: Neural Networks
L/J.((ar

|

Neural Function

* Brain function (thought) occurs as the result of
the firing of neurons

* Neurons connect to each other through synapses,
which propagate action potential (electrical
impulses) by releasing neurotransmitters

— Synapses can be excitatory (potential-increasing) or
inhibitory (potential-decreasing), and have varying
activation thresholds

— Learning occurs as a result of the synapses’ plasticicity:
They exhibit long-term changes in connection strength

* There are about 10! neurons and about 1014
synapses in the human brain!

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Biology of a Neuron

Axonal arborization

Dendrite

Cell bedy or Soma

Brain Structure

e Different areas of the brain have different functions

— Some areas seem to have the same function in all humans
(e.g., Broca’s region for motor speech); the overall layout
is generally consistent

— Some areas are more plastic, and vary in their function;
also, the lower-level structure and function vary greatly

. }{Ve don’t I,<’now how different functions are
assigned or acquired

— Partly the result of the physical layout / connection to
inputs (sensors) and outputs (effectors)

— Partly the result of experience (learning)

* We really don’t understand how this neural
structure leads to wbat we perceive as
consciousness or thought

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

The “One Learning Algorithm” Hypothesis

Cortex

Auditory cortex learns to see Somatosensory cortex

[Roe et al., 1992] learns to see
[Metin & Frost, 1989]

Based on slide by Andrew Ng

Sensor Representations in the Brain

Haptic belt: Direction sense Implanting a 3" eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

Slide by Andrew Ng

Comparison of computing power

INFORMATION CIRCA 2012

Computer

Human Brain

Computation Units

10-core Xeon: 10° Gates

1011 Neurons

Storage Units

10° bits RAM, 1012 bits disk

10! neurons, 10% synapses

Cycle time

1072 sec

103 sec

Bandwidth

10° bits/sec

1014 bits/sec

 Computers are way faster than neurons...

* But there are a lot more neurons than we can reasonably
model in modern digital computers, and they all fire in

parallel

* Neural networks are designed to be massively parallel
* The brain is effectively a billion times faster

Neural Networks

* Origins: Algorithms that try to mimic the brain.

* Very widely used in 80s and early 90s; popularity
diminished in late 90s.

* Recent resurgence: State-of-the-art technique for
many applications

e Artificial neural networks are not nearly as complex
or intricate as the actual brain structure

Based on slide by Andrew Ng

Neural networks

Output units

Hidden units

O Input units

Layered feed-forward network

* Neural networks are made up of nodes or units,
connected by links

* Each link has an associated weight and activation level

* Each node has an input function (typically summing over
weighted inputs), an activation function, and an output

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Neuron Model: Logistic Unit

“bias unit” L0
VASEREN L1
[o\ xo = X = 0 =
_/ \\\ x2
8o I3
01 -~

Based on slide by Andrew Ng

Slide by Andrew Ng

Neural Network

Layer 1

(Input Layer)

Layer 2 Layer 3
(Hidden Layer) (Output Layer)

12

Feed-Forward Process

* Input layer units are set by some exterior function
(think of these as sensors), which causes their output
links to be activated at the specified level

 Working forward through the network, the input
function of each unit is applied to compute the input

value
— Usually this is just the weighted sum of the activation on
the links feeding into this node

* The activation function transforms this input
function into a final value

— Typically this is a nonlinear function, often a sigmoid
function corresponding to the “threshold” of that node

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Neural Network

{2 aV) = “activation” of unit ¢ in layer j
P B ags)%hg(X)

OU) = weight matrix controlling function
mapping from layer j to layer 7 +1

a\? = g(8\)xo + O\Va1 + 0 zs + 01 3)
a§2) = g((-')%)a:o + @()£C + @()x + @(1) 3)
a:(f) = g(@(l)x + @()x —|—@()2 —I—('-)%):B)
ho(@) = a® = g(02a® + 6P + 64?1+ 0@2)

If network has s; units in layer j and s, ; units in layer j+1,
then ©0) has dimension Si.q X (8 +1)

@(1) c R3X4 @(2) c R1X4

Slide by Andrew Ng

Vectorization

()=o)
(0520 + O%) 1 + O 2y + Of)a5) = g (=47
af? = g (O)wo + 05 w1 + O w2 + 05) = g (=57
(62 + 6 + 620 + 6Za) = g ()
I:l> Feed-Forward Steps:
z(2) — (M
a(2) — g(Z(Z))

Add ol =1
,(3) — 924

he(x) = al®) = g(2!V)

15

Based on slide by Andrew Ng

Other Network Architectures

©
\/ > o
@/\

Layer 1 Layer 2 Layer 3 Layer 4

L denotes the number of layers

L
s € N7 contains the numbers of nodes at each layer

— Not counting bias units
— Typically, s, = d (# input features) and s; ,—K (# classes)

Multiple Output Units: One-vs-Rest

OO

0
when pedestrian

Slide by Andrew Ng

>
2905

o O = O

when car

> 40“
ARK RN P

‘ N '
L
‘é.vo‘r« 9
NOZENF

s
2
o O

K
< he (X) c R
F 0] F 0]
0 0
h@(X) ~ 1 h@(X) =~ O
L O - L 1 -
when motorcycle when truck

Multiple Output Units: One-vs-Rest

he (X) c R
We want:
[1] [0 | [0] [0]
0 1 0 0
heo(x) ~ 0 ho(x) ~ 0 he(x) ~ 1 he(x) ~ 0
0 | 0 | 0 | 1]
when pedestrian when car when motorcycle when truck

* Given {(X17y1)7 (X27y2)7 "t (men)}
 Must convert labels to 1-of- K representation

0 0

0 1
— e.g.,, Yi=| { | when motorcycle, y: = 0 when car, etc.
0 0

Based on slide by Andrew Ng - =

Neural Network Classification

Given:

{(x1,01)5 (Xos¥a)s ooy (Xpp¥Un)

L
s € NT " contains # nodes at each layer
— S, = d (# features)

Binary classification Multi-class classification (K classes)
A

0 0 0 1
pedestrian car motorcycle truck

K output units (s;_,= K)

1 output unit (s;_,= 1)

Slide by Andrew Ng

Understanding Representations

Representing Boolean Functions

Logistic / Sig_moid Function
Simple example: AND

x1,x2 € {0,1} g(Z)

y = x1 AND x4 o5

—>h9(X) -6 -4 =2 0 2 4

x X hg(x)
he(x) = ¢(-30 + 20z, + 20z,) - S g(_?f’o) S
0 1 g(-10) =0
1 0 ¢(-10) = 0
1 1 g(10) = 1

Based on slide and example by Andrew Ng

Representing Boolean Functions

—)hg (X)

Combining Representations to Create
Non-Linear Functions

(NOT z,) AND (NOT)

e +10

I11 v

Based on example by Andrew Ng

Layering Representations
D Ty Ty

79658 74d /2 o
0733248H4S5) Ty o T
LbeFZ2923 32 6
| 2>/b 6 524Y
RS|? 87255954 °
4466502/ 3 €649 °
F&5 /9787360 °
L0258 23 &5
C727%¥21s32700
1939959229 €8 | T3g1 -+ Ty
20 x 20 pixel images
d=400 10 classes

Each image is “unrolled” into a vector x of pixel intensities

24

Layering Representations

Dl ANNwO
YN ON oo Mee
NWUN DO o s
QWQMHM%%W*
Ve NGoNw s L
S U N I s T S T T
RevsoLena~d

A
3
%)
-
7
6
/
2
%
J

Visualization of
Hidden Layer

119”

25

LeNet 5 Demonstration: http://yann.lecun.com/exdb/lenet/

26

Neural Network Learning

Perceptron Learning Rule

0 <0+ aly— h(x))x

Equivalent to the intuitive rules:
— If output is correct, don’t change the weights
— If output is low (A(x) =0, y = 1), increment
weights for all the inputs which are 1
— If output is high (h(x) =1, y = 0), decrement
weights for all inputs which are 1

Perceptron Convergence Theorem:

* If there is a set of weights that is consistent with the training
data (i.e., the data is linearly separable), the perceptron
learning algorithm will converge [Minicksy & Papert, 1969]

Batch Perceptron

n

Given training data {(m(i), y(i))}

Let 6 < [0,0,...,0] =
Repeat:
Let A « [0,0,...,0]
fore=1...n,do
if y(i)w(i)ﬁ <0 // prediction for it instance is incorrect
A — A+ yWgl
A — A/n // compute average update
0 «— 0+ aA
Until ||All2 < €

 Simplest case: a =1 and don’t normalize, yields the fixed
increment perceptron

* Each increment of outer loop is called an epoch

Learning in NN: Backpropagation

e Similar to the perceptron learning algorithm, we cycle
through our examples
— |If the output of the network is correct, no changes are made
— If there is an error, weights are adjusted to reduce the error

e The trick is to assess the blame for the error and divide
it among the contributing weights

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Cost Function

Logistic Regression:

J(0) = —% Z[yz- log he(x;i) + (1 — yi) log (1 — he(x;))] + Qi 295

Neural Network:

he € RE (he(x)); = ithoutput
J(O)=— % Z Zyzk log (he(x:))r + (1 — y;1) log (1 — (h@(xz))kﬂ
i=1 k=1

A (1) 2 Kt class: true i
- : , predicted
* 2n Sj S: Sj (@ji) not £ class: , predicted

=1 i=1 j=1

Based on slide by Andrew Ng 32

Optimizing the Neural Network

J(©) =— % {Z Zyik log(he(x:))r + (1 — yir) 10%(1 - (hG)(Xi»k)}
i=1 k=1
\ L—1S81—1 s 5
D DD DS (QE-?)

=1 i=1 j=1

J(©) is not convex, so GD on a

neural net yields a local optimum

Solve via: min J(O) . .
© But, tends to work well in practice

Need code to compute:
* J(O)

52O

ased on slide by Andrew Ng

Forward Propagation

* Given one labeled training instance (x, ¥):

Forward Propagation

e all) =x

e 7(2) = 1)q1) a)
« a® = ¢g(z®) [add a,?]

. 23— O@a®)

¢ aB®) = ¢(z®) [add a,(3)]

e 7(4) = OB)q03)

» alh = he(x) = g(z)

Based on slide by Andrew Ng

Backpropagation Intuition

 Each hidden node jis “responsible” for some
fraction of the error ¢\ in each of the output nodes
to which it connects

» 0V is divided according to the strength of the

connection between hidden node and the output
node

* Then, the “blame” is propagated back to provide the
error values for the hidden layer

Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Backpropagation Intuition

\ SIS 23 5 o 2B ¥
AN 5 5
A\ Yo £ o)

5(2) 553)

o) = “error” of node jin layer]
m_ 9
Formally, ;7 =
J azj(l)

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

Based on slide by Andrew Ng

cost(x;)

36

Backpropagation Intuition

NN
\ z§2) — a§2) 75%3) — ag?’) ZYL) — a,§4)
NN 5 5(9

o) = “error” of node jin layer]
m_ 9
Formally, ;7 =
J azj(l)

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

Based on slide by Andrew Ng

cost(x;)

37

Backpropagation Intuition

HOBIRAE

o) = “error” of n%dejin layer |
Formally, (55.” - —

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

Based on slide by Andrew Ng 38

Backpropagation Intuition

(4)

4
z§)—>a,1

0.0 = “error” of node jin layer |

J
Formally, (55.” — 9

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

Based on slide by Andrew Ng 39

Backpropagation Intuition
DN NP
>

o : @ @(2
22
5,2 = 0,2 x5, +0,,2) x4,

o) = “error” of node jin layer]
Formally, 5" = icost(x-)
77 5,2(_1) v
J

where cost(x;) = y; log he(x;) + (1 — y;) log(1 — he(x;))

40

Based on slide by Andrew Ng

Backpropagation: Gradient Computation

Let 60 = “error” of node jin layer |

'v
=N
: S
Element-wise <
product .*
02

Backpropagation %
o S(4) . (4)
o) = a¥) —y g’ (z®) = a® * (1-a®)

. 50 — (OB)TsW *[g7 (2
. 5 — (OB ¥ g7 (7
* (NooW)

(#layers L = 4)

0 (1) c(1+1)
J(©)=a;"), s
(1) j i (ignoring X; if A = 0)
3@1.3-

Based on slide by Andrew Ng 41

Backpropagation

Set A;lj) =0 Vi, (Used to accumulate gradient)
For each training instance (x;,y;):

Set all) = x;

Compute {a®, ... all)} via forward propagation

Compute §&) = all) —y,

Compute errors {6(Z—1 ... §3)})

Compute gradients AE? = AE? + a§l)5(l+1)

AY 120 if j#0

Compute ave regularized gradient D(l-) =
P 58 5 “J { A(otherwise

3|*—‘3|*—‘

D0 is the matrix of partial derivatives of J(©)
Note: Can vectorize A{) = Al + a6+ as AD = AW 4 §(HDOT

Based on slide by Andrew Ng

Training a Neural Network via Gradient
Descent with Backprop

Given: training set {(x1,%1),- -, (Xn,¥Yn)}
Initialize all ©) randomly (NOT to 0!)
Loop // each iteration is called an epoch
Set Az(-;) =0 Viz,j (Used to accumulate gradient)
For each training instance (x;,y;):
Set all) = x;
Compute {a®, ... all)} via forward propagation
Compute (L) = all) —y,
Compute errors {§(L—D ... §32))
Compute gradients AE? — A,g-) + a§l>5§l+1>
IAD a0 ifj#0

I .
4 A(. : otherwise
n 1]

uonegedoudyoeg

Compute avg regularized gradient DY = {

L)

Update weights via gradient step @7(;;-) = @1(;;.) — ozDg-)
Until weights converge or max #epochs is reached

Based on slide by Andrew Ng

Backprop Issues

“Backprop is the cockroach of machine learning. It’s
ugly, and annoying, but you just can’t get rid of it.”
-Geoff Hinton

Problems:
e black box
 |ocal minima

Implementation Details

Random Initialization

* Important to randomize initial weight matrices

 Can’t have uniform initial weights, as in logistic regression
— Otherwise, all updates will be identical & the net won’t learn

D, G, (G

COMCC
GO

4
(NG

Implementation Details

 For convenience, compress all parameters into 0
— “unroll” ®1), ©@) .. O into one long vector 0

e E.g.,if ®M js 10 x 10, then the first 100 entries of @ contain the
value in ©1)

— Use the reshape command to recover the original matrices
e E.g,if ©) is10x 10, then
thetal = reshape(theta[0:100], (10, 10))

* Each step, check to make sure that J(0) decreases

* Implement a gradient-checking procedure to ensure that
the gradient is correct...

Gradient Checking

Idea: estimate gradient numerically to verify
implementation, then turn off gradient checking

J(0) ~ ¢ ~ 1E-4

Change ONLY the 4t

try in 0, increasing
0. =100, ...0. ., 0+c 0., .. en
ive = 1601 0, b s oo (or decreasing) it by ¢

Based on slide by Andrew Ng

Bas

Gradient Checking

0 c R™ 0 is an “unrolled” version of 1), ©32) .
0 = [917927937 s 79m]

0

Put in vector called gradApprox

J([Ol —|—C,(92,(93,...,(9m]) — J([91 —C,Hz,@g,...,@m])

2c

J([(gl,(gg —|-C,(93,...,9m]) — J([91,92 —6,93,...,9m])

2c

J([91,92,93,...,9m+c]) — J([91,92,6’3,...,9m —C])

2c

Check that the approximate numerical gradient matches the
entries in the D matrices

ed on slide by Andrew Ng

Implementation Steps

* Implement backprop to compute Dvec
— DVec is the unrolled {DM), D2 ...} matrices

* Implement numerical gradient checking to compute gradapprox
 Make sure Dvec has similar values to gradapprox
* Turn off gradient checking. Using backprop code for learning.

Important: Be sure to disable your gradient checking code before
training your classifier.

* If you run the numerical gradient computation on every
iteration of gradient descent, your code will be very slow

Based on slide by Andrew Ng

Putting It All Together

Training a Neural Network

Pick a network architecture (connectivity pattern between nodes)

* #input units = # of features in dataset
e # output units = # classes

Reasonable default: 1 hidden layer

e orif >1 hidden layer, have same # hidden units in
every layer (usually the more the better)

Based on slide by Andrew Ng

Training a Neural Network

1. Randomly initialize weights

2. Implement forward propagation to get h(x,)
for any instance x,

3. Implement code to compute cost function J(©)
4. Implement backprop to compute partial derivatives

5. Use gradient checking to compare ﬁJ(@)
computed using backpropagation vs. the numerical
gradient estimate.

— Then, disable gradient checking code

6. Use gradient descent with backprop to fit the network

Based on slide by Andrew Ng

