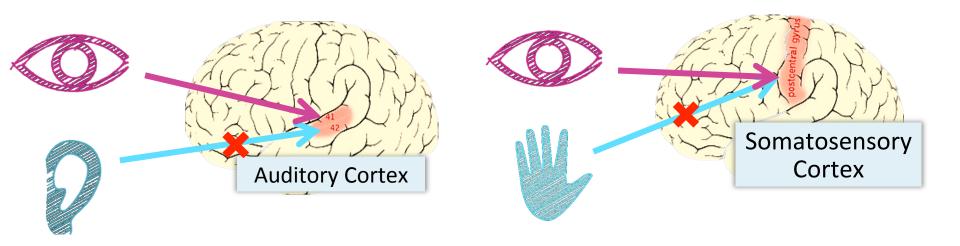

Neural Networks

Neural Function

- Brain function (thought) occurs as the result of the firing of **neurons**
- Neurons connect to each other through synapses, which propagate action potential (electrical impulses) by releasing neurotransmitters
 - Synapses can be excitatory (potential-increasing) or inhibitory (potential-decreasing), and have varying activation thresholds
 - Learning occurs as a result of the synapses' plasticicity:
 They exhibit long-term changes in connection strength
- There are about 10¹¹ neurons and about 10¹⁴ synapses in the human brain!

Biology of a Neuron



Brain Structure

- Different areas of the brain have different functions
 - Some areas seem to have the same function in all humans (e.g., Broca's region for motor speech); the overall layout is generally consistent
 - Some areas are more plastic, and vary in their function;
 also, the lower-level structure and function vary greatly
- We don't know how different functions are "assigned" or acquired
 - Partly the result of the physical layout / connection to inputs (sensors) and outputs (effectors)
 - Partly the result of experience (learning)
- We really don't understand how this neural structure leads to what we perceive as "consciousness" or "thought"

The "One Learning Algorithm" Hypothesis

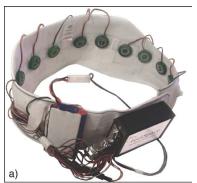
Auditory cortex learns to see

[Roe et al., 1992]

Somatosensory cortex learns to see

[Metin & Frost, 1989]

Sensor Representations in the Brain



Seeing with your tongue

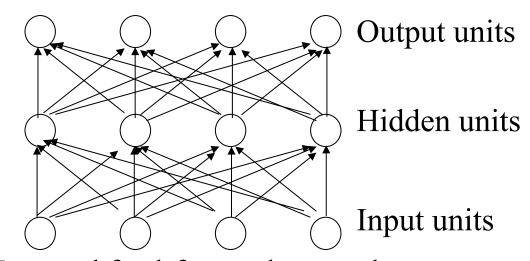
Human echolocation (sonar)

Haptic belt: Direction sense

Implanting a 3rd eye

Comparison of computing power

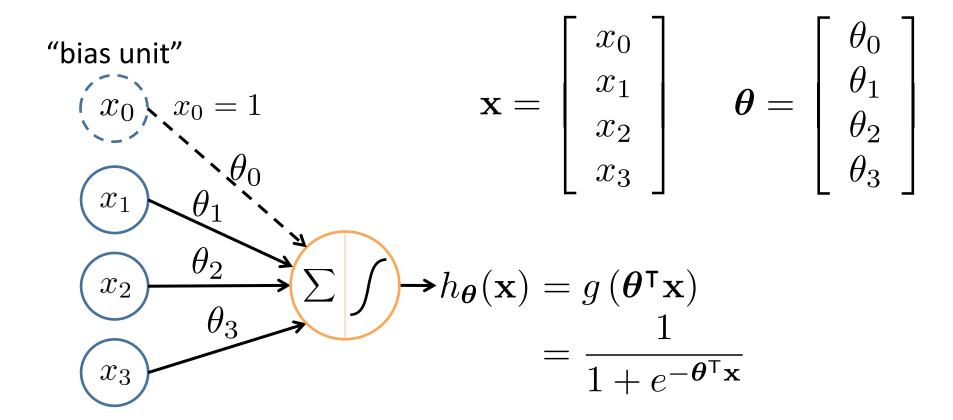
INFORMATION CIRCA 2012	Computer	Human Brain
Computation Units	10-core Xeon: 10 ⁹ Gates	10 ¹¹ Neurons
Storage Units	10 ⁹ bits RAM, 10 ¹² bits disk	10 ¹¹ neurons, 10 ¹⁴ synapses
Cycle time	10 ⁻⁹ sec	10 ⁻³ sec
Bandwidth	10 ⁹ bits/sec	10 ¹⁴ bits/sec


- Computers are way faster than neurons...
- But there are a lot more neurons than we can reasonably model in modern digital computers, and they all fire in parallel
- Neural networks are designed to be massively parallel
- The brain is effectively a billion times faster

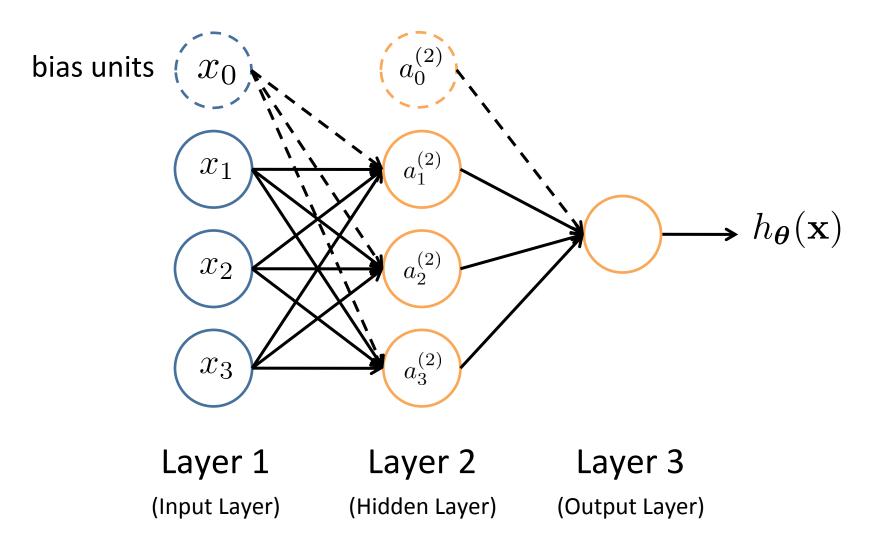
Neural Networks

- Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

8


Neural networks

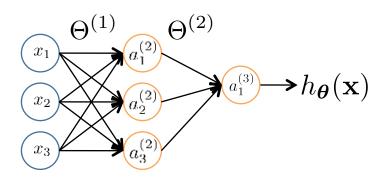
Layered feed-forward network


- Neural networks are made up of nodes or units, connected by links
- Each link has an associated weight and activation level
- Each node has an input function (typically summing over weighted inputs), an activation function, and an output

Neuron Model: Logistic Unit

Sigmoid (logistic) activation function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

Neural Network



Slide by Andrew Ng

Feed-Forward Process

- Input layer units are set by some exterior function (think of these as sensors), which causes their output links to be activated at the specified level
- Working forward through the network, the input function of each unit is applied to compute the input value
 - Usually this is just the weighted sum of the activation on the links feeding into this node
- The activation function transforms this input function into a final value
 - Typically this is a nonlinear function, often a sigmoid function corresponding to the "threshold" of that node

Neural Network

 $a_i^{(j)} =$ "activation" of unit i in layer j

 $\Theta^{(j)} =$ weight matrix controlling function mapping from layer j to layer j+1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

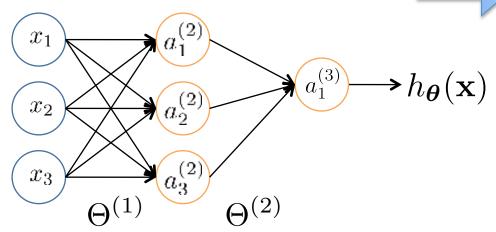
$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

If network has s_j units in layer j and s_{j+1} units in layer j+1, then $\Theta^{(j)}$ has dimension $s_{j+1}\times(s_j+1)$.

$$\Theta^{(1)} \in \mathbb{R}^{3 \times 4} \qquad \Theta^{(2)} \in \mathbb{R}^{1 \times 4}$$

Slide by Andrew Ng

Vectorization


$$a_{1}^{(2)} = g\left(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}\right) = g\left(z_{1}^{(2)}\right)$$

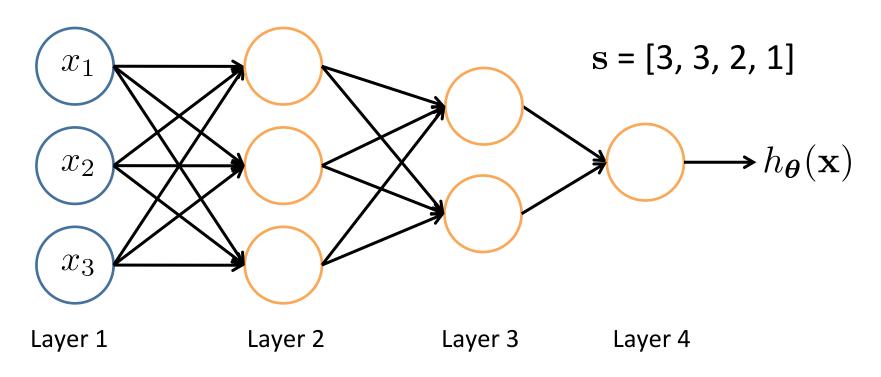
$$a_{2}^{(2)} = g\left(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}\right) = g\left(z_{2}^{(2)}\right)$$

$$a_{3}^{(2)} = g\left(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}\right) = g\left(z_{3}^{(2)}\right)$$

$$h_{\Theta}(\mathbf{x}) = g\left(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)}\right) = g\left(z_{1}^{(3)}\right)$$

Feed-Forward Steps:

$$\mathbf{z}^{(2)} = \Theta^{(1)}\mathbf{x}$$


$$\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$$

$$Add \ a_0^{(2)} = 1$$

$$\mathbf{z}^{(3)} = \Theta^{(2)}\mathbf{a}^{(2)}$$

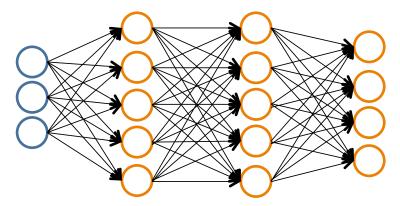
$$h_{\Theta}(\mathbf{x}) = \mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$$

Other Network Architectures

L denotes the number of layers

- $\mathbf{s} \in \mathbb{N}^{+L}$ contains the numbers of nodes at each layer
 - Not counting bias units
 - Typically, $s_0=d$ (# input features) and $s_{L-1}\!\!=\!\!K$ (# classes)

Multiple Output Units: One-vs-Rest



Pedestrian

Car

Motorcycle

Truck

$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^K$$

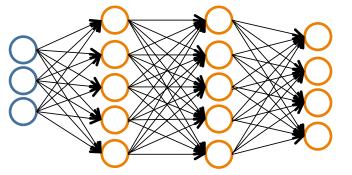
We want:

$$h_{\Theta}(\mathbf{x}) pprox \left[egin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right]$$

when pedestrian

$$h_{\Theta}(\mathbf{x}) \approx \left[\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right]$$

$$h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$


when motorcycle

$$h_{\Theta}(\mathbf{x}) pprox \left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight]$$

when truck

17 Slide by Andrew Ng

Multiple Output Units: One-vs-Rest

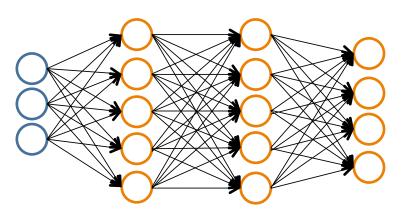
$$h_{\Theta}(\mathbf{x}) \in \mathbb{R}^K$$

We want:

$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

when pedestrian

$$h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix} \qquad h_{\Theta}(\mathbf{x}) pprox egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix}$$


$$h_{\Theta}(\mathbf{x}) \approx \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

when truck

- Given $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- Must convert labels to 1-of-K representation

– e.g.,
$$\mathbf{y}_i = \left[egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}
ight]$$
 when motorcycle, $\mathbf{y}_i = \left[egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}
ight]$ when car, etc.

Neural Network Classification

Given:

$$\begin{aligned} &\{(\mathbf{x}_1,y_1),\ (\mathbf{x}_2,y_2),\ ...,\ (\mathbf{x}_n,y_n)\}\\ &\mathbf{s} \in \mathbb{N}^{+L} \text{ contains \# nodes at each layer}\\ &-s_{\theta} = d \text{ (\# features)} \end{aligned}$$

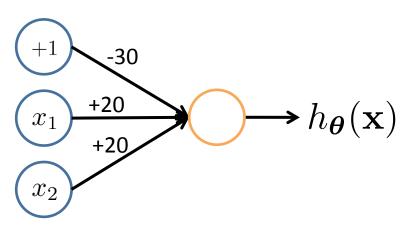
Binary classification

$$y = 0 \text{ or } 1$$

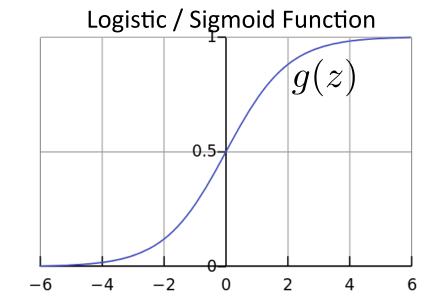
1 output unit
$$(s_{L-1}=1)$$

Multi-class classification (K classes)

$$\mathbf{y} \in \mathbb{R}^K$$
 e.g. $\left[egin{smallmatrix} 1 \ 0 \ 0 \ 0 \end{smallmatrix} \right]$, $\left[egin{smallmatrix} 0 \ 1 \ 0 \ 0 \end{smallmatrix} \right]$, $\left[egin{smallmatrix} 0 \ 0 \ 1 \ 0 \end{smallmatrix} \right]$ pedestrian car motorcycle truck


$$K$$
 output units $(s_{L-1} = K)$

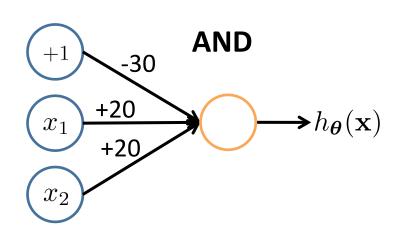
Understanding Representations

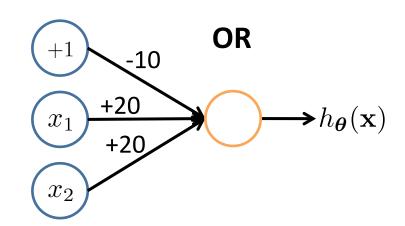

Representing Boolean Functions

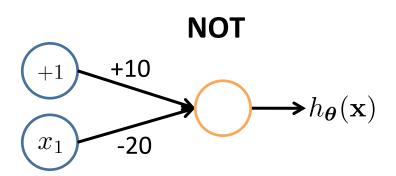
Simple example: AND

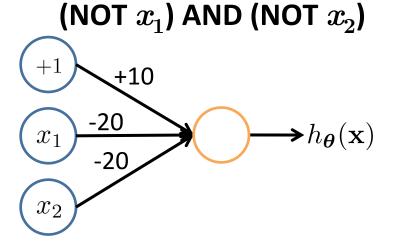
$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

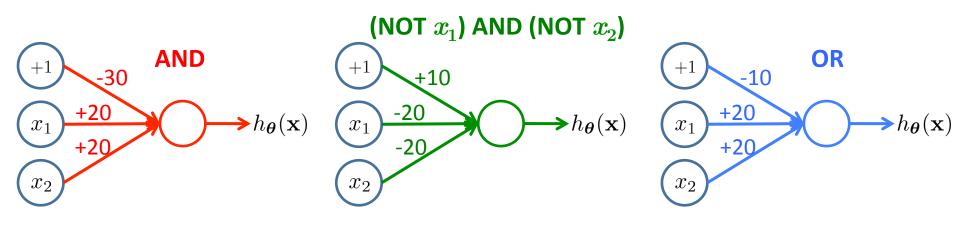


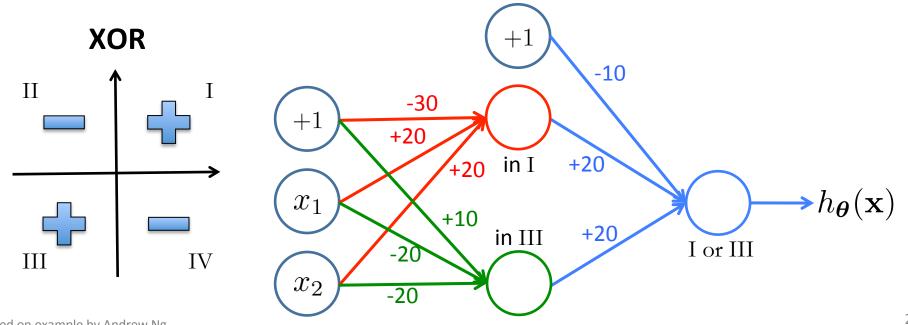


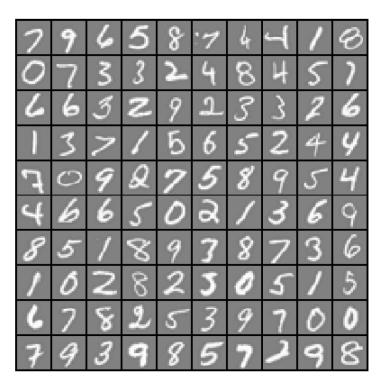


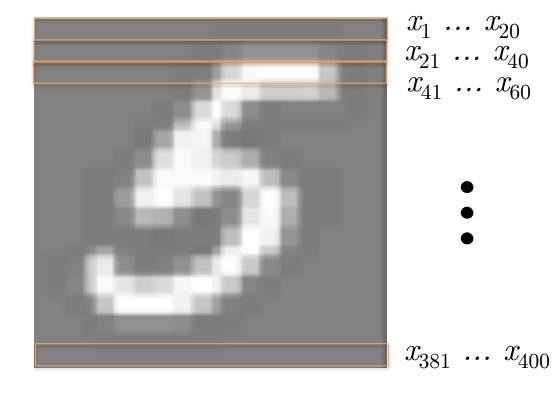

x_{1}	x_2	$\mathrm{h}_{\Theta}(\mathbf{x})$
0	0	<i>g</i> (-30) ≈ 0
0	1	g(-10) ≈ 0
1	0	<i>g</i> (-10) ≈ 0
1	1	<i>g</i> (10) ≈ 1

Representing Boolean Functions

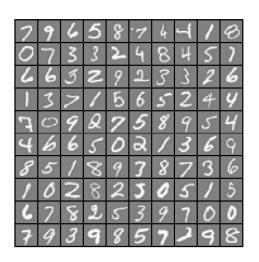


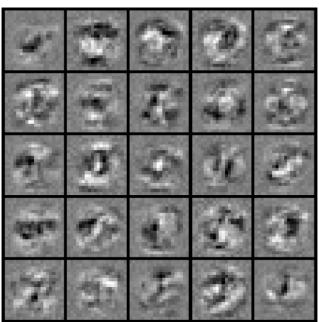


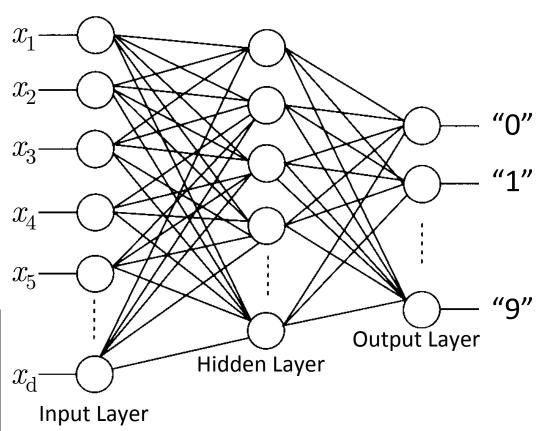



Combining Representations to Create Non-Linear Functions

Layering Representations






$$20 \times 20$$
 pixel images $d = 400$ 10 classes

Each image is "unrolled" into a vector x of pixel intensities

Layering Representations

Visualization of Hidden Layer

LeNet 5 Demonstration: http://yann.lecun.com/exdb/lenet/

Neural Network Learning

Perceptron Learning Rule

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha(y - h(\mathbf{x}))\mathbf{x}$$

Equivalent to the intuitive rules:

- If output is correct, don't change the weights
- If output is low (h(x) = 0, y = 1), increment weights for all the inputs which are 1
- If output is high $(h(\mathbf{x}) = 1, y = 0)$, decrement weights for all inputs which are 1

Perceptron Convergence Theorem:

 If there is a set of weights that is consistent with the training data (i.e., the data is linearly separable), the perceptron learning algorithm will converge [Minicksy & Papert, 1969]

Batch Perceptron

```
Given training data \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^n
Let \boldsymbol{\theta} \leftarrow [0, 0, \dots, 0]
Repeat:
           Let \Delta \leftarrow [0, 0, \dots, 0]
           for i = 1 \dots n, do
                    if y^{(i)}\boldsymbol{x}^{(i)}\boldsymbol{\theta} \leq 0
                                                                    // prediction for i<sup>th</sup> instance is incorrect
                             \Delta \leftarrow \Delta + y^{(i)} x^{(i)}
           \Delta \leftarrow \Delta/n
                                                                       // compute average update
           \theta \leftarrow \theta + \alpha \Delta
Until \|\mathbf{\Delta}\|_2 < \epsilon
```

- Simplest case: $\alpha = 1$ and don't normalize, yields the fixed increment perceptron
- Each increment of outer loop is called an epoch

Based on slide by Alan Fern

Learning in NN: Backpropagation

- Similar to the perceptron learning algorithm, we cycle through our examples
 - If the output of the network is correct, no changes are made
 - If there is an error, weights are adjusted to reduce the error

 The trick is to assess the blame for the error and divide it among the contributing weights

Cost Function

Logistic Regression:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_{\theta}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\theta}(\mathbf{x}_i))] + \frac{\lambda}{2n} \sum_{j=1}^{d} \theta_j^2$$

Neural Network:

$$h_{\Theta} \in \mathbb{R}^{K} \qquad (h_{\Theta}(\mathbf{x}))_{i} = i^{th} \text{output}$$

$$J(\Theta) = -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log (h_{\Theta}(\mathbf{x}_{i}))_{k} + (1 - y_{ik}) \log \left(1 - (h_{\Theta}(\mathbf{x}_{i}))_{k} \right) \right]$$

$$+ \frac{\lambda}{2n} \sum_{i=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{i=1}^{s_{l}} \left(\Theta_{ji}^{(l)} \right)^{2}$$

$$k^{th} \text{ class: true, predicted not } k^{th} \text{ class: true, predicted}$$

32 Based on slide by Andrew Ng

not k^{th} class: true, predicted

Optimizing the Neural Network

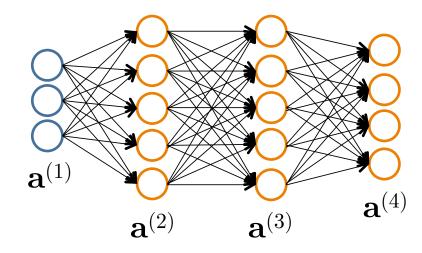
$$J(\Theta) = -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log(h_{\Theta}(\mathbf{x}_{i}))_{k} + (1 - y_{ik}) \log(1 - (h_{\Theta}(\mathbf{x}_{i}))_{k}) \right] + \frac{\lambda}{2n} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_{l}} (\Theta_{ji}^{(l)})^{2}$$

Solve via: $\min_{\Theta} J(\Theta)$

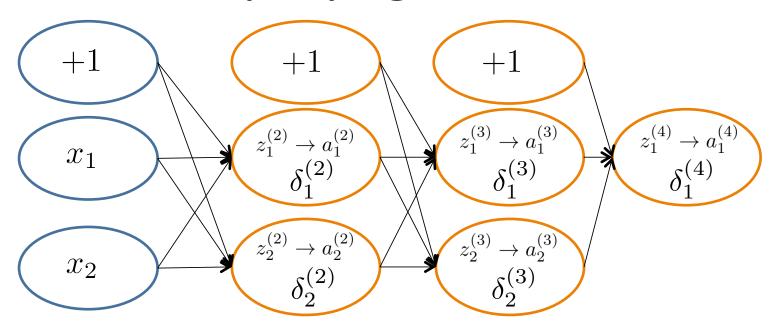
 $J(\Theta)$ is not convex, so GD on a neural net yields a local optimum

But, tends to work well in practice

Need code to compute:

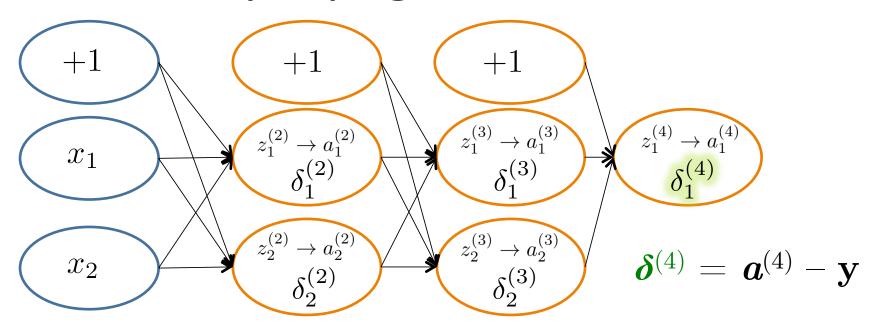

- $J(\Theta)$
- $ullet rac{\partial}{\partial \Theta_{i\,j}^{(l)}} J(\Theta)$

Forward Propagation

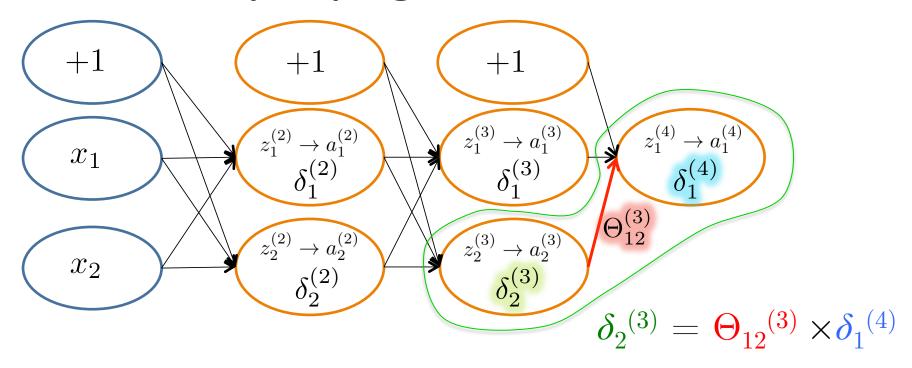

• Given one labeled training instance (\mathbf{x}, y) :

Forward Propagation

- $a^{(1)} = x$
- $\mathbf{z}^{(2)} = \Theta^{(1)} \mathbf{a}^{(1)}$
- $\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$ [add $\mathbf{a}_0^{(2)}$]
- $\mathbf{z}^{(3)} = \mathbf{\Theta}^{(2)} \mathbf{a}^{(2)}$
- $\mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$ [add $\mathbf{a}_0^{(3)}$]
- $\mathbf{z}^{(4)} = \mathbf{\Theta}^{(3)} \mathbf{a}^{(3)}$
- $\mathbf{a}^{(4)} = \mathbf{h}_{\Theta}(\mathbf{x}) = g(\mathbf{z}^{(4)})$

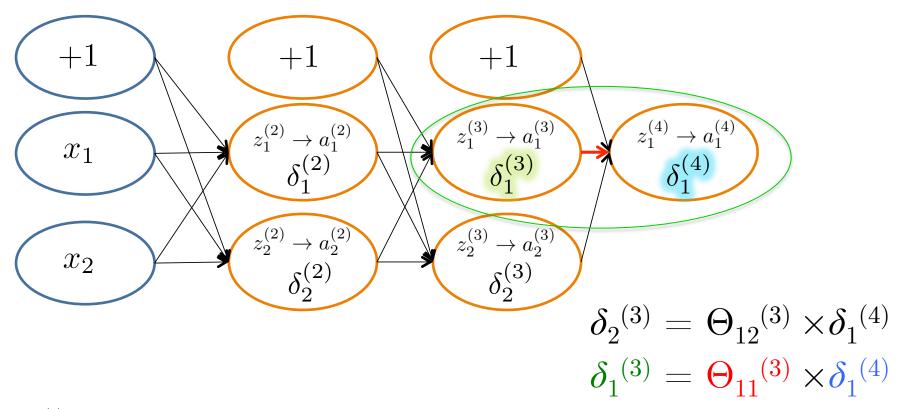


- Each hidden node j is "responsible" for some fraction of the error $\delta_j^{(l)}$ in each of the output nodes to which it connects
- $\delta_j^{(l)}$ is divided according to the strength of the connection between hidden node and the output node
- Then, the "blame" is propagated back to provide the error values for the hidden layer


$$\delta_j^{(l)}=$$
 "error" of node j in layer l Formally, $\delta_j^{(l)}=rac{\partial}{\partial z_j^{(l)}}\mathrm{cost}(\mathbf{x}_i)$

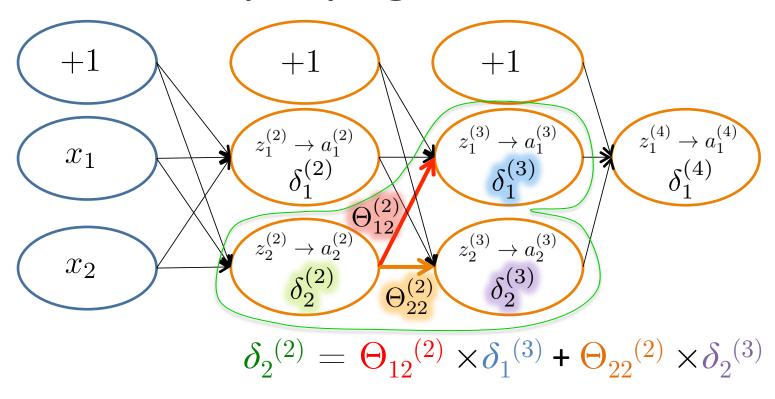
where $cost(\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\Theta}(\mathbf{x}_i))$

$$\delta_j^{(l)}=$$
 "error" of node j in layer l Formally, $\delta_j^{(l)}=rac{\partial}{\partial z_j^{(l)}}\mathrm{cost}(\mathbf{x}_i)$


where $cost(\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\Theta}(\mathbf{x}_i))$

$$\delta_j^{(l)}=$$
 "error" of node j in layer l Formally, $\delta_j^{(l)}=rac{\partial}{\partial z_j^{(l)}}\mathrm{cost}(\mathbf{x}_i)$

where $cost(\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\Theta}(\mathbf{x}_i))$


Backpropagation Intuition

$$\delta_j^{(l)}=$$
 "error" of node j in layer l Formally, $\delta_j^{(l)}=rac{\partial}{\partial z_j^{(l)}}\mathrm{cost}(\mathbf{x}_i)$

where $cost(\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\Theta}(\mathbf{x}_i))$

Backpropagation Intuition

$$\delta_j^{(l)}=$$
 "error" of node j in layer l Formally, $\delta_j^{(l)}=rac{\partial}{\partial z_j^{(l)}}\mathrm{cost}(\mathbf{x}_i)$

where $cost(\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\Theta}(\mathbf{x}_i))$

Backpropagation: Gradient Computation

Let $\delta_j^{\,(l)}=$ "error" of node j in layer l

(#layers L = 4)

Element-wise product .*

Backpropagation

$$\bullet \quad \boldsymbol{\delta}^{(4)} = \, \boldsymbol{a}^{(4)} - \mathbf{y}$$

$$oldsymbol{\delta}^{(3)} = (\Theta^{(3)})^{\mathsf{T}} oldsymbol{\delta}^{(4)} \cdot {}^* g'(\mathbf{z}^{(3)})$$

$$oldsymbol{\delta}^{(2)} = (\Theta^{(2)})^{\mathsf{T}} oldsymbol{\delta}^{(3)} .^{oldsymbol{*}} g'(\mathbf{z}^{(2)})$$

• (No $\boldsymbol{\delta}^{(1)}$)

$$g'(\mathbf{z}^{(3)}) = \mathbf{a}^{(3)} \cdot * (1-\mathbf{a}^{(3)})$$

$$g'(\mathbf{z}^{(2)}) = \mathbf{a}^{(2)} \cdot * (1 - \mathbf{a}^{(2)})$$

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = a_j^{(l)} \delta_i^{(l+1)}$$

(ignoring λ ; if $\lambda = 0$)

41

 $oldsymbol{\delta}^{(4)}$

 $\delta^{(3)}$

Backpropagation

```
Set \Delta_{ij}^{(l)} = 0 \quad \forall l, i, j (Used to accumulate gradient)

For each training instance (\mathbf{x}_i, y_i):

Set \mathbf{a}^{(1)} = \mathbf{x}_i
Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation

Compute \boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y_i
Compute errors \{\boldsymbol{\delta}^{(L-1)}, \dots, \boldsymbol{\delta}^{(2)}\}
Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}

Compute avg regularized gradient D_{ij}^{(l)} = \begin{cases} \frac{1}{n} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} & \text{if } j \neq 0 \\ \frac{1}{n} \Delta_{ij}^{(l)} & \text{otherwise} \end{cases}
```

 $m{D}^{(l)}$ is the matrix of partial derivatives of $J(\Theta)$

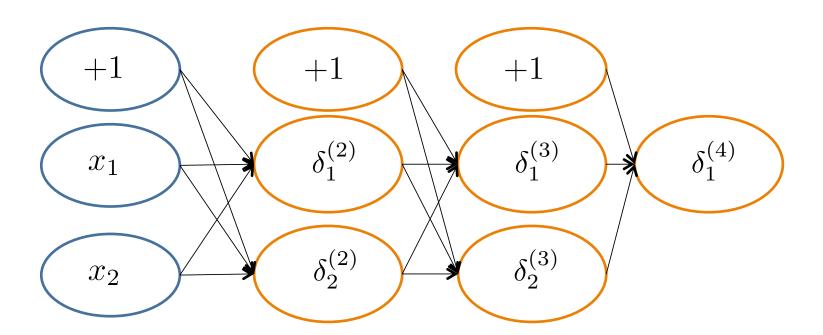
Note: Can vectorize
$$\Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$$
 as $\mathbf{\Delta}^{(l)} = \mathbf{\Delta}^{(l)} + \boldsymbol{\delta}^{(l+1)} \mathbf{a}^{(l)^\mathsf{T}}$

Training a Neural Network via Gradient Descent with Backprop

```
Given: training set \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}
Initialize all \Theta^{(l)} randomly (NOT to 0!)
Loop // each iteration is called an epoch
      Set \Delta_{i,i}^{(l)} = 0 \quad \forall l, i, j
                                                                                     (Used to accumulate gradient)
      For each training instance (\mathbf{x}_i, y_i):
           Set \mathbf{a}^{(1)} = \mathbf{x}_i
           Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation
           Compute \boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y_i
           Compute errors \{\boldsymbol{\delta}^{(L-1)},\ldots,\boldsymbol{\delta}^{(2)}\}
           Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_i^{(l)} \delta_i^{(l+1)}
      Compute avg regularized gradient D_{ij}^{(l)} = \begin{cases} \frac{1}{n} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} & \text{if } j \neq 0 \\ \frac{1}{n} \Delta_{ij}^{(l)} & \text{otherwise} \end{cases}
      Update weights via gradient step \Theta_{ij}^{(l)} = \Theta_{ij}^{(l)} - \alpha D_{ij}^{(l)}
Until weights converge or max #epochs is reached
```

Backprop Issues

"Backprop is the cockroach of machine learning. It's ugly, and annoying, but you just can't get rid of it."
-Geoff Hinton

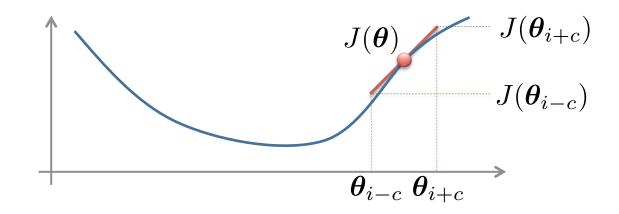

Problems:

- black box
- local minima

Implementation Details

Random Initialization

- Important to randomize initial weight matrices
- Can't have uniform initial weights, as in logistic regression
 - Otherwise, all updates will be identical & the net won't learn



Implementation Details

- For convenience, compress all parameters into $oldsymbol{ heta}$
 - "unroll" $\Theta^{(1)}, \; \Theta^{(2)}, \ldots, \; \Theta^{(L-1)}$ into one long vector $\boldsymbol{\theta}$
 - E.g., if $\Theta^{(1)}$ is 10 x 10, then the first 100 entries of ${\bf \theta}$ contain the value in $\Theta^{(1)}$
 - Use the reshape command to recover the original matrices
 - E.g., if $\Theta^{(1)}$ is 10 x 10, then theta1 = reshape(theta[0:100], (10, 10))
- Each step, check to make sure that $J(\mathbf{\theta})$ decreases
- Implement a gradient-checking procedure to ensure that the gradient is correct...

Gradient Checking

Idea: estimate gradient numerically to verify implementation, then turn off gradient checking

$$\frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta}) \approx \frac{J(\boldsymbol{\theta}_{i+c}) - J(\boldsymbol{\theta}_{i-c})}{2c}$$

$$oldsymbol{ heta}_{i+c} = [heta_1, \ heta_2, \ ..., \ heta_{i-1}, \ oldsymbol{ heta_i}{oldsymbol{ heta_i}}{oldsymbol{ heta}}_i{oldsymbol{ heta}}, \ heta_{i+1}, \ ...]$$

$$c \approx 1\text{E-}4$$

Change ONLY the i^{th} entry in θ , increasing (or decreasing) it by c

Gradient Checking

$$\boldsymbol{\theta} \in \mathbb{R}^m$$
 $\boldsymbol{\theta}$ is an "unrolled" version of $\Theta^{(1)}, \Theta^{(2)}, \dots$
 $\boldsymbol{\theta} = [\theta_1, \theta_2, \theta_3, \dots, \theta_m]$

Put in vector called gradApprox

$$\frac{\partial}{\partial \theta_{1}} J(\boldsymbol{\theta}) \approx \frac{J([\theta_{1} + c, \theta_{2}, \theta_{3}, \dots, \theta_{m}]) - J([\theta_{1} - c, \theta_{2}, \theta_{3}, \dots, \theta_{m}])}{2c}$$

$$\frac{\partial}{\partial \theta_{2}} J(\boldsymbol{\theta}) \approx \frac{J([\theta_{1}, \theta_{2} + c, \theta_{3}, \dots, \theta_{m}]) - J([\theta_{1}, \theta_{2} - c, \theta_{3}, \dots, \theta_{m}])}{2c}$$

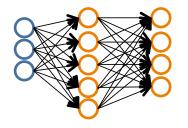
$$\vdots$$

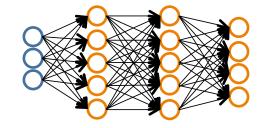
$$\frac{\partial}{\partial \theta_{m}} J(\boldsymbol{\theta}) \approx \frac{J([\theta_{1}, \theta_{2}, \theta_{3}, \dots, \theta_{m} + c]) - J([\theta_{1}, \theta_{2}, \theta_{3}, \dots, \theta_{m} - c])}{2c}$$

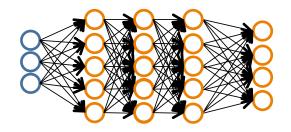
Check that the approximate numerical gradient matches the entries in the ${\cal D}$ matrices

Implementation Steps

- Implement backprop to compute DVec
 - DVec is the unrolled $\{D^{(1)},\ D^{(2)},\ \dots\}$ matrices
- Implement numerical gradient checking to compute gradApprox
- Make sure DVec has similar values to gradApprox
- Turn off gradient checking. Using backprop code for learning.


Important: Be sure to disable your gradient checking code before training your classifier.


• If you run the numerical gradient computation on every iteration of gradient descent, your code will be <u>very</u> slow


Putting It All Together

Training a Neural Network

Pick a network architecture (connectivity pattern between nodes)

- # input units = # of features in dataset
- # output units = # classes

Reasonable default: 1 hidden layer

 or if >1 hidden layer, have same # hidden units in every layer (usually the more the better)

Training a Neural Network

- 1. Randomly initialize weights
- 2. Implement forward propagation to get $h_{\Theta}(\mathbf{x}_i)$ for any instance \mathbf{x}_i
- 3. Implement code to compute cost function $J(\Theta)$
- 4. Implement backprop to compute partial derivatives $\frac{\partial}{\partial \Theta_{ik}^{(l)}} J(\Theta)$
- 5. Use gradient checking to compare $\frac{\partial}{\partial \Theta_{jk}^{(l)}} J(\Theta)$ computed using backpropagation vs. the numerical gradient estimate.
 - Then, disable gradient checking code
- 6. Use gradient descent with backprop to fit the network