Large Scale Learning
Data hypergrowth: an example

- Reuters-21578: about 10K docs (ModApte)
 \textit{Bekkerman et al, SIGIR 2001}

- RCV1: about 807K docs
 \textit{Bekkerman & Scholz, CIKM 2008}

- LinkedIn job title data: about 100M docs
 \textit{Bekkerman & Gavish, KDD 2011}
New age of big data

• The world has gone mobile
 – 5 billion cellphones produce daily data

• Social networks have gone online
 – Twitter produces 200M tweets a day

• Crowdsourcing is the reality
 – Labeling of 100,000+ data instances is doable
 • Within a week 😊
Size matters

- One thousand data instances
- One million data instances
- One billion data instances
- One trillion data instances

Those are not different numbers, those are different mindsets 😊
One million data instances

• Currently, the most active zone
• Can be crowdsourced
• Can be processed by a quadratic algorithm
 – Once parallelized
• 1M data collection cannot be too diverse
 – But can be too homogenous
• Preprocessing / data probing is crucial
Big dataset cannot be too sparse

• 1M data instances cannot belong to 1M classes
 – Simply because it’s not practical to have 1M classes 😊

• Here’s a statistical experiment, in text domain:
 – 1M documents
 – Each document is 100 words long
 – Randomly sampled from a unigram language model
 • No stopwords
 – 245M pairs have word overlap of 10% or more

• Real-world datasets are denser than random
One billion data instances

- Web-scale
- Guaranteed to contain data in different formats
 - ASCII text, pictures, javascript code, PDF documents...
- Guaranteed to contain (near) duplicates
- Likely to be badly preprocessed 😊
- Storage is an issue
One trillion data instances

- Beyond the reach of the modern technology
- Peer-to-peer paradigm is (arguably) the only way to process the data
- Data privacy / inconsistency / skewness issues
 - Can’t be kept in one location
 - Is intrinsically hard to sample
Not enough (clean) training data?

• Use existing labels as a *guidance* rather than a directive
 – In a semi-supervised clustering framework
• Or label more data! 😊
 – With a little help from the crowd
Crowdsourcing labeled data

• Crowdsourcing is a tough business 😊
 – People are not machines
• Any worker who can game the system will game the system
• Validation framework + qualification tests are a must
• Labeling a lot of data can be fairly expensive
Let’s talk about how we can learn with datasets this large...
Stochastic Gradient Descent
Consider Learning with Numerous Data

• Logistic regression objective:

\[
J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_\theta(x_i) + (1 - y_i) \log (1 - h_\theta(x_i))] \\
\]

\[\text{cost}_\theta(x_i, y_i)\]

• Fit via gradient descent:

\[
\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_\theta(x_i) - y_i) x_{ij}
\]

• What is the computational complexity in terms of \(n\)?
Gradient Descent

Batch Gradient Descent

Initialize θ
Repeat {
\[
\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_\theta(x_i) - y_i) x_{ij} \quad \text{for } j = 0 \ldots d
\]
}

Stochastic Gradient Descent

Initialize θ
Randomly shuffle dataset
Repeat {
(Typically 1 – 10x)
For $i = 1 \ldots n$, do
\[
\theta_j \leftarrow \theta_j - \alpha (h_\theta(x_i) - y_i) x_{ij} \quad \text{for } j = 0 \ldots d
\]
}
Batch vs Stochastic GD

- Learning rate α is typically held constant
- Can slowly decrease α over time to force θ to converge:

\[\alpha = \frac{\text{constant}_1}{\text{iterationNumber} + \text{constant}_2} \]
Graph- and Data-Parallelism
Map-Reduce

Training set

Computer 1
Computer 2
Computer 3
Computer 4

Combine results

Based on slide by Andrew Ng
Multi-Core Machines

Training set

Core 1

Core 2

Core 3

Core 4

Combine results

Based on slide by Andrew Ng
Map-Reduce for Batch GD

Split dataset up into chunks (e.g., with $n = 400$) to compute

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_\theta(x_i) - y_i) x_{ij}$$

- Training set
 - $(x_1, y_1), \ldots, (x_{100}, y_{100})$
 - $(x_{101}, y_{101}), \ldots, (x_{200}, y_{200})$
 - $(x_{201}, y_{201}), \ldots, (x_{300}, y_{300})$
 - $(x_{301}, y_{301}), \ldots, (x_{400}, y_{400})$

 - $\text{temp}1 = \sum_{i=1}^{100} (h_\theta(x_i) - y_i) x_{ij}$
 - $\text{temp}2 = \sum_{i=101}^{200} (h_\theta(x_i) - y_i) x_{ij}$
 - $\text{temp}3 = \sum_{i=201}^{300} (h_\theta(x_i) - y_i) x_{ij}$
 - $\text{temp}4 = \sum_{i=301}^{400} (h_\theta(x_i) - y_i) x_{ij}$

Based on example by Andrew Ng
Map-Reduce for Batch GD

Split dataset up into chunks (e.g., with $n = 400$) to compute

$$
\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i) x_{ij}
$$

Based on example by Andrew Ng
Parallelizing k-means
Parallelizing k-means
Parallelizing k-means
k-means on MapReduce

- Mappers read data portions and centroids
- Mappers assign data instances to clusters
- Mappers compute new local centroids and local cluster sizes
- Reducers aggregate local centroids (weighted by local cluster sizes) into new global centroids
- Reducers write the new centroids
Discussion on MapReduce

• MapReduce is not designed for iterative processing
 – Mappers read the same data again and again

• MapReduce looks too low-level to some people
 – Data analysts are traditionally SQL folks 😊

• MapReduce looks too high-level to others
 – A lot of MapReduce logic is hard to adapt
 • Example: grouping documents by words
GraphLab

- Open-source parallel machine learning
- Developed at Carnegie Mellon Univ.
- Available at www.graphlab.org
For more information...

• Cambridge Univ. Press
• Released in 2011
• 21 chapters
• Covering
 – Platforms
 – Algorithms
 – Learning setups
 – Applications

Slide by R. Bekkerman, M. Bilenko, J. Langford
Learning Multiple Tasks via Knowledge Transfer
Transfer Learning

Idea: Transfer information from one or more *source tasks* to improve learning on a *target task*.

- Plenty of training data for each source task
Transfer Learning

Idea: Transfer information from one or more source tasks to improve learning on a target task

- Insufficient training data on the target task
Benefits of Transfer in Learning

- **Primary goal:** learning the target task \(T_{new} \) “better” after first learning related source tasks \(T_1, \ldots, T_N \)

“Better” means some combination of:

- More rapid learning
- Improved initial performance
- Higher achievable performance

Figures adapted from (DARPA/IPTO, 2005)

Secondary goal: creating chunks of reusable knowledge
Idea: Learn all task models simultaneously, sharing knowledge (Caruana 1997; Zhang et al. 2008; Kumar & Daumé 2012)