in H). Hence, every refutation step is in one of the
following two forms:

(i) There is some goal N,=o0(:—Ay,..., Ay_1, Ay, Agy15---, 4,), and some
definite clause C,=60(A:— B,,..., B,), where A:— B,,..., B,, is some defi-
nite clause in H and & is some ground substitution, and

o(A4,)=0(4). (*)

(i) Ny=o(:—Ay,..., 4 1,44, Apirs---» A,), and letting A, =s =1, there is
some finite set

D' ={s{=t]=TX{,....,s,=t,:—T}

of ground definite clauses, some finite set &= {#8,,...,6,,} of ground substi-
tutions, and some finite set

D={s;=t,:~T),....5,=1,:—T,}

of clauses in H, such that, for every s /=1t~ T/ €2’ there is some
substitution 0j €.% and some clause s =¢:— '€ 2 such that s/=¢/:— T’/ =
0;(s =1:~T), and, letting &" = {s{ =¢{,..., s, =1}, we have o(s) S,o0(2).
By Lemma 5.2, this is equivalent to

a(s) S, (1), (+*)

where &= {s5,=¢,...,5,=1,}.

r
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In case (*), A and A, are unifiable, and since it can be assumed that 4 and 4,
have no variables in common, it is well known that 4 and A, have a most general
unifier (see [15]). In case (* *), we have a generalization of the concept of a unifier.
We say that ¢ is a unifier of s and ¢ modulo the set of equations &. Unfortunately,
unification modulo a set of equations does not enjoy the nice properties of standard
unification. In particular, there is in general no algorithm for deciding whether two
terms are unifiable modulo &, and if two terms are unifiable modulo &, there is in
general no single most general unifier, but instead, a possibly infinite set. Neverthe-
less, there is always a procedure for enumerating a complete set of unifiers modulo
&. The problem is that such a procedure may generate a highly redundant set of
&-unifiers. First, we give a precise definition of a &unifier, and then we generalize
Definition 5.4 to the first-order case. Some auxiliary definitions are also needed.

Definition 6.1. Given a Horn clause C, a Horn clause C’ is a variant of C iff there
is an injective substitution ¢ such that o(x) is a variable for every x € D(o),
C’ =0(C), and Var(C)N Var(o(C)) = &. We say that o is a renaming.

Definition 6.2. Let E be a finite set of equations. Given two terms s and ¢, we say
that a substitution o is a unifier of s and t modulo E—for short, an E-unifier of s
and t—iff o(s) S, a(¢).

Note that when E = &, an E-unifier is just a standard unifier. In the following
definition, E-unification is integrated into SLD resolution.

Definition 6.3. Let H be a set of first-order Horn clauses with equality consisting of
a set D of definite clauses and a set {G,,...,G,} of goals. An SLDE-derivation
for H is a sequence (N;, N,,..., N,) of negative clauses satisfying the following
properties:

(1) N, =G, where G; is one of the goals.

(2) Forevery N, 0<i<p,if Ny= —A,..., Ay, Ay, Ay 15---, A, (Where 4,
is of any sort, including bool), then either

(1) there is some definite clause C,=A:— B,,..., B, in D and some most
general unifier 0, of 4 and A, (assuming that the variables in C; have
been renamed so that they do not occur in N,, which is always possible),

such that, if m > 0, then
N, =o0(—4,...,4,_,By,...., B, A, .1,..., A,),

else if m =0 then

Noy=o,(— Ay, Aoy, Ao, 4,)5

or
(ii) letting A, =s =1t (where s=1 is of any sort, including bool), there is
some finite set

D= {s,=t,—Ty,....5,=1,,—T,}

m

of variants of definite clauses in D (such that any two clauses in this set
have disjoint sets of variables, also disjoint from the set of variables in
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N,) and some finite set = {4,,...,8,} of substitutions, and, letting
E={s,=t,....8,=1,}
for some &-unifier o, of s and ¢, we have
0,(5) Spzq.00 " Plsy=,.0, (1)
and
Ni==0,(4,),...,0(4,_1),0/(T),....0,(T,),
0;(Aps1)s--->0:(4,)
(where any of the I';’s may be empty).
An SLDE-derivation is an SLDE refutation ifft N,= 0 (the empty clause).
Again, note that cases (i) and (ii) are not mutually exclusive. Also, note what is
involved in step (ii). It is necessary to find:

(1) some finite set = {5, =¢;:—I',...,
D, and some finite set &= {4,,...,0

m

Sn=1,:—T,} of variants of clauses in
} of substitutions;

(2) an Sunifier o, of s and ¢ such that
o,(s) Plzn, 0] " Dlsa=t,,.0,] o,(1),
where &= {s,=1¢,...,5,=1,}

The point is that it is not sufficient to simply find some set 2 and some &-unifier
o; of s and ¢. In order to identify the premises 8,(I),..., 8,(T,,), we also need to
find the set &= (4,,...,68,} of substitutions applied in some sequence of rewrite
steps 0,(s) © 4 0,(2).

Hence, the method requires not just a procedure for enumerating E-unifiers, but
also one for producing an explicit sequence of substitutions for every &tunifier,
which is prohibitive in practice. In the next section, we shall consider subcases for
which it is not necessary to produce the sets &. First, we give an example and
establish the completeness of the above method.

Example 6.4. Consider the following set H of equational Horn clauses, where
x, y, z denote variables:

Py=y=f=m,
a=b,
Pa,
f3x=x:— Qx,
Qa:—fa=a,
Ra:—fa=a, Pfa,
:~ Rfz, Pz.

Recall that Pa, Qx, Qa, Ra, Pfa, Rfz, and Pz are abbreviations for Pa =T ,Q0x =T,
Qa=T,Ra=T7,Pfa=71,Rfz=T,and Pz=T. Now Rfz =T is not unifiable with
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the head of any clause in H. However, if we let
D={Ra=T :—fa*a, Pfa,
fy=y—fr=fb,
[x=x:—0x};
&={0,=1d,0,=[a/y], 0, = [a/x]} where Id stands for the identity substitution;
and &= {Ra =T, f3y =y, f°x = x}, then a conditional rewriting step is applicable,

since ¢, =[a/z] is an &-unifier of T and Rfz by the following sequence of rewrite
steps:

3 6
T @ (Razr,0) RESpyay o RGOS ooy g RfFA 5,20 9, Rfa.

Thus o,(Rfz) €, 0,(T). Again, as in the ground case, the equations have been used
as two-way rewrite rules. Collecting the premises used in these steps, we have the
following step in the derivation:

N, —Rfz, Pz

N2 B ol(fa = a)’ 01(Pfa)’ 02(fy éfb), 03(QX), OI(PZ)'
This simplifies by substitution to

N, ‘—fa=a, Pfa, fa=fb, Qa, Pa.

Since the derivation step illustrated shows case (ii) of the definition in its full
generality, and case (i) is the standard SLD-resolution step, we will not complete the
derivation beyond this point.

The completeness of the above method is now established.

Theorem 6.5 (Completeness of SLDE refutations). Let H be a finite set of first-order
Horn clauses with equality. If H is unsatisfiable, then there is an SLDE refutation
for H.

PROOF. As indicated at the beginning of Section 6, we apply the Herbrand-Skolem-
Godel theorem (see Gallier [15] or Shoenfield [51]) to H. According to this theorem,
H is unsatisfiable iff some set H’ of ground-substitution instances of the matrices of
the clauses in H is unsatisfiable. Since H’ is unsatisfiable by Theorem 5.7 there is
some ground SLDE refutation for the set H’ from some goal Ny in H’. We prove
the following claim.

Claim. For every ground SLDE derivation (Ny, N{,..., N} for the set of ground
instances H’, there is an SLDE derivation {(Ny, N,..., N,) for the set H, and
some sequence (1y,...,M,) of ground substitutions, such that, N/ =n,(N;) for
every j,0<j<p.

PROOF OF CLAIM. We proceed by induction on the length of derivations. The claim
is trivial for p =0. Next, we prove the claim for p + 1. In the rest of this proof,
“derivation” will mean SLDE derivation (and similarly for refutation). By the
induction hypothesis, there is a derivation {N,,..., N, satisfying the claim, and in
particular, N/ = 7,(N,), where N, is some goal clause :—

I4
Aoy A1y Ay Ay gy A, There are two cases:



EQUATIONAL HORN CLAUSES 27

Case I: N =mn,(N,) as above, C, = 8(A:— B,,..., B,) for some ground substi-
tution ¢ and some definite clause 4 :— B,,..., B, in D, and

Np,+1 == np(Al)""’ np(Ak—l)’ H(Bl)""’ a(Bm)’ np(Ak+l)""’ np(An)s

where 7,(A4;) = 6(4). It can be assumed by renaming variables if necessary that 7,
and 6 have disjoint support. Then, we can let o, denote the union of 7, and 6, so
that N/ =0, (i Ay,..., 4, 1, By,..., B, Apiy,..., 4,) and o, (4;) =
0,,1(A4). If o is a most general unifier of 4 and A4, there is a substitution 7, ,
such that o,,,=0°7,,,. Then, there is an SLD-resolution step from N,=
= Ay Ay Ay Ay 4, 0 Ny =o(i— 4y, 44y, By, ..., B,
Apyrp---s4,) and N/ =m,,,(N,, ). Hence, (Ny,..., N, ;1) and (ng,...,M,,1)
also satisfy the claim.
Case 2: N, =m,(N,) as above, and letting 4, = s = 1, there is some finite set

9={s;=t;:=-Ty,...,5,=1,:—T,}

m

of variants of definite clauses in D (such that any two clauses in this set have
disjoint sets of variables, also disjoint from the set of variables in N,), and some
finite set &= {4,,...,8,,} of ground substitutions; and, letting

E={s,=1,....,8,=1,},
we have
77,,(3) Plnzn.0] 7 Pls.=1,,.0,] "p(t)’
and
Np'+1 = np(A].)""’ np(Ak—l)’ 01(1-‘1)’---’ Hm(rm)’ np(Ak+1)""’ np(A")'

Then, note that 7, is a é-unifier of s and ¢, and, letting N,,; =N,,; and n,,, =1d
(where Id denotes the identity substitution), (N, ..., N,,;) and (ny,..., n,,) also
satisfy the claim. This concludes the proof of the claim. O

Applying the claim to a refutation, the theorem is provided. O

The soundness of the SLDE-refutation method is left as an exercise.

7. A REFUTATION METHOD USING E-UNIFICATION PROCEDURES

In this section, we present a refinement of the SLDE-refutation method that uses an
explicit procedure for enumerating a complete set of E-unifiers. Stimulated mostly
by work on the Knuth-Bendix procedure, E-unification has been investigated
extensively in the past few years. Sickmann [50] contains an excellent survey, and
the state of the art in this domain is described in Kirchner [27]. The main problem is
to generalize the concept of a most general unifier. To this effect, we need some
definitions, most of which are taken from Kirchner and Kirchner [29]. First, we need
to define when two substitutions are equal modulo E.

Definition 7.1. Given a finite set E of equations, and given any set W of variables,
we say that two substitutions o and 8 are equal modulo E over W, denoted by
o =g O[W], iff for every variable x € W, a(x) &, 6(x).
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We say that o is more general than @ over W, denoted by o < [W1, iff there is
some substitution 5 such that 8 = ¢ o y[W].

We say that o and 8 are congruent modulo E over W, denoted by o = 8[W1}, iff
o<pO[W]and 8 <, o[W].

When either o £ [W] or 0 £ o[ W], we use the notation o #; §[W], and we
say that o and @ are noncongruent modulo E over W. When W is the set of all
variables, it is omitted, and similarly when E= &.

Note that in general, =; and = are distinct relations, as shown by Fages and
Huet [10]. In the next definition, the concept of a most general unifier is generalized
to E-unifiers. Unlike standard unification, it is necessary to consider a set of
substitutions.

Definition 7.2. Given a finite set E of equations, for any two terms s and ¢, and for
any finite set W of variables such that Var(s) U Var(t) C W, a set S of substitu-
tions is a complete set of E-unifiers for s and t away from W iff:

(i) for every 6 € S, one has D(¢) C Var(s) U Var(¢) and I(a) N W=4;
(i1) for every o € S, one has a(s) & 6(?);

(iii) for every E-unifier 8 of s and ¢, there is some ¢ € S such that o <, §[W].

Condition (i) is the purity condition, condition (ii) the coherence condition, and
condition (iii) the completeness condition. Condition (i) will be needed in the proof
of the completeness theorem for SLDET refutations. It is needed to ensure that the
variables appearing in a resolvent clause are disjoint from the variables in the
original literals being resolved on.

Unfortunately, it is undecidable whether two terms are unifiable modulo a set of
equations. This can be shown by choosing the set of equations to contain the axioms
for monoids. Then, the word problem for monoids is as an instance of the
E-unification problem. Since the word problem for monoids is undecidable [39], so
is E-unification. However, using a simple dovetailing argument, it can be shown that
for every finite set E of equations and any two terms s and ¢, the set Ug(s, ¢) of all
E-unifiers of s and ¢ is recursively enumerable. Note that for any finite set W
containing Var(s) U Var(¢), the subset of Ug(s, t) satisfying the purity condition
with respect to W is a complete set of E-unifiers away from W. However, even
though such a set is recursively enumerable, it may be highly redundant. It would be
desirable, as in the case where E =f, to show the existence of complete sets of
unifiers from which Ug(s, t) can be generated by instantiations, and even better,
complete sets of E-unifiers satisfying some minimality conditions. Such conditions
were proposed by Huet in the framework of higher-order unification [20].

Let S be a complete set of E-unifiers of s and ¢ away from W. Two minimality
conditions can be defined.

Minimality: For any two substitutions 0,8 € S, if 0 <, 0[W], then o = 6.

Noncongruence: For any two substitutions a,8 € S, if 0 = §[W], then 6 = 6.

Note that minimality implies noncongruence. Unfortunately, there are difficulties
with both concepts. Minimality cannot always be achieved, and noncongruence may
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not be recursively enumerable. Fages and Huet [10] have shown that there exists a
set of equations E and two terms s and ¢ such that there is no complete and
minimal set of E-unifiers for s and ¢. The reason why complete minimal sets of
E-unifiers do not always exist is that the ordering induced by <, on the set of
equivalence classes of Ug(s, t) modulo =; may not be well founded. When <. 1s
well founded (that is, every strictly decreasing chain is finite), for every 8 € Ug(s, ¢)
there is some element ¢ € Ug(s, t) minimal with respect to <., and such that
o <p 0{W]. In this case, a complete and minimal set of E-unifiers exists. More
generally, if every decreasing chain (with respect to <., and even infinite), has a
lower bound (the ordering <, is inductive), then using Zorn’s lemma, it is not
difficult to see that for every 8 € Ug(s, t), the set {0 € Up(s, t)|o <, 8[W]} has a
minimal element. Hence, in this case, a complete minimal set of E-unifiers also
exists.
The above discussion suggests to relax the condition of minimality as follows:

Weak minimality: For any two substitutions o, 8 € S, if 0 <, 8[W], then either
o =0 (8 is minimal), or there is no minimal element p € U.(s, t) such that
p<g0[W].

By “weeding out” elements of Ug(s,t) greater than some minimal element, we
can always show that a complete and weakly minimal set of E-unifiers exists.
However, the argument below implies that some complete and weakly minimal sets
of E-unifiers are not recursively enumerable.

For any finite set W containing Var(s) U Var(¢), by considering any set satisfying
the purity condition with respect to W and obtained by selecting some substitution
in each equivalence class of Ug(s, t) modulo =, , a complete and noncongruent set
of E-unifiers of s and ¢ away from W is shown to exist. However, such a set may
not be recursively enumerable. This is because if the word problem for E is
undecidable, the restriction of =, to Ug(s,t) may not be recursive (but it is
recursively enumerable). For example, we can choose E such that E =&U {axioms
for monoids}, where & is a set of equations such that deciding whether any two
strings are congruent modulo =, is undecidable. Such a set & is given in Machtey
and Young [39], where it is shown that for some fixed term v,, the set of all terms u
such that u £ v, is not recursive. Then, for the terms s = x and ¢ = v, (where x is a
variable), s and ¢ are E-unifiable iff for some substitution o, o(x) £, v,. Hence,
£, is not recursive. Observe that every substitution o with support {x} can be
identified with the term o(x). Using this identification, note that U.(x, v,) contains
(among other things) the set of all ground terms u such that u =, v, Hence,
Ug(x, vy) is not recursive. But then, given any two ground substitutions ¢, and o,
with support {x}, 6, = 0, iff 0,(x) £, 0,(x). If the restriction of =, to U.(x, v,)
were recursive, then by choosing o, such that o,(x)=uv, we could show that
Ug(x, vy) is recursive, a contradiction. Hence, the restriction of =, to Ug(x, v,) is
not recursive. But since = is recursively enumerable, the restriction of its comple-
ment #; to Ug(x, v,) is not recursively enumerable.

When E consists of ground equations, it has been shown by Kozen that
E-unification is NP-complete [33, 34]. Kozen’s proof consists in showing that if two
terms are E-unifiable (with E ground), then there is some E-unifier o satisfying the
following property: There is a function ¢ : Var(s) U Var(z) — Subterms(E U {s, 1}),
where Subterms(E U {s,7}) denotes the set of subterms occurring in terms in
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E U {5, 1} such that for every x € Var(s) U Var(z), ¢ defines a (unique) substitution
o such that o(x)=go0o(x). Hence, o is completely determined by the function
@: Var(s) U Var(¢) — Subterms(E U {s,¢}). The above yields a nondeterministic
polynomial-time algorithm for deciding E-unifiability: “Guess” ¢, and check that
o(s) & o(t), using the congruence closure algorithm. NP-completeness is easily
shown because one can reduce the satisfiability problem to E-unifiability by choos-
ing the equations in E to be an encoding of the truth tables for the logical
connectives A, V, and — (for details, see Kozen [33,34]). However, Kozen’s proof
does not show that a finite complete set of E-unifiers exists (for a ground set E). It
is possible to prove this stronger result, and the first author has, in fact, extracted a
complete E-unification procedure based on this proof [16].

We now consider the case in which an explicit procedure for enumerating
complete sets of E-unifiers is available. The following definitions will be needed.

Definition 7.3.

(1) Given a set H of Horn clauses, let E; be the set of equations occurring as
the head of some clause in H. We say that H is acceptable iff we have some
procedure UNIF( Ey) such that for any two terms s and ¢, and for any finite
set W such that Var(s) U Var(¢) C W, the procedure UNIF(Ey)(s, t, W) enu-
merates a complete set of Eg-unifiers for s, # away from W. [As noted earlier,
such a procedure always exists, but in practice, UNIF( E;) generates complete
sets of unifiers having some special properties.]

(2) Given a set H of Horn clauses, we say that H is well-behaved iff
(i) H=EUC and EN C=4, where E is a set of equations (that is, atoms
of sort +# bool) and C is a set of Horn clauses such that the head of each
such clause is not an equation (that is, an atom of sort bool).
(ii) H is acceptable. Note that E;=E.

The class of well-behaved Horn clauses was introduced by Goguen and Meseguer,
who have also investigated some of its properties [17]. For this class, only equations
in E,; can be used in step (ii) of Definition 6.3. Hence, the search space required for
constructing refutations is reduced. Actually, it is possible to define a refinement of
the SLDE-refutation method applying to arbitrary acceptable sets of Horn clauses.

Definition 7.4. Let H be an acceptable set of first-order Horn clauses with equality
consisting of a set D of definite clauses and a set {G,,...,G,} of goals. An
SLDE! derivation for H is a sequence (Nj, Ny,..., N,) of negative clauses
satisfying the following properties:

(1) N, =G, where G; is one of the goals.

(2) Forevery N, 0<i<p,if Ny=:—Ay,..., Ay, Ay, Ajsr,---» A, (Where A,
is of any sort, including bool), then either
(i) there is some definite clause C;=A4 :— By,..., B, in D, some finite set

D={s;=t,:—T,,....,5,=1,:—T,}

of variants of definite clauses in D (such that any two clauses in this set
have disjoint sets of variables, also disjoint from the set of variables in
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N,), and some finite set = {4,,..., 8.} of substitutions; and, letting
E={s;=1t,....,5, =11},

for some Ej-unifier o; of A, and A given by the procedure UNIF(Ey),
we have

Oi(Ak)"’[slsrl,al] T Ps,2e,,8,] o,(4)
and
N, =:—0/(4,),....,0(A,_),0,(B;),...,0,(B,),
0,(1y),...,0.(T,), 0,(As 1), 0,(4,,)

(where any of the T')’s or B,,..., B, may be empty); or
(ii) Letting A, =s=1¢ (where s =¢ is of any sort, including bool), there is
some finite set

D={s,=0,:—Ty,....s5,=1,:—T,}

of variants of definite clauses in D (such that any two clauses in this set
have disjoint sets of variables, also disjoint from the set of variables in
N,),-and some finite set &= {#0,,..., 8.} of substitutions; and, letting

E={s;=1,....5,=1.},

for some Ej-unifier o, of s and ¢ given by the procedure UNIF(E,,), we
have

o;(s) Pla=n,0] " Sls,=1,,6,] a,(1)
and
Noy=1=0(4)),....0,(4,_1),6,(1}),....6,(T,),
0;(Api1)s---0:(4,)
(where any of the I'’s may be empty).
An SLDE' derivation is an SLDE *-refutation iff N, =0 (the empty clause).

Note that when H is well behaved, 2 is a set of equations, and there is no need
for the set &, since all the I';’s are empty.

In the case of arbitrary acceptable sets, the completeness of the SLDE' method
depends on the procedure UNIF( Ey) used. This means that completeness cannot be
guaranteed for all procedures enumerating a complete set of Eg-unifiers [but it is
complete for the systematic procedures enumerating each set U (s, t); see below].
The problem is the following. Assume that for some terms s, ¢ and some set W, we
have UNIF(E,)(s, t, W) # Ug,, (s, 1) [of course, UNIF(E,)(s, 1, W) C U, (s, 1)]. Since
UNIF( E;) enumerates complete sets of E-unifiers, for every E-unifier § of s and
t, there is some E-unifier 0 € UNIF(EL)(s, t, W) and some substitution 7 such that
0 =, o ° . However, the proof that UNIF( Ej) enumerates complete sets of E,-uni-
fiers may not yield enough information about the substitutions 1 to establish the
completeness of the SLDE-refutation method.

If we choose the procedure UNIF( E;;) to be the systematic procedure enumerating
Ug, (s, t) for every pair of terms s and ¢, the proof of Theorem 6.5 goes through.
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Hence, the SLDE-refutation method is complete for unification procedures enumerat-
ing all E-unifiers. Unfortunately, this is not an improvement over the previous
method, since such an enumeration procedure is a “brute force” procedure with no
minimality properties at all.

However, we can show that the SLDEf-refutation method is complete for all
well-behaved sets of Horn clauses, for all procedures UNIF( Ey) enumerating com-
plete sets of E-unifiers. Hence, in this case, one can use procedures generating
complete sets having some minimality conditions.

Theorem 7.5 (Completeness of SLDE" refutations for well-behaved sets of Horn
clauses). Let H be a finite well-behaved set of first-order Horn clauses with equality.
If H is unsatisfiable, then there is an SLDE" refutation for H.

PROOF. The proof is similar to that of Theorem 6.5, but that the following claim is
used.

Claim. For every ground SLDE derivation {(Nj, N{,..., N/ for the set of ground
instances H', there is a SLDE" derivation (Ny, Ny,..., Np> for the set H, and
some sequence (Mg,...,M,) of ground substitutions, such that N/ &g 1,(N;) for
every j,0<j<p.

PROOF OF CLAIM. We proceed by induction on the length of derivations. The claim
is trivial for p = 0. Next, we prove the claim for p + 1. In this proof, “derivation”
means SLDE derivation. By the induction hypothesis, there is a derivation
(N, ..., N,) satisfying the claim, and in particular, N, S £, Np(N,). Let N =
— Ay Ay Ay Ay s Ay and N == A Af g AL Ay, AL
There are two cases:

Case 1: Nj=:—Af,..., Aj_y, A}, Aiyy,.-., 4, there is some definite clause
C,=6(A:- B,,..., B,) for some definite clause C=4:— B,..., B, in D and some
ground substitution #, and

no

Njoy= = Afsoco, A1, 0(By).....0(B,), Apur,--o, Ay,

where A/, = §(A). It can be assumed by renaming variables if necessary that 7, and
0 have disjoint support. Then, we can let o denote the union of 7, and 6, and since
A S n,(A4,), we have

o(4) éE,,o(Ak)'

Hence, o is an E-unifier of 4 and A4,. Since H is well behaved, letting W, , =
Var(N,) U Var(C), there is some Ey-unifier o,,, of A4 and A, away from W,
given by the procedure UNIF(E,) and some substitution 7,,,, such that o=g

0'p+1 ° "lp+1[VVp+1]- Then’

Nyo1=0,1(:=Apcc, Ay, Bysoos By Ay, 4,)

and
Np’+1 é’E,, 7’p+1(Np+1)’

Hence, (N,,..., N,,,) and (7q,...,n,, ) also satisfy the claim.
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Case 2: N] < n,(N,) as above, 4; =s’=1’, there is some finite set
E={s,=t,.., 8, =1}

of variants of equations in D (such that any two equations in this set have disjoint
sets of variables, also disjoint from the set of variables in N,) and some finite set
&#={4,,...,0,} of ground substitutions, and we have

.
s'Set! and NJ 1= —Al,..., Ay _, Ay iy, 4

-
Since s” S, 1,(s),t’ S5 n,(1),s" &4 1’,and EC Ey, we have
,(s) S5, 1,(2).

Hence, 7, is an Eg-unifier of s and . Since H is well behaved, letting W, ,, =
Var(N,), there is some Ey-unifier 6,,, of s and ¢ away from W, given by the
procedure UNIF( E;) and some substitution 7,3, such that m, =g 0,1 °n, ([W, 1]
Then,

Ny = °p+1( = Ay Ay Apsrse 4,)

P

and
Np’+1 é’E,, np+1(Np+l)'

Hence, (Ng,..., N, 1) and (n,,...,m,,1) also satisfy the claim. This concludes the
proof of the claim. O

Applying the claim to a refutation, the theorem is proved. O

The soundness of the SLDE-refutation method is left as an exercise.

When the procedure UNIF(Ej,) is an algorithm, and any two terms have a finite
complete set of unifiers, the search space for the SLDE'-refutation method is further
reduced. Fay [11] and Hullot [23] have given well-known algorithms to compute
E-unifiers based on the concept of a narrowing substitution [52], and generalizations
of these algorithms have been given by Kirchner and Kirchner [27-29]. The
procedure of Martelli, Moiso, and Rossi [40] can also be nicely integrated with the
SLDE'-refutation method in the case of canonical sets of equations.

8. COMPARISON WITH RELATED WORK

We have been able to identify four other approaches to handling equational Horn
clauses which include rigorous completeness results. We now point out the main
differences between these approaches and the methods defined in this paper. In
particular, it is shown that E-unification is either incorporated or simulated in some
form in each of these four approaches.

Jaffar, Lassez, and Maher [24] define a logic program as a pair ( P, £) where P is
the usual set of (nonequational) definite clauses and E is a set of definite equality
clauses of the form

e—epe,,...,¢,

m = 0, where each e is an equation of the form s = ¢ for terms s and 7 (but e cannot
be a nonequational atom). A (P, E)-derivation sequence is a (finite or infinite)



34

JEAN H. GALLIER AND STAN RAATZ

sequence of triples (G (?.,Gi,\; i=0,1,..., such that

(a) G, is of the form B,,...
05_}_<_m;

{0 pO 0
AN < Dy, 5Un1 N
2 (2) @)
AD<DP,..., DY,
A(m) . n(m) n(m)
AV = Dy L D

where each clause above is a clause in P with variables renamed;
(c) 6; is an E-unifier of (By,..., B,) and (4D,..., A(™);
(@) G,y is(D,..., DI, DP,...,DP,..., D{™, ..., DI™)8,

A derivation sequence is finitely failed with length i if 6, cannot be formed, and
is successful if some G, is empty (i.e, m = 0). The authors are able to show that the
classic soundness and completeness results associated with standard logic programs
[2] also hold in the above more general framework—in particular, that the least

model of (P, E} is equal to the least fixpoint of T, r,, where T is an operator

defined analogously to the T-operator in Apt and van Emden [2].

It is important to point out that this method assumes a very powerful form of
E-unification, namely unification modulo equational theories consisting of arbitrary
definite equality clauses. Also, although they partition a logic program into definite

r\lnncpe ant‘] definite pnnahtv r‘]ancAe 1t m easy to see ﬂ'\at adr]inn fhp ﬂishncnlchprl

SUS Qil VLl Pyn oy g o N

term T to the term algebra over E and allowing equations of the form s=T
collapses this partition, and results in a system that admits Horn clauses with
equality in their full generality. Such a system is closely related to the SLDE-refuta-
tion method presented in this paper. As the authors themselves point out, and as we

observed in Sections 6 and 7 when discussing the SLDE-refutation system, these

definitions do not shed much insight on corresponding computational methods
tmplementing them. The problems are hidden in the complexities of the F-unifica-
tion step. Finally, we note that the authors extend their results to include the
soundness and completeness of the negation-by-failure rule for completed logic

programs in the manner of Clark [5].

Goguen and Meseguer [17] define Eqlog, a logic-programming language that
includes equality, types, and generic modules. This important work appears to
represent the current state of the art in defining and implementing a logic-program-
ming system with modern language features. The authors give a rigorous semantics
for Eglog, but their approach does not show the completeness of the inference
procedure. To clarify this point, the authors prove that for predicate symbol Q and
terms ¢,,..., t, containing free variables Y,,..., 7,

Cr3Y,---3Y,0(t,---» t,)

iff there is a substitution ¢ sending Y, to ground terms such that Q({o(#))),....[a(2,)])
is true in an initial model for C. This version of Herbrand’s theorem characterizes
the abstract properties of the underlying logic. However, it is independent of the
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mechanics of the inference method used to compute the operational semantics;
the proof does not include a lifting of a ground case to the first-order case. In fact,
the actual inference method used in Eqlog, as reported in [17], is described (Section
4) in words. After quoting a passage by Warren [56] on the computation algorithm
or ordinary PROLOG, and defining the concept of an E-unification algorithm SOLN,
the following paragraph occurs:

The assumption that the set C of clauses decomposes into disjoint sets E of equations and P of
predicate-headed clauses has the desirable effect of isolating the solution of equations into a separate
E-unification algorithm SOLN, which is then called by the PROLOG search algorithm described above. Of
course, SOLN must be called in a way that can be backtracked and is fair, in the sense that every
substitution gets tried. This gives a semidecision procedure that may not halt; but if so/n is r.e. complete,
then a general proof of correctness of the algorithm can be given along standard lines.

As the proofs in Sections 6 and 7 illustrate, such a general proof must be handled
very carefully if it is to result in insight for subsequent implementations. We also
note that the authors subsequently extend by stages the definition of logic programs
from the base case of C = FU P (what we have called the class of well-behaved
logic programs) to Horn-clause logic with equality in its full generality. They also
give examples in Eqglog of these extensions. As in the case of Jaffar, Lassez, and
Mabher, and in our own analysis of acceptable logic programs in their full generality,
such extensions seem to require forms of E-unification which appear to make
completeness and tractability results problematical.

Dershowitz and Plaisted [6] define a system of conditional directed equations of
the form

I[X]:~p[X, Y] > r[X,7],
where / and r are first-order terms, p a predicate, and X and Y are sets of
variables. The interpretation here is p O/ — r. Summarizing from [6], computation
is performed by using an equation either (1) to simplify a subterm that matches its

left-hand side, or (2) to narrow a subterm that unifies with its left-hand side. A
computation begins with a goal rule of the form

g[x, Z] - answer(Z),

where g contains irreducible input terms x and output variables Z. At each step in
the computation, if the current subgoal is

h:i—q,...,q,— answer(3)

and a rule /:— p — r whose left-hand side can be unified with a nonvariable subterm
of g, via a most general unifier o at some context ¢ (i.e., term address), then the
subgoal g, is conditionally narrowed to

a(h):—o(p),tlo(r)],o(q,),...,0(q,) = answer(o(5)).

This goal is then simplified by term rewriting as much as is possible. Only when all
the conditions become true, and the subgoal is of the conditional form A’ —
answer(§), are narrowing substitutions attempted for A’. The computation ends
when a solution rule of the form true — answer(t) is derived.

This system can be viewed as a restriction of case (ii) of the SLDE-refutation
method in which equational Horn clauses are restricted to clauses of the form

I(x)=r(%,Y):—p(X,7)
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whose heads are oriented left to right, ie., they represent one-way rewrite rules
rather than two-way rewrite rules as in the SLDE-refutation method. The system
tries to E-unify the head of the goal rule with T, and all the narrowing substitutions
in the computation sequence are steps on the way to doing this. Indeed, the authors’
description (p. 58) of the method of computing narrowing substitutions is very
reminiscent of Fay’s [11] algorithm for finding E-unifiers: “Since, in general, there
may be many ways to achieve a subgoal, alternative narrowing computations must
be attempted, either in parallel (until one succeeds) or sequentially (by backtracking
upon failure).” Since the set £ upon which E-unification takes place can change,
this is again as in the Jaffar case, a very powerful form of E-unification. This work
represents an intelligent and practical restriction of equational Horn clauses.

Fribourg in [12,13] describes SLOG, an equational Horn-clause interpreter based
on a form of clausal superposition and term rewriting. The method is general in that
it applies to arbitrary equational Horn clauses, but he concentrates his discussion on
programs containing clauses of the form

L=R+-0Q,=7,...,0,=T,

where n > 0. A goal in this system is a clause of the above form in which the head is
empty. For simplicity, we will abbreviate a term Q, = T with the usual form Q, We
note also that Fribourg actually gives a series of definitions, each assuming specific
restrictions or properties on the input equational Horn clauses or on the superposi-
tion operation. We have extracted a simplified but “representative” definition and
refer the reader to the Fribourg’s papers for actual definitions.

Summarizing from [13], let G be a goal of the form :~ Q,,..., Q,, and P be a set
of definite equational clauses of the form L=R:—B,,..., B,. Then, G’ is an
innermost goal superposant of P into G at address a using most general unifier o iff
Q, has a nonvariable subterm M “which itself contains no matchable proper
subterm” such that o(M)=0(L), and G’ is

:——o(Bl,...,Bm,Ql[a<—R],Q2,...,Q,,).

A substitution o is defined as a GC-substirution if it substitutes ground terms
defined only on the constructors in P U G. The constructors [21] are (loosely) the set
of non-user-defined symbols. C is an inductive consequence of P iff for any
GC-substitution 6, PU E = o(C), where E is the set of equality axioms. Finally, if
R denotes the rewrite system composed of the inductive consequences of P, an SLOG
program is a pair (P, R). R is usually taken to be canonical via completion by the
Knuth-Bendix algorithm.

Let A: (P, R) be an SLOG program. An S-derivation of G’ from PUG via a
superposant selection function ¢ consists of a finite sequence Gy, G4, ..., G, of goals
and a sequence o,, 9,,..., 0, of most general unifiers such that

(1) G, is the R-normal form of G, and G, is G’;

(2) for all i,1 <i < n, G, is the R-normal form of a ¢-superposant of a clause in
P into G,_,.

Finally, an S-refutation is an S-derivation of the empty clause. Note that in this
system, the clauses in P are used not only in superposition on the “leftmost-inner-
most” literal of the goal, but also as rewrite rules to simplify all literals in the goal as
well.
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Fribourg gives a rigorous and stepwise development of this system, and gives
completeness results, including an analysis of the ground case with lifting lemmas,
for each step. Note that as in the case with the Dershowitz-Plaisted system, it is
possible to interpret this system as including a form of E-unification by viewing goal
superposition as an instance of the narrowing operation, and describing the aim of
the system as attempting to find an E-unifier for each literal of the goal and T. It is
again a very powerful form of E-unification, since this system applies to arbitrary
equational Horn clauses. Finally, Fribourg extends his results by formalizing the
closed-world assumption [47] in the above framework and considers implementation
methods.

We also mention the work of Kaplan [25], who presents a conditional term-
rewriting system which allows the simulation of conditional equational Horn
theories. This system consists of rules of the form

GoDeu=uv,...,u,=0v,

with the restriction that Var(D) C Var(G), for every i, 1 <i < n, Var(u,) U Var(v,)
C Var(G). He shows that this formalism is too general, in the sense that for any
given set of conditional rules, the rewriting of any term is in general an undecidable
problem, even if the system is canonical. The paper also contains a review of related
efforts to cope with the undecidability phenomenon by restrictions to the above
formalism. This work is relevant to the work involving E-unification in that the
standard E-unification algorithm is based on the canonical unconditional term-
rewriting systems. It is possible that canonical conditional systems could form the
basis for more efficient or general E-unification algorithms, and in fact there has
been some encouraging recent progress on checking confluence for conditional
rewrite rules [46].

It is worth noting that there are important semantic and computational differ-
ences between the use of equational Horn-clause languages (as in [17] and [6]), and
the use of conditional rewrite systems (as in Kaplan [25])—even though the
problems addressed in both cases are undecidable for the general case. In an
equational Horn-clause language, one attempts to show

EED3z -3z, (s=1),

where {z,,..., z,} is set of free variables in (s = ¢), and find explicit terms 1,,...,
such that

EED(s=t)t/2),....1,/2,].
This can be accomplished by refutation by showing that
EAVz - VYz,—(s=1t)

n

is unsatisfiable, which implies, by the Herbrand-Skolem-Godel theorem and theo-
rem 3.6 that there exists a substitution 0 =[t,/z,,...,1,/z,] and a set E’ of ground
instances of E such that

E’ A —~o(s=1) is unsatisfiable
iff E’Do(s=t)isvalid
iff EEd(s=1t),
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which implies that o(s) rewrites to o(¢) for some sequence of rewrite steps using the
equations in E. (Note: ¢ is an E-unifier of s and t.)

The concept of narrowing occurs naturally when we attempt to convert a
sequence of rewrite steps from o(s) to o(¢) into a sequence of extended rewrite
steps between the original terms s and ¢. Such extended rewrite steps, called
narrowing steps, must incorporate unification, because the term o(s) can be rewrit-
ten using a rule / — r iff some instance #(/) of / is equal to some subterm a(s)/u of
o(s). If u € dom(s), then a(s)/u=0o(s/u), and we have 8(/) = a(s/u), that is, s/u
and / are unifiable. [The case where u & dom(s) is more difficult, and will not be
discussed here. Note that a way to prevent this case from happening is to assume
that FE is in fact a set of confluent and Noetherian rewrite rules. Then, we can
assume that the substitution o is reduced, that is, every o(x) is irreducible for every
x € D(o). In such a case, if we had u & dom(s), then if o(s) were reducible, o(x)
would be reducible for some variable x € dom(s), which contradicts the fact that o
is reduced.] A narrowing substitution is in fact a most general unifier of s/u and /.
Such a substitution allows the substitution instance o(s) of a term s to be further
reduced. Since any term may have multiple narrowing substitutions, the computa-
tion of an E-unifier 0 =(1,/2,,...,¢t,/z,] such that = E D o(s =1t) involves finding
a specific sequence of narrowing steps (and reductions).

In a conditional rewrite system, one wants to know whether an equation s = ¢ is
a logical consequence of a theory E, that is, for terms s and ¢, whether

EEDVz ---Vz,(s=1),

where {z;,..., z,} is a set of variables free in s and 7. A refutation thus verifies that
EA3z -+ 3z,—(s=1)

is unsatisfiable, which after skolemizing is equivalent to verifying that
EA(s"=1")

is unsatisfiable, where s’ and ¢’ are ground terms obtained by substituting constant
symbols for the variables (“freezing the free variables”). Again, applying the
Herbrand-Skolem-Gddel theorem, there is a set E’ of ground instances of E such
that

E’ A —(s” = 1’) is unsatisfiable
iff E’Ds’=¢isvalid
iff EEs'=t/,

which as before, implies that s’ rewrites to ¢’ for some sequence of rewrite steps
using the equations in E. But since s’ and ¢’ are ground (since they are the result of
substituting constants for the variables in s and ¢), there is no need to extend the
rewrite steps from s’ to ¢’ to narrowing steps from s to ¢ (provided that we always
rename the variables occurring in the equations in E used as rewrite rules away
from the variables in s = ¢). This observation, together with the completeness of the
rewrite-rule method in the ground case, can be used to give an alternate proof of the
completeness of the rewrite-rule method for equational logic.

Another interesting approach worth noting is that of Miller and Nadathur. In
their paper [41], Miller and Nadathur present a higher-order extension of PROLOG
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that includes predicate and function variables, and typed A-terms. Although their
language does not include equality, their proof procedure is similar in spirit to our
method, because the presence of typed A-terms requires the use of a procedure for
enumerating unifiers. Hence, their proof procedure also mixes backchaining steps
and enumerations of (higher-order) unifiers. Technically, the main difference is the
use of Huet’s unification procedure for typed A-terms [20], instead of an E-unifica-
tion procedure. In some sense, they are dealing with a fixed set E of equations
corresponding to the rules of A-conversion. This approach appears quite promising,
since Huet showed that his procedure enumerates a complete and minimal set of
preunifiers [20].

Finally, we note that there has also been substantial work relevant to this paper
which attempts to combine features of logic programming with functional program-
ming, or to include facilities for solving equations. We distinguish this work from
the methods above (and our own methods), in that the emphasis is not on defining
and showing completeness results of a proof system for the underlying equational
Horn-clause logic.! Kornfeld [32], who appears to have been the first to explicitly
consider incorporating equality into logic programming, extends PROLOG by
allowing the inclusion of assertions about equality. He does not attempt to provide a
theoretical foundation for this extension, and in fact, the method does not appear to
be complete. Reddy [45] subsequently gave a correct computation method for
assertions about equality, reduction by narrowing, and the related semantics in the
context of including logical variables in functional languages. Lindstrom [37]
describes FLG + Lv, a functional language that includes logical variables, in which
terms are simplified before unification. Funlog [53], defined without formal seman-
tics, also combines the functional- and logic-programming paradigms. Hansson,
Haridi, and Tarnlund [18] define a superset of Horn-clause logic which includes
negation, equality, and explicit universal quantifiers based on a natural deduction
system; however, again no formal semantics is given. Also based on natural
deduction semantics is the language LEAF [3], which extends the logic programming
to provide functional notation. Tamaki [54] describes a system requiring the
addition of the equality axioms which includes a reducibility predicate which can
simulate narrowing. FPL [4] is essentially a logic-programming notation for a
functional programming language, in that it does not support logical variables.
LOGLISP [48] and QLOG [31] define essentially embeddings of PROLOG in LisP.
Hoffmann and O’Donnell [19] define a purely equational language which supports
user-defined abstract data types by regarding the equations as rewrite rules. Finally,
in promising recent work, Kieburtz [26] defines a functional language, F + L, with
interpreted equality which has both an efficient implementation by compiled graph
reduction and a well-defined semantics.

9. CONCLUSIONS

We have presented two methods based on SLD resolution with E-unification for
establishing the unsatisfiability of equational Horn clauses. The completeness proofs
for these methods are based in the ground case on a generalization of the idea of a

TBecause of the volume of work on this topic, our list can only be representative.
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congruence closure to sets of ground Horn clauses. The SLDE-refutation method
applies to arbitrary sets of equational Horn clauses, but is not practical in that it
assumes a procedure which gives an explicit sequence of substitutions for each
E-unifier. The SLDE®-refutation method applies to sets of equational Horn clauses
which admit a procedure enumerating a complete set of F-unifiers, and is shown to
be complete for sets of well-behaved equational Horn clauses.

The above methods and their completeness proofs illustrate the computational
implications of including equality for specific classes of equational Horn-clause logic
programs. Specifically:

(1) For the class of well-behaved sets of equational Horn clauses, i.e. sets which
admit a procedure enumerating a complete set of E-unifiers, and contain
clauses of the form

s =t not of sort bool
or
Q—P,....P,

where s and ¢ are first-order terms, Q is a nonequational atomic formula,
and P,,..., P, are either equational or nonequational atomic formulae, the
E-unification algorithm due to Fay [11] or Hullot [23] coupled with SLD
resolution can be used as a relatively efficient interpreter. This is an impor-
tant observation, since this class of equational Horn-clause programs sub-
sumes the paradigms of functional, logic, and equational programming.

(2) For larger classes, the issues relating to efficient implementations are com-
plex. A simple extension of the above approach to conditionally well-behaved
sets of equational Horn clauses, which include clauses of the form

s=t—Q,,....,0,,
where Q,,..., Q, are nonequational atomic formula, seems to demand a SLD
interpreter which must backtrack over calls to the E-unification algorithm on
different sets of equations. Stated in another way, if E,; is the set of equations
occurring in the head of some clause, a system using the FE-unification
algorithm of Fay would be forced to consider different canonical subsets of
E,.

It is clear that logic programming can benefit from the inclusion of equality.
However, this inclusion must not compromise the inherent efficiency that allows this
paradigm to be used as a programming language. Our results indicate that for
systems involving E-unification, including the SLDE- and SLDE-refutation meth-
ods, and the related work reviewed in the last section, the inclusion of equality for
classes of programs larger than the well-behaved class appears to compromise this
efficiency. It remains to be seen how applying intelligent restrictions to these larger
classes, as in Dershowitz and Plaisted’s work, or “distributing” the FE-unification
process across other operations, for instance superposition with term rewriting as in
Fribourg, affects this issue.

We wish to thank Gopalan Nadathur for reading the manuscript very carefully, and for some incisive
comments, particularly regarding the discussion on minimality conditions.
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