1. Stochastic gradient descent, when used with the hinge loss, leads to which update rule?
 Options:
 • Perceptron
 • Widrow’s Adaline
 • Winnow
 • AdaGrad
 Ans: Perceptron

2. Let’s assume that we are using the standard Averaged Perceptron algorithm for training and testing (prediction). The training data consists of m examples. Let’s further assume that it makes k mistakes on the training data. Now, how many weight vectors do we require to predict the label for a test instance?
 Options:
 • $O(k)$
 • $O(1)$
 • $O(k^2)$
 • $O(m)$
 • Not enough information
 Ans: $O(k)$

3. Which of the following properties is true about the (original) Perceptron algorithm?
 Options:
 • If the data given to the Perceptron is linearly separable the Perceptron will stop making mistakes after some number of examples.
 • The Perceptron always converges to the best linear separator for a given dataset.
 • The convergence criteria for Perceptron depends on the initial value of the weight vector.
 • If the dataset is not linearly separable, the Perceptron algorithm learns the linear separator with least misclassifications.
 Ans: If the data given to the Perceptron is linearly separable the Perceptron will stop making mistakes after some number of examples.
4. In a mistake-driven algorithm, if we make a mistake on example x_i with label y_i, we update the weights w so that we now do not make a mistake on this example if we see it again.

Options:

- False
- True

Ans: False

5. Let the learned weights after the perceptron algorithm finishes training be weight vector w. Suppose that the bias term is 0. If we scale w by a positive constant factor (multiply each element of w with c), then the new set of weights

Options:

- produces the exact same classification for all the data points
- may output different classification results for some data points

Ans: produces the exact same classification for all the data points

6. Let the learned weights after the perceptron algorithm finishes training be weight vector w. Suppose that the bias term is 0. If we translate w by a positive constant factor c (add c to each element of w), then the new set of weights

Options:

- may output different classification results for some data points
- produces the exact same classification for all the data points

Ans: may output different classification results for some data points