
A Proof of Strong Normalization For the Theory of
Constructions Using a Kripke-Like Interpretation1

Thierry Coquand Jean Gallier2

INRIA
Domaine de Voluceau, Rocquencourt

B.P. 105
78153 Le Chesnay Cedex, France

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St.
Philadelphia, PA 19104, USA

Abstract. We give a proof that all terms that type-check in the theory of constructions are
strongly normalizing (under β-reduction). The main novelty of this proof is that it uses a
“Kripke-like” interpretation of the types and kinds, and that it does not use infinite contexts.
We explore some consequences of strong normalization, consistency and decidability of type-
checking. We also show that our proof yields another proof of strong normalization for LF
(under β-reduction), using the reducibility method.

1 Introduction

We give a proof that all terms that type-check in the theory of constructions are strongly
normalizing (under β-reduction). The main novelty of this proof is that it uses a “Kripke-
like” interpretation of the types and kinds, and that it does not use infinite contexts. The idea
used for avoiding infinite contexts comes from Coquand’s thesis [Coq85]. Our proof yields as
a corollary another proof of strong normalization (under β-reduction) of well-formed terms
of LF . In fact, it is easy to see that this proof does not use the candidates of reducibility at
all. We are unaware of similar proofs (using reducibility “à la Tait”) for LF .

1The results in this paper were first presented at the First Annual Workshop on Logical Frameworks,
Esprit Basic Research Action, Antibes, May 7-11, 1990.

2Partially supported by ONR Grant NOOO14-88-K-0593.

1

Our experience with proofs of strong normalization is that besides their intrinsic diffi-
culty, their clarity and ease of understanding are greatly affected by the choice of notation,
and the order in which the concepts are introduced. For example, it is logical to define
“the values” before defining [[Γ . A]]ρ∆, the interpretation of types, since this latter defi-
nition requires the former (the term “values” is used by Coquand [Coq87], but in Girard’s
terminology and ours, these are the sets CA,∆ of “candidates of reducibility”). However, we
believe that it more intuitive and easier for understanding such proofs, if [[Γ.A]]ρ∆ is defined
before the families of candidates (In Coquand [Coq87], [[Γ .A]]ρ∆ is called the interpretation
of a term, and it is denoted as Evalρ M). It is possible to do so by first giving a rough
and intuitive idea of what families of candidates are. Another difficulty is to package in a
convenient way the various ingredients making up a candidate assignment (the substitution
component, the candidate assignment component, etc). This is one place where the idea of
viewing a context ∆ as a world, as in Kripke semantics of intuitionistic logic, seems helpful.

A key remark for our presentation is the following: proofs of normalization that follow
the reducibility method are intuitionistic. Hence, it should be possible to carry them in any
intuitionistic model, hence in any Kripke model. There is furthermore one natural Kripke
“term model” where we take for the Kripke worlds, the valid contexts of the type system. It
should be noted that this paper represents “ongoing research”, and that this is a preliminary
version of a paper in which we intend to explore more thoroughly the nature of Kripke models
for the theory of constructions.

Among the sources of inspiration for this research, Moggi and Mitchell’s work on Kripke
models for the simply-typed λ-calculus [MM87] should be mentioned. We also became re-
cently aware of work by Aarne Ranta [Ran90], in which the notion of “contexts as (finite
approximation of) worlds” is used. One of the motivations for this work is to give an intu-
itionistic treatment of the notion of “possible worlds”. Ranta’s notion of Kripke structure is
more general than ours, in that he does consider any interpretation between contexts, and
not only projection (here seen dually as inclusion). It may be interesting to see if one can
formulate a normalization proof in this framework.

One should be careful in referring to “the” theory of constructions, since different ver-
sions of this theory have been formulated and these versions are not all equivalent. Thus,
in order to avoid ambiguities, we formulate in the next section a version of the theory of
constructions equivalent (but not identical in syntax) to the version presented by Coquand
and Huet [CH88]. We refer to this version of the theory of constructions as CC.

2 Syntax of the Theory of Constructions CC

We find it pedagogically convenient to first describe a theory of constructions whose syntax
has three levels (kinds , type families , and terms). The special kind ? is the logical kind of
propositions. In other words, types (propositions) are exactly those type families whose kind

2

is ?. In the simple theory of type, Church used the notation o for ?. Another notation used
in place of ? is Prop (or even Type). Furthermore, some authors use Type instead of kind,
but we find this practice somewhat confusing, since in the Curry-Howard formula–as–type
analogy, propositions correspond to types.

We begin by defining raw terms .

Definition 2.1 We use the nonterminal K to range over kinds, A to range over type families,
and M to range over terms. We also use two kinds of variables, ranging over kinds and type
families. Raw terms are defined by the following grammar.

K −→ ? | (Πt:K)K | (Πx:A)K

A −→ t | (∀t:K)A | (∀x:A)A | (AA) | (AM) | (Λt:K. A) | (λx:A. A)

M −→ x | (MM) | (MA) | (Λt:K.M) | (λx:A. M).

A context is an ordered sequence of pairs ∆ = 〈〈x1, A1〉, . . . , 〈xm, Am〉〉, where xi is a
variable and Ai is a kind or a type family, and xi 6= xj whenever i 6= j. A context ∆ is
usually written as x1:A1, . . . , xm:Am. If ∆ = x1:A1, . . . , xm:Am, we let

dom(∆) = {x1, . . . , xm}

and
∆(xi) = Ai.

There are four categories of judgments :

Definition 2.2 Judgments are expressions of the form:

∆ . (∆ is a valid context),

∆ . K: kind (K is a valid kind in context ∆),

∆ . A:K (A kind-checks with kind K in context ∆),

∆ . M :A (M type-checks with type A in context ∆).

We define β-reduction and β-conversion in the usual manner on raw terms. This means
that redexes will be of the form (Λt:K. A)B, (λx:A. B)M , (Λt:K.M)B, and (λx:A.M)N .
We emphasize that we do not consider η-conversion in this paper. There appears to be some
difficulties with the Church-Rosser theorem if βη-conversion is defined on raw terms, and it
seems that one needs to define judgments of the form ∆.M

∗←→CC M
′ (equality judgments),

which is quite cumbersome.

3

3 Typing Rules for CC

We could list the typing rules assuming the above syntax, but it is possible to state them
more concisely if certain conventions are adopted.

• Firstly, we will not distinguish between type variables and term variables.

• Secondly, we will use the symbol κ to denote either kind or ?.

• Thirdly, we will denote both judgments ∆ . K: kind and ∆ . σ: ? as ∆ . A:κ, and
similarly, we will denote both judgments ∆ . σ:K and ∆ . M :σ as ∆ . M :A.

• Finally, we identify ∀ and Π, and Λ and λ.

Note that now, there is only one kind of raw terms given by the following grammar:

M −→ x | ? | (Πx:M)M | (MM) | (λx:M.M).

With the above conventions, we only have one rule for each kind of rule.

Definition 3.1 In the rules below, κ, κ1, κ2 ∈ {?, kind}.

Context Formation:
∅ . empty context

∆ .

∆ . ?: kind

∆ . A:κ

∆, x:A .
x /∈ dom(∆)

Axiomatic Judgments :
∆ .

∆ . x:A
x:A ∈ ∆

Product Formation and Quantification:

∆ . A1:κ1 ∆, x:A1 . A2:κ2

∆ . (Πx:A1)A2:κ2

Abstraction:
∆ . A1:κ1 ∆, x:A1 . A2:κ2 ∆, x:A1 . M :A2

∆ . (λx:A1. M): (Πx:A1)A2

4

Application:
∆ . M : (Πx:A1)A2 ∆ . N :A1

∆ . MN :A2[N/x]

Kind and Type Conversion:

∆ . M :A1 ∆ . A2:κ A1
∗←→CC A2

∆ . M :A2

It turns out that the above typing rules can be simplified, because some of the premises
are redundant. Of course, this has to be justified carefully, but this has been verified by
Coquand and Huet [CH88], and others. For the reader’s convenience, we recall some of the
main basic properties of CC.

4 Some Basic Properties of CC

We shall use the notation ∆.E as an abbreviation for all forms of judgments. Given contexts
Γ and ∆, the notation Γ ≤ ∆ means that Γ is an initial subsequence of ∆.

First, we note that under β-conversion alone, the Church-Rosser theorem holds even for
raw terms.

Theorem 4.1 (Martin Löf)
The Church-Rosser property holds for raw terms of CC (even the economical version).

Proof . Such a proof using the so called “Tait/Martin Löf’s method” was given by
Martin Löf [ML72].

It should be noted that theorem 4.1 is quite handy. It appears that if β-conversion is
defined on raw terms, which is definitely more convenient than using equality judgments,
many important properties of CC make use of the Church-Rosser property.

The propositions listed below consist of the translation in English and in our terminology
of properties 1-7 in Chapter 1 of Coquand’s thesis [Coq85]. In some cases, these proofs require
some amplification. First, we need the following definitions, which are translations in our
terminology of Coquand’s definitions.

Definition 4.2 K is a kind iffK is of the form ? or (Πx1:A1) . . . (Πxm:Am)?, and ∆.K: kind
for some context ∆;

A is a type family iff ∆ . A:K for some context ∆ and some kind K;

5

A is a type iff ∆ . A: ? for some context ∆;

M is a proof (or proof term) iff ∆ . M :A where A is not a kind.

When we want to stress that a context ∆ is well-formed, that is, when ∆ . is derivable,
we say that ∆ is a valid context , and similarly for kinds, type families, types, and proofs.

Lemma 4.3 If ∆ . E, then ∆′ . for every ∆′ ≤ ∆, and more generally, every derivation of
∆ . E contains a derivation of ∆′ . as a subderivation.

Lemma 4.4 If ∆ .A:K and ∆ .A:K ′ where both K and K ′ are kinds, then K
∗←→CC K ′.

Similarly, if ∆ .M :A and ∆ .M :A′, where both A and A′ are not kinds, then A
∗←→CC A′.

The proof of the above lemma actually seems to require the Church-Rosser property
and the following proposition.

Proposition 4.5 Assume that ∆ . (Πx:A)K: kind and ∆ . (Πx:A′)K ′: kind. If (Πx:A)K
∗←→CC (Πx:A′)K ′, then A

∗←→CC A′ and K
∗←→CC K ′.

Proposition 4.6 Both ∆ . M :A and ∆ . M : kind are not derivable at the same time.

Definition 4.7 Given any two contexts ∆, ∆′, we say that ∆ ⊆ ∆′ iff for every x, if
x ∈ dom(∆) then x ∈ dom(∆′) and ∆(x) = ∆′(x).

Lemma 4.8 Assume that ∆ ., ∆′ ., and ∆ ⊆ ∆′. If ∆ . E, then ∆′ . E. In particular, if
∆ ≤ ∆′, ∆′ ., and ∆ . E, then ∆′ . E.

Lemma 4.9 If ∆ . M :A and ∆, x:A,∆′ . E, then ∆,∆′[M/x] . E[M/x].

Lemma 4.10 If ∆ .M :A and A is not a kind, then ∆ . A: ?. If ∆ .M :A and A is a kind,
then ∆ . A: kind.

Lemma 4.11 If ∆, x:A,∆′ . E, A
∗←→CC A′, and either ∆ . A′: ? or ∆ . A′: kind, then

∆, x:A′,∆′ . E.

Lemma 4.12 If ∆ . M :A and M
∗−→CC N , then ∆ . N :A.

Lemma 4.13 The judgments ∆ .M :A where A is a type and ∆ .M :K where K is a kind
cannot hold simultaneously.

The proof of the above lemma seems to require the Church-Rosser property.

In view of proposition 4.6, kinds are disjoint from type families and proofs. In view of
lemma 4.13, proofs and type families are disjoint.

6

5 Strong Normalization in CC

The proof of strong normalization for well-typed terms of CC is obtained by generalizing the
proof given by Girard for the system Fω [Gir72], as presented in Gallier [Gal90]. However,
there are some significant technical complications. In Fω, we have an ascending hierarchy,
kinds, type families, and terms, where kinds do not depend on type families or terms, and
type families do not depend on terms. However, in CC, kinds, type families, and terms, are
defined in a single big simultaneous inductive construction. The main difficulty is to ensure
that the interpretations [[Γ . A]]ρ∆ are nondegenerate (i.e., nonempty sets).

The first step is to define the concept of a candidate assignment, which packages together
a substitution and a valuation assigning candidates to variables.

Definition 5.1 A substitution is a function ϕ:V → Terms such that ϕ(x) 6= x for only
finitely many x, and for every ϕ(x), there is some context ∆ and either some type A such
that ∆ . ϕ(x):A (and ∆ . A: ?), or some kind K such that ∆ . ϕ(x):K (and ∆ . K: kind).
The domain D(ϕ) of ϕ is the set D(ϕ) = {x | ϕ(x) 6= x}.

Every substitution ϕ has a unique homomorphic extension ϕ̂:Terms→ Terms. Given
a term M (term, type family, or kind), the result of applying ϕ to M is ϕ̂(M), and it is
denoted as ϕ(M) or M [ϕ].

Some form of Kripke structure is lurking around. Contexts are going to play the role of
worlds. Consequently, most concepts will be defined “in world ∆”. The notion of inclusion
of worlds is the relation ⊆ defined in definition 4.7. Substitutions will also play the role of
valuations assigning values to variables. This motivates the following definition.

Definition 5.2 Given two valid contexts Γ, ∆, where Γ is used to type/kind check, and ∆
acts as a world, given a substitution ϕ, we say that Γ[ϕ] type-checks in ∆ iff ∆.x[ϕ]: Γ(x)[ϕ]
for every x ∈ dom(Γ).

At first glance, one may be concerned that this condition is circular. However, this is
not so. Indeed, if Γ = x1:A1, . . . , xm:Am is a valid context, it can be easily shown that
FV (Ai) ⊆ {x1, . . . , xi−1} for all i, 1 ≤ i ≤ m, and that Γ[ϕ] type-checks in ∆ means that
∆ . xi[ϕ]:Ai[x1[ϕ]/x1, . . . , xi−1[ϕ]/xi−1] for all i, 1 ≤ i ≤ m, which is possible.

We now assume that for every world ∆ and type family A that kind-checks in ∆, we
have a set CA,∆ of nonempty sets called candidates to be defined soon. All we need to know
is that, when A is a type, every C ∈ CA,∆ is a set of terms ∆′ . M such that ∆′ . M :A
for some ∆′ ⊇ ∆, and when A kind-checks with kind (Πx:B)K, every element of CA,∆ is a
certain function. We also have a set C?,∆ consisting of nonempty sets of types ∆′ . A such
that ∆′ .A: ? for some ∆′ ⊇ ∆, and a set Ckind,∆ consisting of nonempty sets of kinds ∆′ .K
such that ∆′ . K: kind for some ∆′ ⊇ ∆.

7

Definition 5.3 A candidate assignment is any function ρ from V ∪ {?, kind} to Terms ∪
(Terms×

⋃
C), such that the following properties hold:

(1) If we define the function ρs:V → Terms such that,

ρs(x) =

{
A if ρ(x) = 〈A,C〉,
A if ρ(x) = A,

then ρs is a substitution (which means that ρs(x) 6= x only for finitely many x ∈ V),
and,

(2) If ρ(x) = 〈A,C〉, then A is a type-family that kind-checks in some context ∆ and
C ∈ CA,∆, else if ρ(x) = A then A is a term (proof) that type-checks in some context
∆;

(3) ρ(?) = 〈?, C〉 where C ∈ C?,∆ for some context ∆, and ρ(kind) = 〈kind, C〉 where
C ∈ Ckind,∆ for some context ∆.

The function ρs is called the substitution part of ρ. We also denote ρs as [ρ]. When the
range of ρ is Terms ×

⋃
C, the function ρ also defines the function ρc such that x 7→ C,

? 7→ C, and kind 7→ C. The function ρc is called the candidate part of ρ. By abuse of
notation, both ρs and ρc are often denoted as ρ, when the context makes it clear which is
referred to. The notation ρ[x: = 〈A,C〉] is used to denote the modified candidate assignment
which agrees with ρ for every variable different from x, and maps x to 〈A,C〉 (possibly
overwriting the previous value ρ(x)), and similarly for ρ[x: = N].

Definition 5.4 A candidate assignment ρ satisfies Γ at ∆ iff

(1) Γ[ρs] type-checks in ∆.

(2) Whenever ρ(x) = 〈A,C〉 or ρ(x) = A, then A kind/type-checks in ∆. Furthermore,
C ∈ CA,∆ when ρ(x) = 〈A,C〉, C ∈ C?,∆ when ρ(?) = 〈?, C〉, and C ∈ Ckind,∆ when
ρ(kind) = 〈kind, C〉.

It is easy to verify that if ∆ ⊆ ∆′ and ρ satisfies Γ at ∆, then ρ satisfies Γ at ∆′. We
can now define [[Γ . A]]ρ∆, where Γ is a context, either A is a type family that kind-ckecks
in Γ, or A is a kind valid in Γ, or A = kind, ρ is a candidate assignment, and ∆ is a context
viewed as a world. The expression [[Γ.A]]ρ∆ is the interpretation of Γ.A with respect to the
candidate assignment ρ, in the world ∆. The definition is by induction on the complexity
of Γ . A (if Γ = x1:A1, . . . , xm:Am, then the complexity of Γ . A is the sum of the sizes of
A1, . . . , Am, A). It only makes sense when ρ satisfies Γ at ∆.

8

Definition 5.5 In the clauses below, K stands for a kind, σ for a type, A, B for type
families, D for a kind or a type, M for a type family or a term (proof), and N for a term
(proof).

[[Γ . kind]]ρ∆ = ρc(kind),

[[Γ . ?]]ρ∆ = ρc(?),

[[Γ . x]]ρ∆ = ρc(x),

[[Γ . AB]]ρ∆ = [[Γ . A]]ρ∆(∆ . B[ρs], [[Γ . B]]ρ∆),

[[Γ . AN]]ρ∆ = [[Γ . A]]ρ∆(∆ . N [ρs]),

[[Γ . (Πx:K)D]]ρ∆ = {∆′ . M | ∆′ . M : ((Πx:K)D)[ρs], ∆′ ⊇ ∆, and ∀∆′′∀A∀C
(if ∆′′ ⊇ ∆′,∆′′ . A ∈ [[Γ . K]]ρ∆′′, and C ∈ CA,∆′′ , then

∆′′ . (MA) ∈ [[Γ, x:K . D]]ρ[x: = 〈A,C〉]∆′′)},
[[Γ . (Πx:σ)D]]ρ∆ = {∆′ . M | ∆′ . M : ((Πx:σ)D)[ρs], ∆′ ⊇ ∆, and ∀∆′′∀N

(if ∆′′ ⊇ ∆′ and ∆′′ . N ∈ [[Γ . σ]]ρ∆′′, then

∆′′ . (MN) ∈ [[Γ, x:σ . D]]ρ[x: = N]∆′′)},
[[Γ . λx:K. B]]ρ∆ = λ(∆′ . A)λC. [[Γ, x:K . B]]ρ[x: = 〈A,C〉]∆′,

a function with domain

{〈∆′ . A,C〉 | ∆′ . A:K[ρs], ∆′ ⊇ ∆, C ∈ CA,∆′},
[[Γ . λx:σ. B]]ρ∆ = λ(∆′ . N). [[Γ, x:σ . B]]ρ[x: = N]∆′,

a function with domain

{∆′ . N | ∆′ . N :σ[ρs], ∆′ ⊇ ∆}.

We emphasize again the fact that in [[Γ . x]]ρ∆, we have Γ . x:K for some kind K, i.e.,
x is a type variable.

Definition 5.6 Given any judgment Γ . M :A (where A can even be kind), given any can-
didate assignment ρ, and any context ∆ viewed as a world, we write

∆ `̀ Γ[ρ]

iff

(1a) ρ satisfies Γ at ∆, and

(2a) ∆ . x[ρ] ∈ [[Γ . Γ(x)]]ρ∆ for every x ∈ dom(Γ).

We will also write
∆ `̀ (Γ . M :A)[ρ]

iff

9

(1b) ρ satisfies Γ at ∆, and

(2b) ∆ . M [ρ] ∈ [[Γ . A]]ρ∆.

Then, the main theorem reads as follows:

Whenever Γ . M :A and ∆ `̀ Γ[ρ], then ∆ `̀ (Γ . M :A)[ρ].

This looks like a Kripke-style type soundness result.

Actually, it is not obvious that the inductive definition of [[Γ . A]]ρ∆ defines nonempty
sets and total functions, and this depends on some properties of the sets CA,∆. One of the
crucial facts is that for every valid context ∆ and type or kind A, there is some term or type
family ∆′ . M with ∆′ ⊇ ∆ such that ∆′ . M :A. Indeed ∆′ = ∆, x:A where x /∈ dom(∆)
does the job, since ∆, x:A . x:A is derivable.

We can now define the sets CA,∆. For this this, we need a complexity measure for types
and kinds.

Definition 5.7 Let A be any valid type, and K any valid kind. We define c(A) and c(K)
inductively as follows:

c(A) = 0,

c(K) =

{
1 if K = ?,
max(c(B), c(D)) + 1 if K = (Πx:B)D.

It is easily verified that if K
∗←→CC K

′, then c(K) = c(K ′). The main property of this
complexity measure is that it is invariant under substitution.

Lemma 5.8 For every type family or term M , for every kind K, c(K[M/x]) = c(K).

Proof . We proceed by induction on the structure of K. If K = ?, the lemma holds
since ?[M/x] = ?. If K = (Πx:B)D, there are two cases. If B is also a kind, by the
induction hypothesis, c(B[M/x]) = c(B), c(D[M/x]) = c(D), and the lemma holds since
K[M/x] = (Πx:B[M/x])D[M/x]. If B is a type, then B[M/x] is also a type, and since
c(B[M/x]) = 0 and by the induction hypothesis c(D[M/x]) = c(D), the lemma holds.

We also let c(kind) = 0. The sets CA,∆ are defined by induction on c(K), where ∆.A:K.
Since c(K) only depends on the equivalence class of K modulo β-conversion, this definition
is proper. The definition of the sets CA,∆ given next is a bit more general than really required
for proving strong normalization. The reason for giving it in this form is that it can be used
to extend our proof to other properties besides strong normalization. This definition also
contains all the closure conditions that will come up during the proof of the main result.

10

Definition 5.9 The family C of sets CA,∆ where A is a kind or a type family valid in the
context ∆, is defined by the properties listed below. It is called the family of saturated sets .

1. Ckind,∆ is the set of sets C, such that, each C is a nonempty set of strongly normalizing
kinds ∆′ . K, with ∆′ ⊇ ∆, and the following properties hold:

(a) ∆′ . ? ∈ C for all ∆′ ⊇ ∆.

(b) For every kind ∆′.(Πx:K)D, with ∆′ ⊇ ∆ andK a kind, if ∆′.K ∈ C and ∆′, x:K.D ∈
C, then ∆′ . (Πx:K)D ∈ C.

(c) For every kind ∆′.(Πx:σ)D, with ∆′ ⊇ ∆ and σ a type, for every C ′ ∈ C?,∆, if ∆′.σ ∈ C ′
and ∆′, x:σ . D ∈ C, then ∆′ . (Πx:σ)D ∈ C.

(d) Whenever ∆′ . K ∈ C and ∆′ ⊆ ∆′′, then ∆′′ . K ∈ C.

2. C?,∆ is the set of sets C, such that, each C is a nonempty set of strongly normalizing
types ∆′ . A, with ∆′ ⊇ ∆, and the following properties hold:

(S0) For every type ∆′ . (Πx:K)A, with ∆′ ⊇ ∆ and K a kind, for every C ′ ∈ Ckind,∆,
if ∆′ . K ∈ C ′ and ∆′, x:K . A ∈ C, then ∆′ . (Πx:K)A ∈ C, and for every type
∆′ . (Πx:σ)A, with ∆′ ⊇ ∆ and σ a type, if ∆′ . σ ∈ C and ∆′, x:σ . A ∈ C, then
∆′ . (Πx:σ)A ∈ C.

(S1) For every variable x, if ∆′ . xN1 . . . Nm: ? for some ∆′ ⊇ ∆ and N1, . . . , Nm are SN,
then ∆′ . xN1 . . . Nm ∈ C.

(S2) Whenever ∆′ . M [N/x]N1 . . . Nm: ? and ∆′ . N :B is SN for some ∆′ ⊇ ∆, if ∆′ .
M [N/x]N1 . . . Nm ∈ C, then ∆′ . (λx:B. M)NN1 . . . Nm ∈ C.

(S3) Whenever ∆′ . A ∈ C and ∆′ ⊆ ∆′′, then ∆′′ . A ∈ C.

3. When A is a type (and ∆.A: ?), CA,∆ is the set of sets C, such that, each C is a nonempty
set of strongly normalizing terms ∆′ . M such that ∆′ . M :A for some ∆′ ⊇ ∆, and
the following properties hold:

(S1) For every variable x, if ∆′ . xN1 . . . Nm:A for some ∆′ ⊇ ∆ and N1, . . . , Nm are SN,
then ∆′ . xN1 . . . Nm ∈ C.

(S2) Whenever ∆′ . M [N/x]N1 . . . Nm:A and ∆′ . N :B is SN for some ∆′ ⊇ ∆, if ∆′ .
M [N/x]N1 . . . Nm ∈ C, then ∆′ . (λx:B. M)NN1 . . . Nm ∈ C.

(S3) Whenever ∆′ . M ∈ C and ∆′ ⊆ ∆′′, then ∆′′ . M ∈ C.

4. When A is a type family such that ∆ . A: (Πx:B)D (and ∆ . (Πx:B)D: kind), CA,∆ is
the set of functions with the following properties:

11

(a) If B is a kind, then

• f ∈ CA,∆ is a function with domain

{〈∆′ . M,C〉) | ∆′ . M :B, ∆′ ⊇ ∆, C ∈ CM,∆′}

such that f(∆′ . M,C) ∈ CAM,∆′ , and

• f(∆′ . M1, C) = f(∆′ . M2, C) whenever M1
∗←→CC M2.

(b) If B is a type, then

• f ∈ CA,∆ is a function with domain {∆′ . N | ∆′ . N :B, ∆′ ⊇ ∆} such that f(∆′ . N) ∈
CAN,∆′ , and

• f(∆′ . N1) = f(∆′ . N2) whenever N1
∗←→CC N2.

Note that this definition is proper, because we can prove that the sets CM,∆′ , CAM,∆′ , and
CAN,∆′ , needed in (4) are well defined, where ∆.A: (Πx:B)D, ∆′ .M :B, and ∆′ .N :B with
∆′ ⊇ ∆. This is correct, since ∆′ .AM :D[M/x], ∆′ .AN :D[N/x], c(B) < c((Πx:B)D), and
by lemma 5.8, c(D[M/x]) = c(D) < c((Πx:B)D), and c(D[N/x]) = c(D) < c((Πx:B)D).

One can also easily prove that if A
∗←→CC A′, then CA,∆ = CA′,∆.

Given a type family A such that ∆.A:K, we can prove by induction on c(K) that each
CA,∆ is nonempty.

Lemma 5.10 Whenever A kind-checks in ∆, CA,∆ is nonempty.

Proof . We define an element canA,∆ of CA,∆ where ∆ . A:K such that A
∗←→CC A′

implies that canA,∆ = canA′,∆, by induction on c(K). We call canA,∆ the canonical member
of CA,∆.

When A = kind, note that the set cankind,∆ of strongly normalizing kinds of the form
∆′ . K for some ∆′ ⊇ ∆ is nonempty, since ∆′ . ?: kind for every ∆′, and it is obvious that
(a), (b), (c), and (d), are also satisfied.

When A = ?, note that the set can?,∆ of strongly normalizing types of the form ∆′ . N
for some ∆′ ⊇ ∆ is nonempty, since ∆, x: ? . x: ? for x /∈ dom(∆). Properties (S0), (S1),
(S2), and (S3), are also easily verified.

When A is a type, note that the set canA,∆ of strongly normalizing terms of the form
∆′ .N such that ∆′ .N :A for some ∆′ ⊇ ∆ is nonempty, since ∆, x:A.x:A for x /∈ dom(∆).

Properties (S1), (S2), and (S3), are also easily verified. That A
∗←→CC A

′ implies canA,∆ =

canA′,∆ follows from the fact that ∆′ . N :A and A
∗←→CC A′ implies that ∆′ . N :A′.

12

When ∆ . A: (Πx:B)D, we define the function canA,∆ as follows. By the induction
hypothesis, for every M such that ∆′ .M :B for some ∆′ ⊇ ∆, canM,∆′ is defined. We define
canA,∆ such that canA,∆(∆′ . M,C) = canAM,∆′ , and canA,∆(∆′ . M) = canAM,∆′ if B is a

type. If A
∗←→CC A′, then AM

∗←→CC A′M , and this implies canAM,∆′ = canA′M,∆′ by the
induction hypothesis.

Remark : It will be observed later that for proving strong normalization, we can simply
define Ckind,∆ and C?,∆ as the singleton families Ckind,∆ = {cankind,∆} and C?,∆ = {can?,∆}.

In order to show that the closure properties of the family C insure that the sets [[Γ.A]]ρ∆
are also in C, we need the following technical lemma.

Lemma 5.11 If C is the family of saturated sets, for any two ρ and ρ′ satisfying Γ at ∆, if
x[ρ]

∗←→CC x[ρ′] for every x ∈ dom(Γ), then [[Γ . A]]ρ∆ = [[Γ . A]]ρ′∆.

Proof . A fairly simple induction on the size of A.

Now, we can prove that C contains the sets [[Γ . A]]ρ∆.

Lemma 5.12 If C is the family of saturated sets, whenever ρ satisfies Γ at ∆, then
[[Γ . A]]ρ∆ ∈ CA[ρ],∆.

Proof . One proceeds by induction on the size of A, also adding to the induction hy-
pothesis the fact proved in lemma 5.11 that for any two ρ and ρ′ satisfying Γ at ∆, if
x[ρ]

∗←→CC x[ρ′] for every x ∈ dom(Γ), then [[Γ . A]]ρ∆ = [[Γ . A]]ρ′∆.

Given two valid contexts Γ = x1:A1, . . . , xm:Am and Γ′ = x1:A′1, . . . , xm:A′m, we say

that Γ
∗←→CC Γ′ iff Ai

∗←→CC A′i for all i, 1 ≤ i ≤ m.

Lemma 5.13 If C is the family of saturated sets, whenever ρ satisfies Γ and Γ′ at ∆ and
Γ

∗←→CC Γ′, then [[Γ . A]]ρ∆ = [[Γ′ . A]]ρ∆.

Proof . A fairly simple induction on the size of A.

We also have the following technical property known as “substitution property”. This
is perhaps the lemma whose proof is the most technical.

Lemma 5.14 If C is the family of saturated sets, and ρ satisfies Γ at ∆, if Γ, x:K . A:B
for some B, and Γ . D:K where K is a kind, then

[[Γ . A[D/x]]]ρ∆ = [[Γ, x:K . A]]ρ[x: = 〈D[ρ], [[Γ . D]]ρ∆〉]∆,

and if Γ, x:σ . A:B for some B, and Γ . M :σ where σ is a type, then

[[Γ . A[M/x]]]ρ∆ = [[Γ, x:σ . A]]ρ[x: = M [ρ]]∆.

13

Proof . In order to prove this lemma, it is necessary to prove the following stronger
property:

Assuming that ρ satisfies Γ, x:K,Γ′ at ∆, if Γ, x:K,Γ′ . A:B for some B, and Γ .D:K
where K is a kind, then

[[Γ,Γ′[D/x] . A[D/x]]]ρ∆ = [[Γ, x:K,Γ′ . A]]ρ[x: = 〈D[ρ], [[Γ . D]]ρ∆〉]∆,

and if ρ satisfies Γ, x:σ,Γ′ at ∆, Γ, x:σ,Γ′ .A:B for some B, and Γ .M :σ where σ is a type,
then

[[Γ,Γ′[M/x] . A[M/x]]]ρ∆ = [[Γ, x:σ,Γ′ . A]]ρ[x: = M [ρ]]∆.

The proof of this property is by induction on the size of A, and it uses lemma 5.11 and
lemma 5.13.

Using the previous lemma, we can show the following important lemma.

Lemma 5.15 If C is the family of saturated sets, whenever ρ satisfies Γ at ∆ and A
∗←→CC

A′, then [[Γ . A]]ρ∆ = [[Γ . A′]]ρ∆.

Proof . The proof is by induction on the sum of the sizes of A and A′, and it uses lemma
5.11, lemma 5.13, and lemma 5.14.

Finally, we can prove the main theorem. Recall from definition 5.6 that

∆ `̀ Γ[ρ]

means

(1) ρ satisfies Γ at ∆, and

(2) ∆ . x[ρ] ∈ [[Γ . Γ(x)]]ρ∆ for every x ∈ dom(Γ).

It is easy to verify that if ∆ ⊆ ∆′ and ∆ `̀ Γ[ρ], then ∆′ `̀ Γ[ρ].

Theorem 5.16 If C is the family of saturated sets, whenever Γ . M :A and ∆ `̀ Γ[ρ], then
∆ . M [ρ] ∈ [[Γ . A]]ρ∆.

Proof . The proof is by induction on a deduction proving that A type/kind-checks in Γ.
Lemma 5.15 is crucial in taking care of the case where the last inference is the type or kind
equality rule.

As mentioned earlier, if we define

∆ `̀ (Γ . M :A)[ρ]

iff

14

(1) ρ satisfies Γ at ∆, and

(2) ∆ . M [ρ] ∈ [[Γ . A]]ρ∆,

then, the main theorem reads as follows:

Whenever Γ . M :A and ∆ `̀ Γ[ρ], then ∆ `̀ (Γ . M :A)[ρ].

This looks like a Kripke-style type soundness result.

By letting ρs be the identity substitution and ρc assign the canonical element canΓ(x),Γ

to each x ∈ dom(Γ), can?,Γ to ?, and cankind,Γ to kind, we obtain the fact that all valid
terms of the theory of construction are SN.

Theorem 5.17 Whenever Γ . M :A, the term M is SN. This applies to kinds, types, and
terms (proofs).

An interesting consequence of theorem 5.17 is an elementary proof of the consistency of
CC. There are other elementary methods for showing that CC is consistent, for example,
the “proof-irrelevance semantics”, which consists in interpreting types as Zermelo-Fraenkel
sets, and ? as the set {0, 1} (for details, see Coquand [Coq90]). What is more interesting,
is that theorem 5.17 can be used to show in an elementary fashion that certain contexts are
consistent, as shown in Coquand [Coq90].

Definition 5.18 We say that a context ∆ is consistent iff there is some valid type σ (with
∆ . σ: ?) such that ∆ . M :σ is not provable for any (proof) term M . We also say that a
type σ is inhabited in the context ∆ iff there is some (proof) term M such that ∆ . M :σ is
derivable.

Saying that CC is consistent means that the empty context is consistent, which is
equivalent to the fact that some valid closed type is not inhabited. An elegant combinatorial
proof of the consistency of CC using theorem 5.17 is given below.

Lemma 5.19 The theory CC is consistent. Furthermore, the valid type (Πx: ?)x is not
inhabited.

Proof . First, observe that the judgment x: ? . x: ? is derivable, and so . (Πx: ?)x: ? is
derivable. We make use of the following crucial fact: If M is a valid proof in some context
∆ and M is a normal form w.r.t. β-reduction, then M is of the shape

λx1:A1. λxm:Am. yN1 . . . Nn,

15

where y is a variable possibly among x1, . . . , xm, and N1, . . . , Nn are normal forms (m,n ≥ 0),
but not necessarily of the same shape as M , since some Ni’s could be products.

The above fact is easily shown by induction on the size of M . The case where M =
M1M2 is the only interesting one. Because M is normal, M1 cannot be an abstraction.
However, it must be a proof, and by the induction hypothesis, it must be either a variable
or an application of the form xN1 . . . Nn.

Now, assume that there is a valid closed proof M such that . M : (Πx: ?)x is derivable.
By theorem 5.17 and by lemma 4.12, we can assume that M is in normal form. But then,
it is easily seen that it must be the case that we have M = λx: ?. yN1 . . . Nn and that we
have a derivation x: ? . yN1 . . . Nn:x. However, it is a simple property of CC that for every
judgment ∆ . E, FV (E) ⊆ dom(∆). This implies that y = x. However, x is now both a
proof and a type, which is impossible by lemma 4.13.

In Coquand [Coq90], it is shown using theorem 5.17 that a nontrivial context Inf is
consistent. The proof is elementary, except for the use of theorem 5.17. As we shall see
below, there cannot be any elementary direct proof of the consistency of the context Inf
(say in first-order Peano arithmetic, or even in classical higher-order arithmetic). Letting
Void = (Πx: ?)x (the “absurd” type),

Inf = A: ?, f :A→ A, R:A→ A→ ?,

h1: (∀x:A)(Rxx→ Void),

h2: (∀x, y, z:A)(Rxy → Ryz → Rxz),

h3: (∀x:A)Rx(fx).

The context Inf can be viewed as a kind of axiom of infinity. In turn, it can be
shown that the consistency of this context implies the consistency of classical higher-order
arithmetic. The proof is elementary, except for the use of theorem 5.17. Thus, by Gödel’s
second incompleteness theorem, we obtain that strong normalization in CC (theorem 5.17)
is not provable in classical higher-order arithmetic.

Theorem 5.17 and the Church-Rosser property also imply the decidability of type-
checking in CC. In fact, a stronger result holds. The main lines of a proof of the above
result were given by the first author in a communication to the “Types forum”. This proof
is quite similar to a proof by Martin Löf [ML72].

Lemma 5.20 Given any context ∆ = x1:A1, . . . , xn:An and any expression M , it is decid-
able whether ∆ ., and if so, whether ∆ . M : kind or ∆ . M :A for some A (which is given
by the algorithm).

Proof sketch. There are two kinds of problems: testing whether ∆ . or ∆ . ?: kind, and
testing whether M kind/type-checks in the context ∆. We associate a complexity measure

16

to these two problems as follows. Let c(〈x1:A1, . . . , xn:An〉) = 1+ the sum of the sizes of
each Ai (and the same value for c(〈x1:A1, . . . , xn:An〉, ?)), and c(〈x1:A1, . . . , xn:An〉,M) =
the size of M+ the sum of the sizes of each Ai. We proceed by induction on complexity
measures. There are several cases.

1. The problem is ∆ .? or ∆ . ?: kind? and ∆ = ∅. The answer is yes.

2. The problem is x1:A1, . . . , xn:An . or x1:A1, . . . , xn:An . ?: kind and n > 0. Check
whether An is well formed in x1:A1, . . . , xn−1:An−1. If the algorithm returns B, check that
either the normal form of B is ?, or that B is a kind.

3. M is a variable x. Check whether An is well formed in x1:A1, . . . , xn−1:An−1. If the
algorithm returns B, check that the normal form of B is ? or that B is a kind, and whether
x is one of the xi.

4. M is of the form (Πx:A)B. Check whether A is well formed in x1:A1, . . . , xn:An
and whether B is well formed in x1:A1, . . . , xn:An, x:A.

5. M is of the form λx:A.N . Check whether A is well formed in x1:A1, . . . , xn:An and
whether N is well formed in x1:A1, . . . , xn:An, x:A. If the answer to the second problem is
yes and the algorithm returns P , then x1:A1, . . . , xn:An . M : (Πx:A)P .

6. M is of the form M1M2. This case requires the fact that every term has a unique
normal form. First, we check whether both M1 and M2 are well-formed in x1:A1, . . . , xn:An.
If so, we check whether the normal form of the type/kind of M1 is of the form (Πx:A)P and
the normal form of the type/kind of M2 is P .

A closer look at definition 5.5, especially the definitions of [[Γ . (Πx:K)D]]ρ∆ and [[Γ .
(Πx:σ)D]]ρ∆, suggests the definition of certain dependent products. Let ∆ be a context and
(Πx:K)D be a kind or a type such that ∆ . (Πx:K)D:κ, κ ∈ {?, kind}, with K a kind.

Definition 5.21 Let A = (A∆′)∆′⊇∆ be any ∆′-indexed family of candidates such that
A∆′ ∈ CK,∆′ , and let F be any function with domain {〈∆′.A,C〉 |∆′.A:K, ∆′ ⊇ ∆, and C ∈
CA,∆′}, and such that F (∆′ .A,C) ∈ CD[A/x],∆′ . The dependent product

∏
(A, F ; (Πx:K)D)

is defined as follows:∏
(A, F ; (Πx:K)D) = {∆′ . M | ∆′ . M : (Πx:K)D, ∆′ ⊇ ∆, and

∀∆′′ ⊇ ∆′, ∀∆′′ . A ∈ A∆′′ , ∀C ∈ CA,∆′′ ,

∆′′ . (MA) ∈ F (∆′′ . A,C)}.

Let ∆ be a context and (Πx:σ)D be a kind or a type such that ∆ . (Πx:σ)D:κ,
κ ∈ {?, kind}, with σ a type.

17

Definition 5.22 Let A = (A∆′)∆′⊇∆ be any ∆′-indexed family of candidates such that
A∆′ ∈ Cσ,∆′ , and let F be any function with domain {∆′ . N | ∆′ . N :σ, ∆′ ⊇ ∆}, and
such that F (∆′ . N) ∈ CD[N/x],∆′ . The dependent product

∏
(A, F ; (Πx:σ)D) is defined as

follows: ∏
(A, F ; (Πx:σ)D) = {∆′ . M | ∆′ . M : (Πx:σ)D, ∆′ ⊇ ∆, and

∀∆′′ ⊇ ∆′, ∀∆′′ . N ∈ A∆′′ ,

∆′′ . (MN) ∈ F (∆′′ . N)}.

Then, we can express [[Γ . (Πx:K)D]]ρ∆ and [[Γ . (Πx:σ)D]]ρ∆ as dependent products:

[[Γ . (Πx:K)D]]ρ∆ =
∏

(([[Γ . K]]ρ∆′)∆′⊇∆, F ; ((Πx:K)D)[ρ]),

where F is the function such that

〈∆′ . A,C〉 7→ [[Γ, x:K . D]]ρ[x: = 〈A,C〉]∆′,

with ∆′ . A:K[ρ] and C ∈ CA,∆′ , and

[[Γ . (Πx:σ)D]]ρ∆ =
∏

(([[Γ . σ]]ρ∆′)∆′⊇∆, F ; ((Πx:σ)D)[ρ]),

where F is the function such that

∆′ . N 7→ [[Γ, x:σ . D]]ρ[x: = N]∆′,

with ∆′ . N :σ[ρ].

The definition of
∏

(A, F ; (Πx:σ)D) is inspired by the definition of the dependent prod-
uct

∏
(A,F) given by Coquand and Huet on page 107 of their paper [CH88]. The difference

is that Coquand and Huet give a definition of
∏

(A,F) for untyped λ-terms. They have no
definition analogous to our dependent product

∏
(A, F ; (Πx:K)D) where K is a kind. Also,

Coquand and Huet’s main theorem on page 109 of their paper [CH88], can be considered as
a version of our theorem 5.16 for “stripped terms” (that is, valid terms of CC from which
type information has been erased). However, theorem 5.16 is a stronger result, since it yields
theorem 5.17 as a corollary, whereas Coquand and Huet’s theorem only shows that the type
erasure Erase(M) of any valid term of CC is SN. As far as we know, there does not seem
to be any way to infer from the fact that Erase(M) is SN that M itself must be SN. This
is in contrast with the situation in λ∀ (and system Fω).

We now examine the special case of LF , and note that strong normalization holds as a
corollary, but does not make any use of families of candidates. Only the canonical canA,∆
are needed.

18

6 Strong Normalization in LF

Since LF can be viewed as a fragment of CC obtained by disallowing products and abstrac-
tions over type variables, it follows immediately from theorem 5.17 that all valid terms of
LF are strongly normalizing (under β-reduction). However, it turns out that the powerful
artillery of the CA,∆ is unnecessary to prove this result. In LF , we can only have products of
the form (Πx:σ)D, and abstractions of the form λx:σ.B, when σ is a type (but not a kind).
Thus, we have a simpler definition of [[Γ . A]]ρ∆. Again, A is either a type family or a kind
valid in Γ, and the definition only makes sense when ρ satisfies Γ at ∆.

Definition 6.1 In the clauses below, K stands for a kind, σ for a type, A, B for type
families, D for a kind or a type, M for a type family or a term (proof), and N for a term
(proof).

[[Γ . kind]]ρ∆ = ρc(kind),

[[Γ . ?]]ρ∆ = ρc(?),

[[Γ . x]]ρ∆ = ρc(x),

[[Γ . AB]]ρ∆ = [[Γ . A]]ρ∆(∆ . B[ρ], [[Γ . B]]ρ∆),

[[Γ . AN]]ρ∆ = [[Γ . A]]ρ∆(∆ . N [ρ]),

[[Γ . (Πx:σ)D]]ρ∆ = {∆′ . M | ∆′ . M : ((Πx:σ)D)[ρs], ∆′ ⊇ ∆, and ∀∆′′∀N
(if ∆′′ ⊇ ∆′ and ∆′′ . N ∈ [[Γ . σ]]ρ∆′′, then

∆′′ . (MN) ∈ [[Γ, x:σ . D]]ρ[x: = N]∆′′)},
[[Γ . λx:σ. B]]ρ∆ = λ(∆′ . N). [[Γ, x:σ . B]]ρ[x: = N]∆′,

a function with domain

{∆′ . N | ∆′ . N :σ[ρ], ∆′ ⊇ ∆}.

Remarkably, the candidates, that is, the sets C ∈ CA,∆, do not appear anywhere in these
definitions. The only place where they play a role is in [[Γ . x]]ρ∆ and [[Γ . ?]]ρ∆. However,
this role is very passive. In fact, all we need to establish strong normalization is to assign
the canonical sets and functions canA,∆. More precisely, ρc(kind) is the set can?,∆ of SN
kinds, ρc(?) is the set can?,∆ of SN types, and ρc(x) = canΓ(x)[ρ],∆. Only the substitution
component ρs of ρ needs to be arbitrary for the proof to go through, the other component ρc
remaining constant (and determined by the canonical elements). Thus, the proof of strong
normalization for LF uses little more than is needed for the proof of strong normalization in
the simply-typed λ-calculus, namely the existence of the canonical sets and functions, which
itself depends on the existence of the measure c(K), where K a kind. This is not surprising
in view of another proof by Harper, Honsell, and Plotkin [HHP89], in which a mapping from
LF into the simply-typed λ-calculus is used. It should be noted that their proof applies to β
and η reduction, but we do not know presently how to extend our approach to η-reduction.

19

7 Other Proofs

This section lists other proofs of normalization or strong normalization that we are aware
of, in chronological order. We apologize if we are unaware of other proofs not mentioned
here. To us, the history of this proof seems sufficiently interesting to be told, especially in a
preliminary report, even if it is incomplete. It has been reported that some of these proofs
contain errors. We are indeed aware of some errors, and we will briefly mention what they
are. We apologize for any (unintentional) omissions or misinterpretations.

1. Coquand, January 1985 [Coq85]. This is Thierry Coquand’s thesis. A proof of normaliza-
tion is given, as well as some indications on how to extend it to strong normalization.
There is a problem with the definition of the sets CA,∆ when A is a type family of kind
(Πx:B)D. The members of CA,∆ are indeed functions, but only of one argument, the
candidate argument. A similar problem arises in the definition of [[Γ . λx:K. B]]ρ∆,
where the argument ∆′ . A is omitted. As a consequence, [[Γ . A]]ρ∆ is not always
well-defined.

2. Jutting, December 1986 [vBJ86]. This is a note attempting to correct Coquand’s proof of
normalization given in his thesis. The introduction mentions discussions with Coquand,
leading to this note. As we see it, the definition of [[Γ . A]]ρ∆ is indeed repaired
correctly. However, ∆ is dropped from the CA,∆, which becomes a family of sets of
closed terms. To insure that each C ∈ CA is nonempty (A a closed type family or
closed kind), Jutting adds a countably infinite set of constants. Unfortunately, this
causes a problem. Indeed, the language has now been enriched, new types can be
formed, and some new closed types may not be inhabited.

3. Coquand, 1987 [Coq87]. This is a note in which Coquand fixes the problem with the addi-
tion of new constants, and gives a proof of strong normalization for the first time. The
proof uses infinite contexts, and basically Henkin’s technique for adding new witnesses,
so that all closed types are inhabited.

4. Pottinger, February 1987 [Pot87]. This paper refers to Coquand 1987, and gives a proof
of strong normalization apparently inspired by Coquand’s proof. Infinite contexts are
also used, as well as an idea due to Seldin. Although we need to examine it more
closely, the proof seems correct, but rather difficult to follow.

5. Seldin, November 1987 [Sel87]. This is a report, “Mathesis: the Mathematical Founda-
tions of Ulysses”, in which a proof of strong normalization for a variant of the theory
of constructions is given. We have not yet had the time to examine this proof care-
fully, but it appears that it also uses infinite contexts. It appears to be more along the
line of Martin Löf’s proof of normalization for Fω, defined as a Prawitz-style natural
deduction system.

20

6. Zhaohui Luo, 1989 [Luo90]. There is apparently a proof of strong normalization for an
extension of CC with universes, given in Luo’s thesis. We do not have this document
yet.

7. Geuvers and Nederhof, June 1989 [GN89]. The authors present what they call a modu-
lar proof of strong normalization, by reducing strong normalization in CC to strong
normalization in Girard’s Fω. This is accomplished by defining a mapping from CC
to Fω, such that reduction of terms is preserved. Strong normalization for the terms
of Fω is itself reduced to strong normalization for the erased (raw) terms of Fω, which
is proved directly.

8. Berardi, 1989 [Ber89]. Berardi gives a proof (apparently due to Terlouw) in an appendix
of his thesis.

Acknowledgment: We wish to thank Val Breazu-Tannen and Sunil Shende for many help-
ful comments.

References

[Ber89] S. Berardi. ? PhD thesis, Universita di Torino, 1989.

[CH88] Thierry Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76, 2/3:95–120, March 1988.

[Coq85] Thierry Coquand. Une Théorie Des Constructions. PhD thesis, Université Paris
VII, January 1985. Thèse de 3eme Cycle.

[Coq87] Thierry Coquand. Metamathematical investigations of a calculus of constructions.
Technical report, INRIA, Domaine de Voluceau, Rocquencourt, 1987. Privately
circulated manuscript.

[Coq90] Thierry Coquand. Metamathematical investigations of a calculus of constructions.
In P. Odifreddi, editor, Logic And Computer Science, pages 91–122. Academic
Press, London, New York, May 1990.

[Gal90] J. Gallier. On Girard’s “candidats de reductibilité”. In P. Odifreddi, editor, Logic
And Computer Science, pages 123–203. Academic Press, London, New York, May
1990.

[Gir72] Jean Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, Paris, 1972.
Thèse de Doctorat d’Etat.

21

[GN89] H. Geuvers and M.-J. Neherhof. A modular proof of strong normalization for the
calculus of constructions. Journal of Functional Programming, page pp. 38, June
1989. Submitted for publication.

[HHP89] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM,
1989. Submitted for publication.

[Luo90] Z. Luo. ECC, an extended calculus of constructions (check title?). PhD thesis,
University of Edinburgh, Edinburgh, Scotland, 1990? Forthcoming thesis.

[ML72] P. Martin Löf. An intuitionistic theory of types. Technical report, University of
Stokholm, Stockholm, Sweden, 1972. Privately circulated manuscript.

[MM87] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. In
Second Symposium on Logic in Computer Science, pages 303–314, Ihaca, New York,
June 22-25 1987. IEEE.

[Pot87] G. Pottinger. Strong normalization for terms of the theory of constructions. Tech-
nical report, Odyssey Research Associates, Ithaca, New York, February 1987.

[Ran90] A. Ranta. Constructing possible worlds. Theoria, 1990. To appear.

[Sel87] J. Seldin. Mathesis: The mathematical foundations of ulysses. Technical Report
RADC-TR-87-223, Odyssey Research Associates, Ithaca, New York, November
1987. Interim Report.

[vBJ86] L. S. van Benthem Jutting. Normalization in coquand’s system. Technical report,
?, December 1986. Private Communication.

22

