CIS 519/419 Applied Machine Learning

www.seas.upenn.edu/~cis519

Dan Roth

danroth@seas.upenn.edu

http://www.cis.upenn.edu/~danroth/

461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton for CIS519/419 at Penn, or from other authors who have made their ML slides available.

CIS419/519 Spring '18

Exams

- 1. Overall:
- Mean: 62 (18.6 13.2 18.7 10.5)
- Std Dev: 13.8 (2.5 6.7 4.4 5.8)
- Max: 94, Min: 27.5
- 2. CIS 519 (91 students):
- Mean: 61.48 (18.4 12.8 18.5 10.75)
- Std Dev: 14.7 (2.6 7.1 4.5 5.9)
- Max: 94 Min: 27.5
- **3**. CIS 419 (47 students):
- Mean: 63.6 (19 14 19 10)
- Std Dev: 12 (2.2 5.9 4.1 5.8)
- Max: 93, Min: 41

- Solutions are available.
- Midterms will be made available at the recitations, Tuesday and Wednesday.
- This will also be a good opportunity to ask the Tas questions about the grading.

Questions?

Projects

- Please start working!
- Come to my office hours at least once in the next 3 weeks to discuss the project.

Hard SVM Optimization

We have shown that the sought after weight vector w is the solution of the following optimization problem:

```
SVM Optimization: (***)
```

■ Minimize: ½ ||w||²

Subject to: $\forall (x,y) \in S$: $y w^T x \ge 1$

- This is a quadratic optimization problem in (n+1) variables,
 with |S|=m inequality constraints.
- It has a unique solution.

Duality

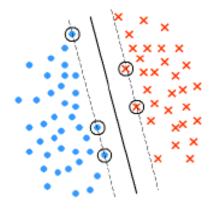
- This, and other properties of Support Vector Machines are shown by moving to the <u>dual problem</u>.
- Theorem: Let w* be the minimizer of the SVM optimization problem (***)

for
$$S = \{(x_i, y_i)\}.$$

Let
$$I = \{i: y_i(w^{*T}x_i + b) = 1\}.$$

Then there exists coefficients $\alpha_i > 0$ such that:

$$\mathbf{w}^* = \sum_{i \in I} \alpha_i y_i x_i$$



Soft SVM

Notice that the relaxation of the constraint:

$$y_i w^T x_i \ge 1$$

• Can be done by introducing a slack variable ξ_i (per example) and requiring:

$$y_i w^T x_i \ge 1 - \xi_i$$
; $\xi_i \ge 0$

Now, we want to solve:

$$\min_{w,\xi_i} \ \frac{1}{2} w^T w + C \sum_i \xi_i$$

s.t
$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$
; $\xi_i \ge 0 \ \forall i$

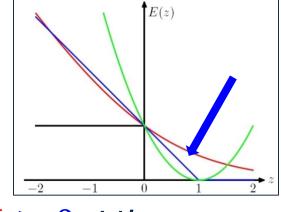
A large value of C means that misclassifications are bad – we focus on a small training error (at the expense of margin).

A small C results in more training error, but hopefully better true error.

Soft SVM (2)

Now, we want to solve:

$$\min_{w,\xi_i} \ \frac{1}{2} w^T w + C \sum_i \xi_i$$



s.t
$$\xi_i \geq 1 - y_i \mathbf{w}^T \mathbf{x}_i$$
; $\xi_i \geq 0 \ \forall i$

In optimum,
$$\xi_i = \max(0, 1 - y_i w^T x_i)$$

Which can be written as:

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i} \max(0, 1 - y_{i} w^{T} x_{i}).$$

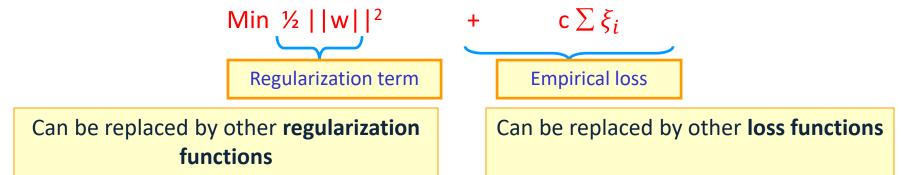
What is the interpretation of this?

SVM Objective Function

The problem we solved is:

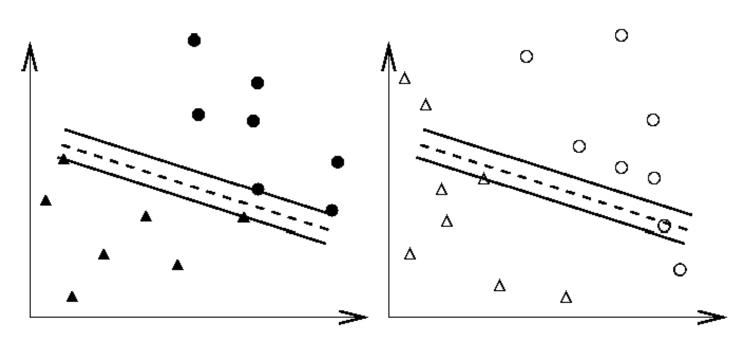
Min
$$\frac{1}{2} ||w||^2 + c \sum \xi_i$$

- Where $\xi_i > 0$ is called a slack variable, and is defined by:
 - $\xi_i = \max(0, 1 y_i w^t x_i)$
 - Equivalently, we can say that: $y_i w^t x_i$, $1 \xi_i$; $\xi_i \ge 0$
- And this can be written as:



- General Form of a learning algorithm:
 - Minimize empirical loss, and Regularize (to avoid over fitting)
 - Theoretically motivated improvement over the original algorithm we've seen at the beginning of the semester.

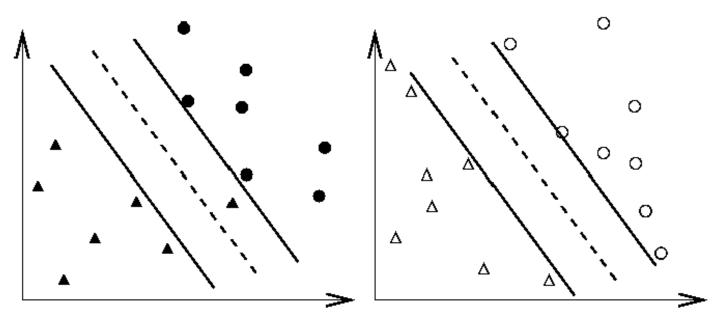
Balance between regularization and empirical loss



fitting classifier

(a) Training data and an over- (b) Testing data and an overfitting classifier

Balance between regularization and empirical loss



(c) Training data and a better (d) Testing data and a better classifier classifier

Optimization: How to Solve

- 1. Earlier methods used Quadratic Programming. Very slow.
- 2. The soft SVM problem is an unconstrained optimization problems. It is possible to use the gradient descent algorithm.
- Many options within this category:
 - Iterative scaling; non-linear conjugate gradient; quasi-Newton methods; truncated Newton methods; trust-region newton method.
 - All methods are iterative methods, that generate a sequence w_k that converges to the optimal solution of the optimization problem above.
 - Currently: Limited memory BFGS is very popular
- 3. 3rd generation algorithms are based on Stochastic Gradient Decent
 - The runtime does not depend on n=#(examples); advantage when n is very large.
 - Stopping criteria is a problem: method tends to be too aggressive at the beginning and reaches a moderate accuracy quite fast, but it's convergence becomes slow if we are interested in more accurate solutions.
- 4. Dual Coordinated Descent (& Stochastic Version)

SGD for SVM

• Goal:
$$\min_{\mathbf{w}} f(\mathbf{w}) \equiv \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{c}{m} \sum_{i} \max(0, 1 - y_i \mathbf{w}^T x_i)$$
. m: data size

• Compute sub-gradient of f(w):

m is here for mathematical correctness, it doesn't matter in the view of modeling.

$$\nabla f(w) = w - Cy_i x_i$$
 if $1 - y_i w^T x_i \ge 0$; otherwise $\nabla f(w) = w$

- 1. Initialize $w = 0 \in \mathbb{R}^n$
 - 2. For every example $(x_i, y_i) \in D$

If $y_i w^T x_i \leq 1$ update the weight vector to

$$w \leftarrow (1 - \gamma)w + \gamma C y_i x_i$$
 (γ - learning rate)

Otherwise $w \leftarrow (1 - \gamma)w$

3. Continue until convergence is achieved

Convergence can be proved for a slightly complicated version of SGD (e.g, Pegasos)

This algorithm should ring a bell...

Nonlinear SVM

- We can map data to a high dimensional space: $x \to \phi(x)$ (DEMO)
- Then use Kernel trick: $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$ (DEMO2)

Primal:

Dual:

$$\min_{w,\xi_{i}} \frac{1}{2} w^{T} w + C \sum_{i} \xi_{i} \qquad \min_{\alpha} \frac{1}{2} \alpha^{T} Q \alpha - e^{T} \alpha$$
s.t
$$y_{i} w^{T} \phi(x_{i}) \geq 1 - \xi_{i} \qquad \text{s.t} \qquad 0 \leq \alpha \leq C \ \forall i$$

$$\xi_{i} \geq 0 \ \forall i \qquad Q_{ij} = y_{i} y_{j} K(x_{i}, x_{j})$$

Theorem: Let w* be the minimizer of the primal problem, α^* be the minimizer of the dual problem.

Then
$$w^* = \sum_i \alpha^* y_i x_i$$

Where are we?

- Algorithms
 - DTs
 - Perceptron + Winnow
 - Gradient Descent
 - [NN]
- Theory
 - Mistake Bound
 - PAC Learning

- We understand Generalization
 - How will your algorithm do on the next example?
- How it depends on the hypothesis class (VC dim)
 - and other complexity parameters
- Algorithmic Implications of the theory?

Boosting

- Boosting is (today) a general learning paradigm for putting together a Strong Learner, given a collection (possibly infinite) of Weak Learners.
- The original Boosting Algorithm was proposed as an answer to a theoretical question in PAC learning. [The Strength of Weak Learnability; Schapire, 89]
- Consequently, Boosting has interesting theoretical implications, e.g., on the relations between PAC learnability and compression.
 - If a concept class is efficiently PAC learnable then it is efficiently PAC learnable by an algorithm whose required memory is bounded by a polynomial in n, size c and $log(1/\epsilon)$.
 - There is no concept class for which efficient PAC learnability requires that the entire sample be contained in memory at one time – there is always another algorithm that "forgets" most of the sample.

Boosting Notes

- However, the key contribution of Boosting has been practical, as a way to compose a good learner from many weak learners.
- It is a member of a family of Ensemble Algorithms, but has stronger guarantees than others.
- A Boosting demo is available at http://cseweb.ucsd.edu/~yfreund/adaboost/
- Example
- Theory of Boosting
 - Simple & insightful

Boosting Motivation

Example: "How May I Help You?"

[Gorin et al.]

 goal: automatically categorize type of call requested by phone customer

(Collect, CallingCard, PersonToPerson, etc.)

- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I
 musta rang the wrong number because I got the
 wrong party and I would like to have that taken
 off of my bill (BillingCredit)
- observation:
 - easy to find "rules of thumb" that are "often" correct
 - e.g.: "IF 'card' occurs in utterance THEN predict 'CallingCard'"
 - hard to find single highly accurate prediction rule

The Boosting Approach

Algorithm

- Select a small subset of examples
- Derive a rough rule of thumb
- Examine 2nd set of examples
- Derive 2nd rule of thumb
- Repeat T times
- Combine the learned rules into a single hypothesis

• Questions:

- How to choose subsets of examples to examine on each round?
- How to combine all the rules of thumb into single prediction rule?

Boosting

 General method of converting rough rules of thumb into highly accurate prediction rule

Theoretical Motivation

- "Strong" PAC algorithm:
 - for any distribution
 - ∀δ, ε > 0
 - Given polynomially many random examples
 - Finds hypothesis with error $\leq \epsilon$ with probability $\geq (1 \delta)$
- "Weak" PAC algorithm
 - Same, but only for some $\varepsilon \le \frac{1}{2} \Upsilon$
- [Kearns & Valiant '88]:
 - Does weak learnability imply strong learnability?
 - Anecdote: the importance of the distribution free assumption
 - It does not hold if PAC is restricted to only the uniform distribution, say

History

- [Schapire '89]:
 - First provable boosting algorithm
 - Call weak learner three times on three modified distributions
 - Get slight boost in accuracy
 - apply recursively

Some lessons for Ph.D. students

- [Freund '90]:
 - "Optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard '92]:
 - First experiments using boosting
 - Limited by practical drawbacks
- [Freund & Schapire '95]:
 - Introduced "AdaBoost" algorithm
 - Strong practical advantages over previous boosting algorithms
- AdaBoost was followed by a huge number of papers and practical applications

A Formal View of Boosting

- Given training set $(x_1, y_1), ... (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the correct label of instance $x_i \in X$
- For t = 1, ..., T
 - Construct a distribution D_t on {1,...m}
 - Find weak hypothesis ("rule of thumb")

$$h_t : X \rightarrow \{-1, +1\}$$

with small error ε_t on D_t :
 $\varepsilon_t = Pr_D [h_t (x_i) \neq y_i]$

Output: final hypothesis H_{final}

Adaboost

- Constructing D_t on {1,...m}:
 - $D_1(i) = 1/m$
 - Given D_t and h_t :
 - $D_{t+1} = D_t(i)/z_t e^{-\alpha t}$ $D_t(i)/z_t e^{+\alpha_t}$ $= D_t(i)/z_t \exp(-\alpha_t y_i h_t (x_i))$ where z_t = normalization constant and $\alpha_t = \frac{1}{2} \ln\{ (1 \epsilon_t)/\epsilon_t \}$

Think about unwrapping it all the way to 1/m

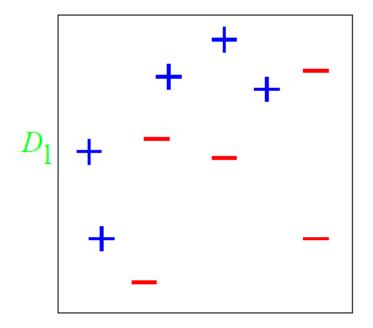
$$Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

 $y_i = h_t(x_i)$ < 1; smaller weight $y_i \neq h_t(x_i)$ > 1; larger weight

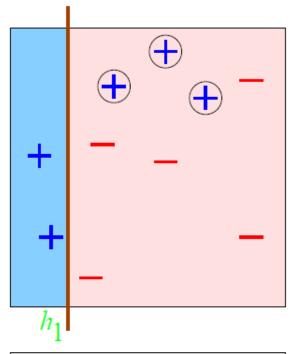
Notes about α_t : $e^{+\alpha_t} = sqrt\{(1-\epsilon_t)/\epsilon_t\} > 1$

- Positive due to the weak learning assumption
- Examples that we predicted correctly are demoted, others promoted
- Sensible weighting scheme: better
 hypothesis (smaller error) → larger weight
- Final hypothesis: $H_{final}(x) = sign(\sum_t \alpha_t h_t(x))$

A Toy Example

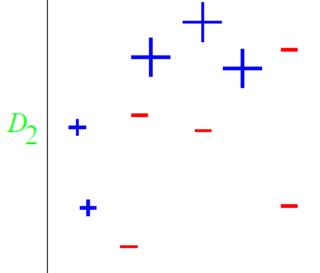


Round 1



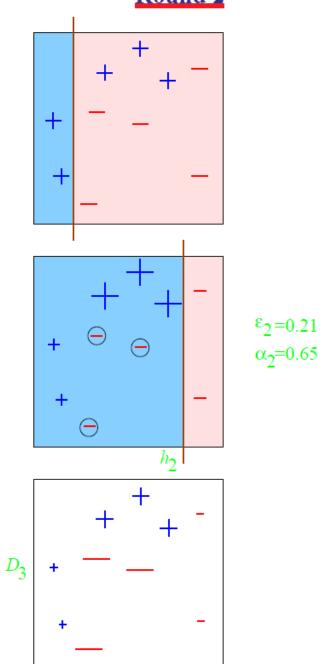
$$\epsilon_1 = 0.30$$

 $\alpha_1 = 0.42$

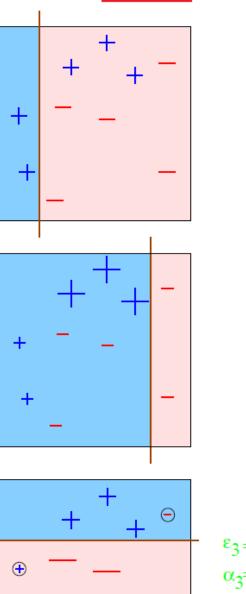


CIS419/519 Spring'

Round 2



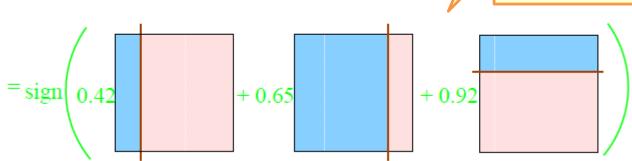
Round 3



A Toy Example

Final Hypothesis

H final



A cool and important note about the final hypothesis: it is possible that the combined hypothesis makes no mistakes on the training data, but boosting can still learn, by adding more weak hypotheses.

CIS419/519

Analyzing Adaboost

- Theorem:
 - run AdaBoost
 - let $\epsilon_t = 1/2 \gamma_t$
 - then

- 1. Why is the theorem stated in terms of minimizing training error? Is that what we want?
- 2. What does the bound mean?

training error
$$(H_{\text{final}}) \leq \prod_{t} \left[2\sqrt{\epsilon_t(1-\epsilon_t)} \right]$$

$$\varepsilon_{t} (1 - \varepsilon_{t}) = (1/2 - \Upsilon_{t})(1/2 + \Upsilon_{t})) = 1/4 - \Upsilon_{t}^{2}$$

$$1-(2\Upsilon_t)^2 \cdot \exp(-(2\Upsilon_t)^2)$$

$$=\prod_t \sqrt{1-4\gamma_t^2}$$

$$\leq \exp\left(-2\sum_{t}\gamma_{t}^{2}\right)$$

Need to prove only the first inequality, the rest is algebra.

- so: if $\forall t : \gamma_t \ge \gamma > 0$ then training error $(H_{\text{final}}) \le e^{-2\gamma^2 T}$
- adaptive:
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$

AdaBoost Proof (1)

Need to prove only the first inequality, the rest is algebra.

- let $f(x) = \sum_{t} \alpha_t h_t(x) \Rightarrow H_{\text{final}}(x) = \text{sign}(f(x))$
- <u>Step 1</u>: unwrapping recursion:

$$D_{ ext{final}}(i) = \frac{1}{m} \cdot \frac{\exp\left(-y_i \sum\limits_t \alpha_t h_t(x_i)\right)}{\prod\limits_t Z_t}$$

$$= \frac{1}{m} \cdot \frac{e^{-y_i f(x_i)}}{\prod\limits_t Z_t}$$

AdaBoost Proof (2)

- <u>Step 2</u>: training error $(H_{\text{final}}) \leq \prod_{t} Z_{t}$
- Proof:
 - $H_{\text{final}}(x) \neq y \Rightarrow yf(x) \leq 0 \Rightarrow e^{-yf(x)} \geq 1$

The definition of training error

• SO:

training error
$$(H_{\text{final}}) = \frac{1}{m} \sum_{i} \begin{cases} 1 & \text{if } y_i \neq H_{\text{final}}(x_i) \\ 0 & \text{else} \end{cases}$$

Always holds for mistakes (see above)

Using Step 1

D is a distribution over the m examples

$$\leq \frac{1}{m} \sum_{i} e^{-y_i f(x_i)}$$

$$=\sum_{i} D_{\text{final}}(i) \prod_{t} Z_{t}$$

$$=\prod_{t} Z_{t}$$

Why does it work? The Weak Learning Hypothesis

AdaBoost Proof(3)

A strong assumption due to the "for all distributions".
But – works well in practice

• Step 3:
$$Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$$

By definition of Z_t; it's a normalization term

• Proof:

$$Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Splitting the sum to "mistakes" and nomistakes"

$$= \sum_{i:y_i \neq h_t(x_i)} D_t(i)e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i)e^{-\alpha_t}$$

The definition of $\boldsymbol{\epsilon}_t$

$$= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t}$$

The definition of $\boldsymbol{\alpha}_t$

$$=2\sqrt{\epsilon_t(1-\epsilon_t)}$$

$$e^{+\Re t} = \operatorname{sqrt}\{(1 - \varepsilon_t) / \varepsilon_t\} > 1$$

Steps 2 and 3 together prove the Theorem.

→ The error of the final hypothesis can be as low as you want.

Boosting The Confidence

- Unlike Boosting the accuracy (ϵ), Boosting the confidence (δ) is easy.
- Let's fix the accuracy parameter to ε .
- Suppose that we have a learning algorithm L such that for any target concept $c \in C$ and any distribution D, L outputs h s.t. error(h) < ε with confidence at least 1- δ_{0} , where δ_{0} = 1/q(n,size(c)), for some polynomial q.
- Then, if we are willing to tolerate a slightly higher hypothesis error, $\varepsilon + \gamma$ ($\gamma > 0$, arbitrarily small) then we can achieve arbitrary high confidence 1- δ .

Boosting The Confidence(2)

- Idea: Given the algorithm L, we construct a new algorithm L' that simulates algorithm L k times (k will be determined later) on independent samples from the same distribution
- Let h_1 , ... h_k be the hypotheses produced. Then, since the simulations are independent, the probability that all of h_1 , h_k have error > ϵ is as most $(1-\delta_0)^k$. Otherwise, at least one h_i is good.
- Solving $(1-\delta_0)^k < \delta/2$ yields that value of k we need, $k > (1/\delta_0) \ln(2/\delta)$
- There is still a need to show how L' works. It would work by using the h_i that makes the fewest mistakes on the sample S; we need to compute how large S should be to guarantee that it does not make too many mistakes.

[Kearns and Vazirani's book] CIS419/519 Spring '18

Summary of Ensemble Methods

- Boosting
- Bagging
- Random Forests

Boosting

- Initialization:
 - Weigh all training samples equally
- Iteration Step:
 - Train model on (weighted) train set
 - Compute error of model on train set
 - Increase weights on training cases model gets wrong!!!
- Typically requires 100's to 1000's of iterations
- Return final model:
 - Carefully weighted prediction of each model

Boosting: Different Perspectives

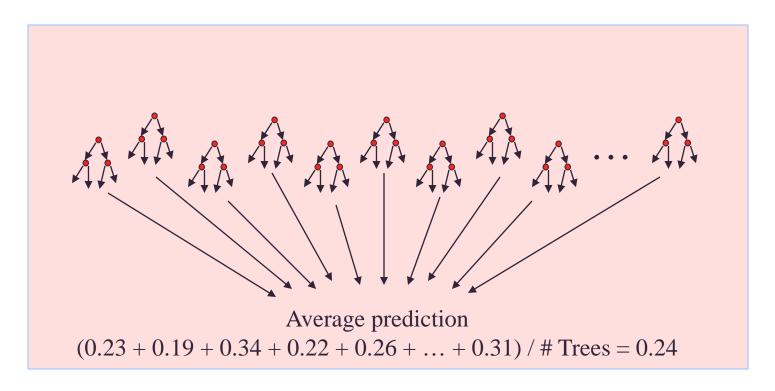
- Boosting is a maximum-margin method (Schapire et al. 1998, Rosset et al. 2004)
 - Trades lower margin on easy cases for higher margin on harder cases
- Boosting is an additive logistic regression model (Friedman, Hastie and Tibshirani 2000)
 - Tries to fit the logit of the true conditional probabilities
- Boosting is an equalizer
 (Breiman 1998) (Friedman, Hastie, Tibshirani 2000)
 - Weighted proportion of times example is misclassified by base learners tends to be the same for all training cases
- Boosting is a linear classifier, over an incrementally acquired "feature space".

Bagging

- Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor.
- The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class.
- The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets.
 - That is, use samples of the data, with repetition
- Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
- The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed then bagging can improve accuracy.

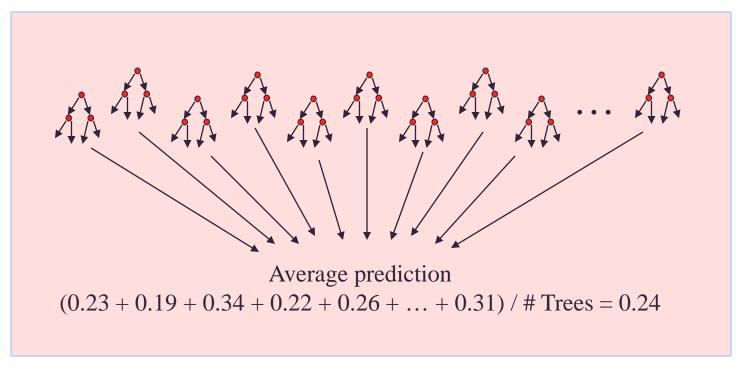
Example: Bagged Decision Trees

- Draw 100 bootstrap samples of data
- Train trees on each sample → 100 trees
- Average prediction of trees on out-of-bag samples



Random Forests (Bagged Trees++)

- Draw 1000+ bootstrap samples of data
- Draw sample of available attributes at each split
- Train trees on each sample/attribute set → 1000+ trees
- Average prediction of trees on out-of-bag samples



So Far: Classification

- So far we focused on Binary Classification
- For linear models:
 - Perceptron, Winnow, SVM, GD, SGD
- The prediction is simple:
 - Given an example x,
 - Prediction = sgn(w^Tx)
 - Where w is the learned model
- The output is a single bit

Multi-Categorical Output Tasks

- Multi-class Classification ($y \in \{1,...,K\}$)
 - character recognition ('6')
 - document classification ('homepage')
 - Multi-label Classification ($y \subseteq \{1,...,K\}$)
 - document classification ('(homepage,facultypage)')
 - Category Ranking $(y \in \pi(K))$
 - user preference ('(love > like > hate)')
 - document classification ('hompage > facultypage > sports')
 - Hierarchical Classification ($y \subseteq \{1,...,K\}$)
 - cohere with class hierarchy
 - place document into index where 'soccer' is-a 'sport'

Setting

Learning:

- Given a data set $D = \{(x_i, y_i)\}_1^m$
- Where $x_i \in R^n$, $y_i \in \{1, 2, ..., k\}$.
- Prediction (inference):
 - Given an example x, and a learned function (model),
 - Output a single class labels y.

Binary to Multiclass

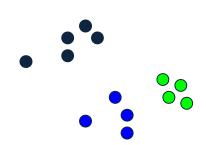
- Most schemes for multiclass classification work by reducing the problem to that of binary classification.
- There are multiple ways to decompose the multiclass prediction into multiple binary decisions
 - One-vs-all
 - All-vs-all
 - Error correcting codes
- We will then talk about a more general scheme:
 - Constraint Classification
- It can be used to model other non-binary classification schemes and leads to Structured Prediction.

One-Vs-All

- Assumption: Each class can be separated from all the rest using a binary classifier in the hypothesis space.
- Learning: Decomposed to learning k independent binary classifiers, one for each class label.
- Learning:
 - Let D be the set of training examples.
 - ∀ label l, construct a binary classification problem as follows:
 - Positive examples: Elements of D with label I
 - Negative examples: All other elements of D
 - This is a binary learning problem that we can solve, producing k binary classifiers w₁, w₂, ...w_k
- Decision: Winner Takes All (WTA):
 - $f(x) = argmax_i w_i^T x$

Solving MultiClass with 1vs All learning

- MultiClass classifier
 - Function $f: \mathbb{R}^n \rightarrow \{1,2,3,...,k\}$



Decompose into binary problems

- Not always possible to learn
- No theoretical justification
 - Need to make sure the range of all classifiers is the same
- (unless the problem is easy)

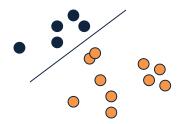
Learning via One-Versus-All (OvA) Assumption

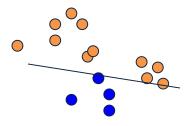
Find $v_r, v_b, v_g, v_v \in \mathbb{R}^n$ such that

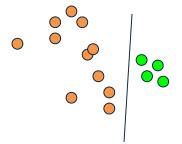
•
$$v_r.x > 0$$
 iff $y = red$
• $v_b.x > 0$ iff $y = blue$
• $v_g.x > 0$ iff $y = green$
• $v_y.x > 0$ iff $y = yellow$

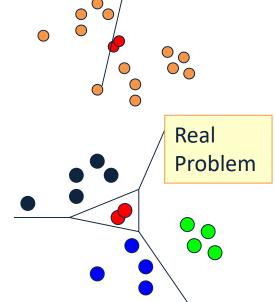
 $\mathbf{H} = \mathbf{R}^{nk}$

• Classification: $f(x) = argmax_i v_i x$









All-Vs-All

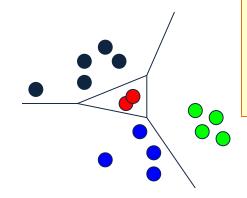
- Assumption: There is a separation between every pair of classes using a binary classifier in the hypothesis space.
- Learning: Decomposed to learning [k choose 2] ~ k² independent binary classifiers, one corresponding to each pair of class labels. For the pair (i, j):
 - Positive example: all exampels with label i
 - Negative examples: all examples with label j
- Decision: More involved, since output of binary classifier may not cohere. Each label gets k-1 votes.
- Decision Options:
 - Majority: classify example x to take label i if i wins on x more often than j
 (j=1,...k)
 - A tournament: start with n/2 pairs; continue with winners.

Learning via All-Verses-All (AvA) Assumption

Find v_{rb} , v_{rg} , v_{ry} , v_{bg} , v_{by} , $v_{gy} \in \mathbb{R}^d$ such that

•
$$v_{rb}.x > 0$$
 if $y = red$
< 0 if $y = blue$

- $v_{rg}.x > 0$ if y = red< 0 if y = green
- ... (for all pairs)

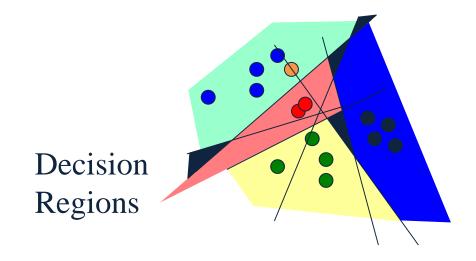


It is possible to separate all k classes with the O(k²) classifiers

$$H = R^{kkn}$$

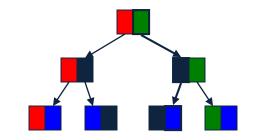
How to classify?





Classifying with AvA

Tournament



Majority Vote

1 red, 2 yellow, 2 green

All are post-learning and *might* cause weird stuff

One-vs-All vs. All vs. All

- Assume m examples, k class labels.
 - For simplicity, say, m/k in each.
- One vs. All:
 - classifier f_i: m/k (+) and (k-1)m/k (-)
 - Decision:
 - Evaluate k linear classifiers and do Winner Takes All (WTA):
 - $f(x) = argmax_i f_i(x) = argmax_i w_i^T x$
- All vs. All:
 - Classifier f_{ii}: m/k (+) and m/k (-)
 - More expressivity, but less examples to learn from.
 - Decision:
 - Evaluate k² linear classifiers; decision sometimes unstable.
- What type of learning methods would prefer All vs. All (efficiency-wise)?

(Think about Dual/Primal)

Error Correcting Codes Decomposition

- 1-vs-all uses k classifiers for k labels; can you use only log₂ k?
- Reduce the multi-class classification to random binary problems.
 - Choose a "code word" for each label.
 - K=8: all we need is 3 bits, three classifiers
- Rows: An encoding of each class (k rows)
- Columns: L dichotomies of the data, each corresponds to a new classification problem
 Label P1 P2 P3
- Extreme cases:
 - 1-vs-all: k rows, k columns
 - k rows log₂ k columns
- Each training example is mapped to one example per column ²
 - $(x,3) \rightarrow \{(x,P1), +; (x,P2), -; (x,P3), -; (x,P4), +\}$
- To classify a new example x:
 - Evaluate hypothesis on the 4 binary problems {(x,P1), (x,P2), (x,P3), (x,P4),}
 - Choose label that is most consistent with the results.
 - Use Hamming distance (bit-wise distance)
- Nice theoretical results as a function of the performance of the P_i s (depending on code & size)

3

4

k

Potential Problems?

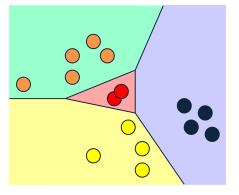
Can you separate any dichotomy?

P4

Problems with Decompositions

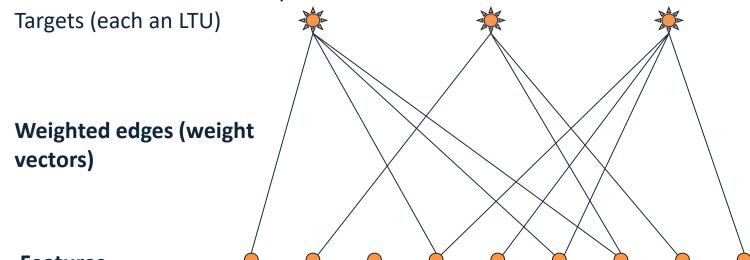
- Learning optimizes over *local* metrics
 - Does not guarantee good global performance
 - We don't care about the performance of the *local* classifiers
- Poor decomposition ⇒ poor performance
 - Difficult local problems
 - Irrelevant local problems

- Another (class of) decomposition
- Difficulty: how to make sure that the resulting problems are separable.
- Efficiency: e.g., All vs. All vs. One vs. All
- Former has advantage when working with the dual space.
- Not clear how to generalize multi-class to problems with a very large # of output variables.



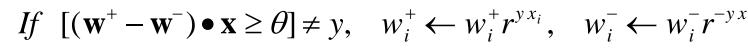
1 Vs All: Learning Architecture

- k label nodes; n input features, nk weights.
- Evaluation: Winner Take All
- Training: Each set of n weights, corresponding to the i-th label, is trained
 - Independently, given its performance on example x, and
 - Independently of the performance of label j on x.
- Hence: Local learning; only the final decision is global, (Winner Takes All (WTA)).
- However, this architecture allows multiple learning algorithms; e.g., see the implementation in the SNoW/LbJava Multi-class Classifier



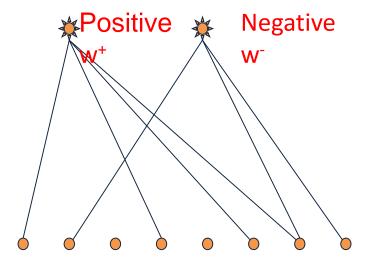
Recall: Winnow's Extensions

- Winnow learns monotone Boolean functions
- We extended to general Boolean functions via
- "Balanced Winnow"
 - 2 weights per variable;
 - Decision: using the "effective weight",
 the difference between w⁺ and w⁻
 - This is equivalent to the Winner take all decision
 - Learning: In principle, it is possible to use the 1-vs-all rule and update each set
 of n weights separately, but we suggested the "balanced" Update rule that
 takes into account how both sets of n weights predict on example x



Can this be generalized to the case of k labels, k >2?

We need a "global" learning approach



Extending Balanced

- In a 1-vs-all training you have a target node that represents positive examples and target node that represents negative examples.
- Typically, we train each node separately (mine/not-mine example).
- Rather, given an example we could say: this is more a + example than a - example.

If
$$[(\mathbf{w}^+ - \mathbf{w}^-) \bullet \mathbf{x} \ge \theta] \ne y$$
, $w_i^+ \leftarrow w_i^+ r^{yx_i}$, $w_i^- \leftarrow w_i^- r^{-yx_i}$

- We compared the activation of the different target nodes (classifiers) on a given example. (This example is more class + than class -)
- Can this be generalized to the case of k labels, k >2?

Where are we?

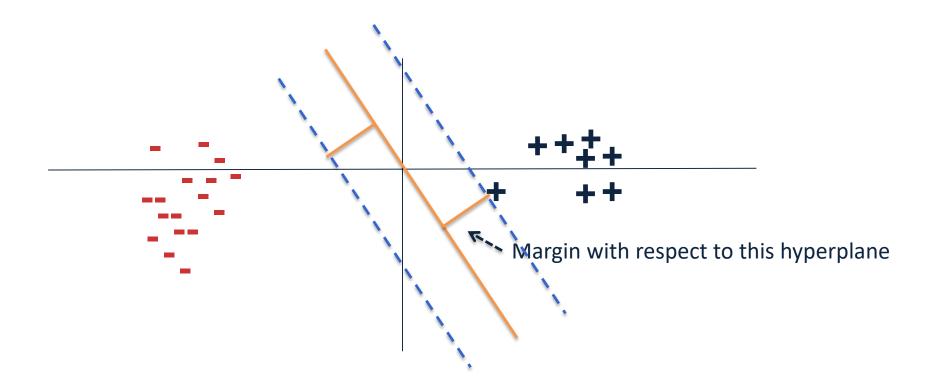
Introduction

- Combining binary classifiers
 - One-vs-all
 - All-vs-all
 - Error correcting codes

- Training a single (global) classifier
 - Multiclass SVM
 - Constraint classification

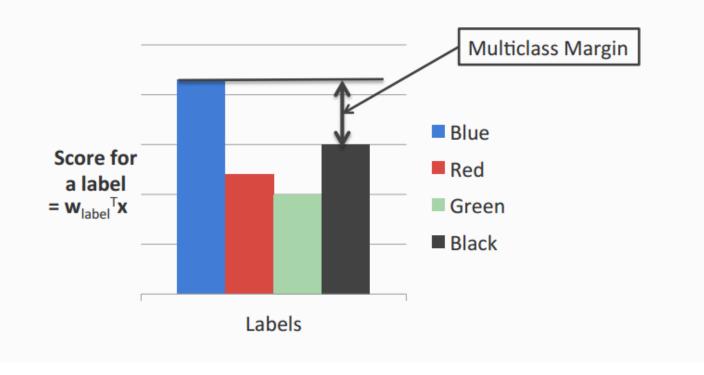
Recall: Margin for binary classifiers

 The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.



Multiclass Margin

Defined as the score difference between the highest scoring label and the second one



Multiclass SVM (Intuition)

Recall: Binary SVM

- Maximize margin
- Equivalently,

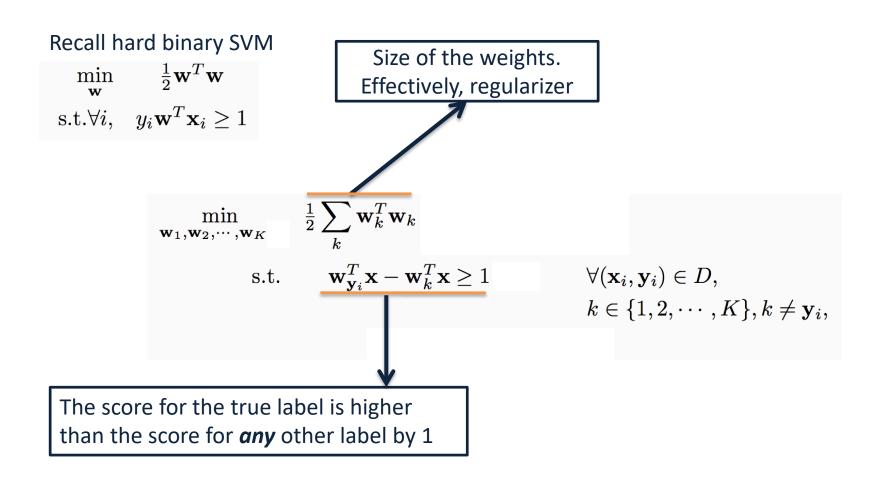
Minimize norm of weight vector, while keeping the closest points to the hyperplane with a score § 1

Multiclass SVM

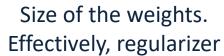
- Each label has a different weight vector (like one-vs-all)
- Maximize multiclass margin
- Equivalently,

Minimize total norm of the weight vectors while making sure that the true label scores at least 1 more than the second best one.

Multiclass SVM in the separable case



Multiclass SVM: General case



Total slack. Effectively, don't allow too many examples to violate the margin constraint

$$\min_{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_K} \int \frac{1}{2} \sum_k \mathbf{w}_k^T \mathbf{w}_k$$

s.t.

$$\mathbf{w}_{\mathbf{y}_i}^T \mathbf{x} - \mathbf{w}_k^T \mathbf{x} \ge 1$$

 $\forall (\mathbf{x}_i, \mathbf{y}_i) \in D,$

$$k \in \{1, 2, \cdots, K\}, k \neq \mathbf{y}_i,$$

The score for the true label is higher than the score for *any* other label by 1

Slack variables. Not all examples need to satisfy the margin constraint.

Slack variables can only be positive

Multiclass SVM: General case

Size of the weights. Effectively, regularizer Total slack. Effectively, don't allow too many examples to violate the margin constraint

$$\min_{\mathbf{w}_{1},\mathbf{w}_{2},\cdots,\mathbf{w}_{K},\xi} \quad \frac{1}{2} \sum_{k} \mathbf{w}_{k}^{T} \mathbf{w}_{k} + C \sum_{(\mathbf{x}_{i},\mathbf{y}_{i}) \in D} \xi_{i}$$
s.t.
$$\mathbf{w}_{\mathbf{y}_{i}}^{T} \mathbf{x} - \mathbf{w}_{k}^{T} \mathbf{x} \geq 1 - \xi_{i}, \qquad \forall (\mathbf{x}_{i},\mathbf{y}_{i}) \in D,$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad k \in \{1,2,\cdots,K\}, k \neq \mathbf{y}_{i},$$

$$\xi_{i} \geq 0, \qquad \qquad \forall i.$$

The score for the true label is higher than the score for \emph{any} other label by 1 - ξ_i

Slack variables. Not all examples need to satisfy the margin constraint.

Slack variables can only be positive

Multiclass SVM

- Generalizes binary SVM algorithm
 - If we have only two classes, this reduces to the binary (up to scale)
- Comes with similar generalization guarantees as the binary SVM
- Can be trained using different optimization methods
 - Stochastic sub-gradient descent can be generalized
 - Try as exercise

Multiclass SVM: Summary

- Training:
 - Optimize the "global" SVM objective
- Prediction:
 - Winner takes all argmax, w, Tx
- With K labels and inputs in Rⁿ, we have nK weights in all
 - Same as one-vs-all
- Why does it work?
 - Why is this the "right" definition of multiclass margin?
- A theoretical justification, along with extensions to other algorithms beyond SVM is given by "Constraint Classification"
 - Applies also to multi-label problems, ranking problems, etc.
 - [Dav Zimak; with D. Roth and S. Har-Peled]

Constraint Classification

- The examples we give the learner are pairs (x,y), $y \in \{1,...k\}$
- The "black box learner" (1 vs. all) we described might be thought of as a function of x only but, actually, we made use of the labels y
- How is y being used?
 - y decides what to do with the example x; that is, which of the k classifiers should take the example as a positive example (making it a negative to all the others).
- How do we predict?
 - Let: $f_v(x) = w_v^T x$

Is it better in any well defined way?

- Then, we predict using: $y^* = \operatorname{argmax}_{y=1,...k} f_y(x)$
- Equivalently, we can say that we predict as follows:
 - Predict y iff
 - $\forall y' \ 2 \ \{1,...k\}, \ y' \neq y \ (w_y^\top w_{y'}^\top) \ x \ge 0 \ (**)$
- So far, we did not say how we learn the k weight vectors $\mathbf{w}_{\mathbf{v}}$ (y = 1,...k)
 - Can we train in a way that better fits the way we predict?
 - What does it mean?

We showed: if pairs of labels are separable (a reasonable assumption) than in some higher dimensional space, the problem is linearly separable.

Linear Separability for Multiclass

• the k weight vectors into

$$W = (W_1, W_2, ... W_k) 2$$

Notice: This is just a representational $w = (w_1, w_2, ..., w_k)$ 2 trick. We did not say how to learn the weight vectors.

- Key Construction: (Kesler Construction; Zimak's Constraint Classification)
 - We will represent each example (x,y), as an nk-dimensional vector, x_{v} with xembedded in the y-th part of it (y=1,2,...k) and the other coordinates are 0.

E.g.,
$$\mathbf{x}_{v} = (\mathbf{0}, x, \mathbf{0}, \mathbf{0}) \in \mathbf{R}^{kn}$$
 (here k=4, y=2)

- Now we can understand the n-dimensional decision rule:
- Predict v iff

$$\forall y' \ 2 \ \{1,...k\}, \ y' := y \ (w_y^T - w_{y'}^T) \ \phi x_s \ 0 \ (**)$$

- Equivalently, in the nk-dimensional space.
- Predict y iff

$$\forall y' \ 2 \ \{1,...k\}, y' \neq y \quad w^{T}(x_{y} - x_{y'}) \equiv w^{T}x_{yy'} \geq 0$$

- Conclusion: The set $(x_{vv'}, +) \equiv (x_v x_{v'}, +)$ is linearly separable from the set $(-x_{vv'}, -)$ using the linear separator $w \in \mathbb{R}^{kn}$,
- We solved the voroni diagram challenge.

Constraint Classification

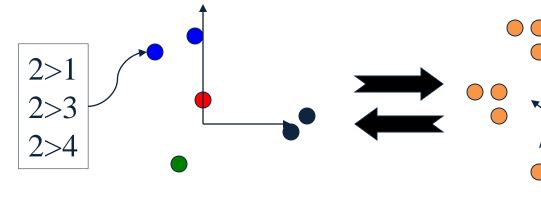
Training:

- [We first explain via Kesler's construction; then show we don't need it]
- Given a data set $\{(x,y)\}$, (m examples) with $x \in \mathbb{R}^n$, $y \in \{1,2,...k\}$ create a binary classification task (in \mathbb{R}^{kn}): $(x_y x_{y'}, +)$, $(x_{y'} x_y -)$, for all $y' \neq y$ (2m(k-1) examples) Here $x_y \in \mathbb{R}^{kn}$
- □ Use your favorite linear learning algorithm to train a binary classifier.

Prediction:

Given an nk dimensional weight vector w and a new example x, predict: $argmax_v w^T x_v$

Details: Kesler Construction & Multi-Class Separability



If (x,i) was a given n-dimensional example (that is, x has is labeled i, then x_{ij} , \forall j=1,...k, $j\neq i$, are positive examples in the nk-dimensional space. $-x_{ij}$ are negative examples.

$$i>j f_i(x) - f_j(x) > 0$$

$$w_i \cdot x - w_j \cdot x > 0$$

$$\mathbf{W} \cdot \mathbf{X}_i - \mathbf{W} \cdot \mathbf{X}_j > 0$$

$$\mathbf{W} \cdot (\mathbf{X}_i - \mathbf{X}_j) > 0$$

$$\mathbf{W} \cdot \mathbf{X}_{ii} > 0$$

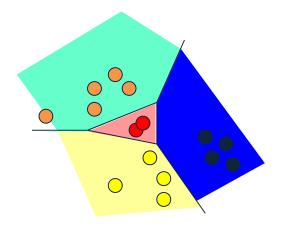
$$\mathbf{X}_{ij} = (\mathbf{0}, \mathbf{x}, \mathbf{0}, \mathbf{0}) \in \mathbf{R}^{kd}$$
 $\mathbf{X}_{j} = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{x}) \in \mathbf{R}^{kd}$
 $\mathbf{X}_{ij} = \mathbf{X}_{i} - \mathbf{X}_{j} = (\mathbf{0}, \mathbf{x}, \mathbf{0}, -\mathbf{x})$

$$\mathbf{W} = (w_1, w_2, w_3, w_4) \in \mathbf{R}^{kd}$$

Kesler's Construction (1)

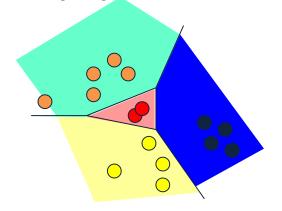
- $y = \operatorname{argmax}_{i=(\mathbf{r},\mathbf{b},\mathbf{g},\mathbf{y})} \mathbf{w}_{i}.\mathbf{x}$
 - W_i , $X \in \mathbb{R}^n$
- Find w_r,w_b,w_g,w_y ∈ Rⁿ such that
 - $W_{r}.X > W_{b}.X$
 - W_r.X > W_g.X
 - W_r.x > W_v.x

 $\mathbf{H} = \mathbf{R}^{kn}$

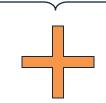


Kesler's Construction (2)

- Let $\mathbf{w} = (\mathbf{w_r, w_b, w_g, w_v}) \in \mathbf{R}^{kn}$
- Let **0**ⁿ, be the n-dim zero vector



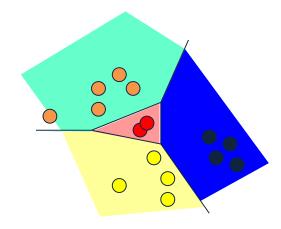
- $w_r.x > w_b.x \Leftrightarrow w.(x,-x,0^n,0^n) > 0 \Leftrightarrow w.(-x,x,0^n,0^n) < 0$
- $\mathbf{w_r}.\mathbf{x} > \mathbf{w_g}.\mathbf{x} \iff \mathbf{w}.(\mathbf{x},\mathbf{0}^n,-\mathbf{x},\mathbf{0}^n) > 0 \iff \mathbf{w}.(-\mathbf{x},\mathbf{0}^n,\mathbf{x},\mathbf{0}^n) < 0$
- $\mathbf{w_r}.\mathbf{x} > \mathbf{w_v}.\mathbf{x} \iff \mathbf{w}.(\mathbf{x},\mathbf{0}^n,\mathbf{0}^n,-\mathbf{x}) > 0 \iff \mathbf{w}.(-\mathbf{x},\mathbf{0}^n,\mathbf{0}^n,\mathbf{x}) < 0$



Kesler's Construction (3)

- Let
 - $\mathbf{W} = (W_1, ..., W_k) \in \mathbf{R}^n \times ... \times \mathbf{R}^n = \mathbf{R}^{kn}$

- Given $(x, y) \in \mathbb{R}^n \times \{1, ..., k\}$
 - For all j ≠ y (all other labels)
 - Add to P+(x,y), (x_{vi}, 1)
 - Add to P⁻(x,y), (-x_{yj}, -1)
- $P^+(x,y)$ has k-1 positive examples ($\in \mathbb{R}^{kn}$)
- $P^{-}(x,y)$ has k-1 negative examples ($\in \mathbb{R}^{kn}$)



Learning via Kesler's Construction

- Given $(x_1, y_1), ..., (x_N, y_N) \in \mathbb{R}^n \times \{1,...,k\}$
- Create
 - $P^+ = \bigcup P^+(x_i, y_i)$
 - $P^- = \bigcup P^-(x_i, y_i)$
- Find $\mathbf{w} = (\mathbf{w}_1, ..., \mathbf{w}_k) \in \mathbf{R}^{kn}$, such that
 - w.x separates P⁺ from P⁻



- One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.
- To understand how to update the weight vector in the n-dimensional space, we note that
- $\mathbf{w}^T \mathbf{x}_{\mathbf{v}\mathbf{v}'} \ge \mathbf{0}$ (in the nk-dimensional space)
- is equivalent to:
- $(w_y^T w_{y'}^T) x \ge 0$ (in the n-dimensional space)

Perceptron in Kesler Construction

- A perceptron update rule applied in the nk-dimensional space due to a mistake in $\mathbf{w}^T \mathbf{x}_{ii} \ge 0$
- Or, equivalently to $(w_i^T w_i^T)x \ge 0$ (in the n-dimensional space)
- Implies the following update:
- Given example (x,i) (example x 2 Rⁿ, labeled i)
 - \forall (i,j), i,j = 1,...k, i \neq j (***)
 - If $(w_i^T w_i^T) x < 0$ (mistaken prediction; equivalent to $w^T x_{ii} < 0$)
 - $w_i \leftarrow w_i + x$ (promotion) and $w_j \leftarrow w_j x$ (demotion)
- Note that this is a generalization of balanced Winnow rule.
- Note that we promote w_i and demote k-1 weight vectors w_i

Conservative update

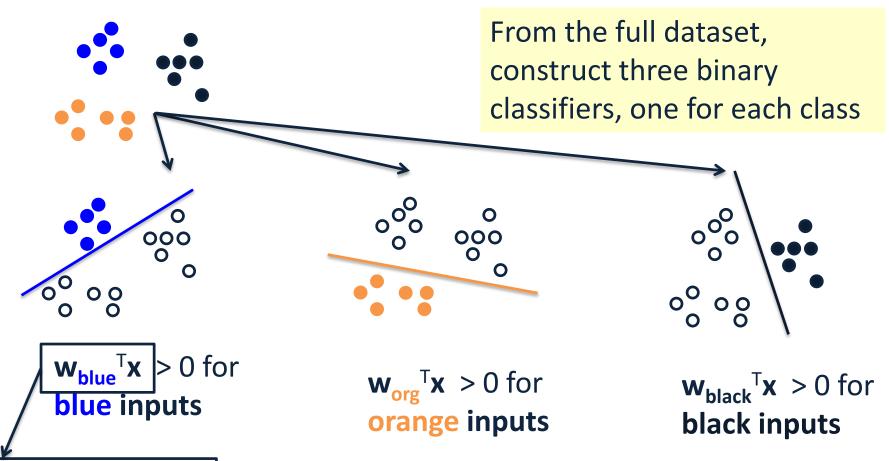
- The general scheme suggests:
- Given example (x,i) (example $x \in \mathbb{R}^n$, labeled i)

```
• \forall (i,j), i,j = 1,...k, i := j (***)
```

- If $(w_i^T w_i^T) x < 0$ (mistaken prediction; equivalent to $w^T x_{ij} < 0$)
- $w_i \leftarrow w_i + x$ (promotion) and $w_j \leftarrow w_j x$ (demotion)
- Promote w_i and demote k-1 weight vectors w_i
- A conservative update: (SNoW and LBJava's implementation):
 - In case of a mistake: only the weights corresponding to the target node i and that closest node j are updated.
 - Let: $j^* = \operatorname{argmax}_{j=1,...k} \mathbf{w}_j^T \mathbf{x}$ (highest activation among competing labels)
 - If $(w_i^T w_{i*}^T) x < 0$ (mistaken prediction)
 - $w_i \leftarrow w_i + x$ (promotion) and $w_{j*} \leftarrow w_{j*} x$ (demotion)
 - Other weight vectors are not being updated.

Multiclass Classification Summary 1:

Multiclass Classification



Notation: Score for blue label

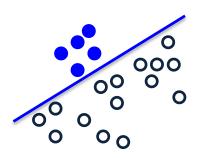
Winner Take All will predict the right answer.
Only the correct label will have a positive score

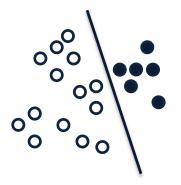
Multiclass Classification Summary 2:

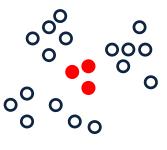
One-vs-all may not always work

Red points are not separable with a single binary classifier

The decomposition is not expressive enough!







Summary 3:

Local Learning: One-vs-all classification

- Easy to learn
 - Use any binary classifier learning algorithm
- Potential Problems
 - Calibration issues
 - We are comparing scores produced by K classifiers trained independently.
 No reason for the scores to be in the same numerical range!
 - Train vs. Train
 - Does not account for how the final predictor will be used
 - Does not optimize any global measure of correctness
 - Yet, works fairly well
 - In most cases, especially in high dimensional problems (everything is already linearly separable).

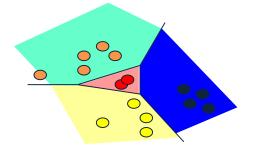
Summary 4:

Global Multiclass Approach [Constraint Classification, Har-Peled et. al '02]

- Create K classifiers w₁, w₂, ..., w_{K.;}
- Predict with WTA: argmax_i w_i^Tx
- But, train differently:
 - For examples with label i, we want $\mathbf{w}_i^T \mathbf{x} > \mathbf{w}_i^T \mathbf{x}$ for all j
- Training: For each training example (x_i, y_i) :

$$\begin{split} \hat{y} \leftarrow & \arg\max_{j} \boldsymbol{w}_{j}^{T} \phi(\boldsymbol{x}_{i}, y_{i}) \\ & \textbf{if } \hat{y} \neq y_{i} \\ & \boldsymbol{w}_{y_{i}} \leftarrow \boldsymbol{w}_{y_{i}} + \eta \boldsymbol{x}_{i} \quad \text{(promote)} \quad \eta \text{: learning rate} \\ & \boldsymbol{w}_{\hat{y}} \leftarrow \boldsymbol{w}_{\hat{y}} - \eta \boldsymbol{x}_{i} \quad \text{(demote)} \end{split}$$

Significance

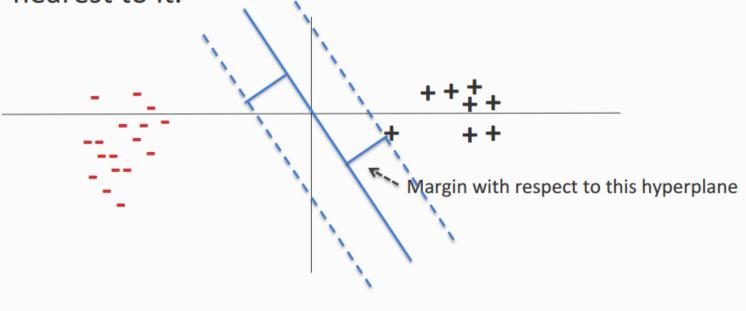


- The hypothesis learned above is more expressive than when the OvA assumption is used.
- Any linear learning algorithm can be used, and algorithmic-specific properties are maintained (e.g., attribute efficiency if using winnow.)
- E.g., the multiclass support vector machine can be implemented by learning a hyperplane to separate P(S) with maximal margin.
- As a byproduct of the linear separability observation, we get a natural notion of a margin in the multi-class case, inherited from the binary separability in the nk-dimensional space.
 - Given example $x_{ij} \in R^{nk}$, $margin(x_{ij}, w) = min_{ij} w^T x_{ij}$
 - Consequently, given x ∈ Rⁿ, labeled i

$$margin(x,w) = min_j (w_i^T - w_j^T) x$$

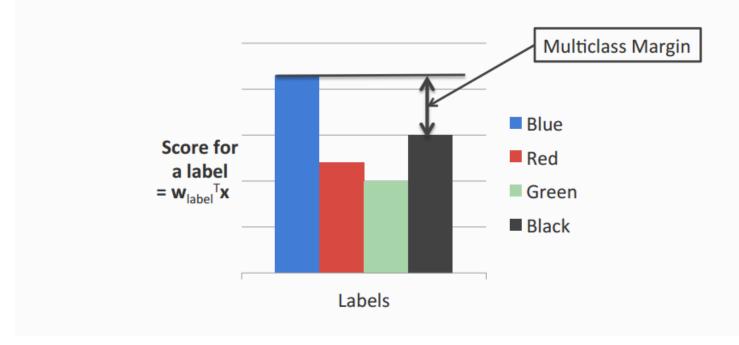
Margin

The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.



Multiclass Margin

Defined as the score difference between the highest scoring label and the second one



Constraint Classification

- The scheme presented can be generalized to provide a uniform view for multiple types of problems: multi-class, multi-label, categoryranking
- Reduces learning to a single binary learning task
- Captures theoretical properties of binary algorithm
- Experimentally verified
- Naturally extends Perceptron, SVM, etc...
- It is called "constraint classification" since it does it all by representing labels as a set of constraints or preferences among output labels.

Multi-category to Constraint Classification

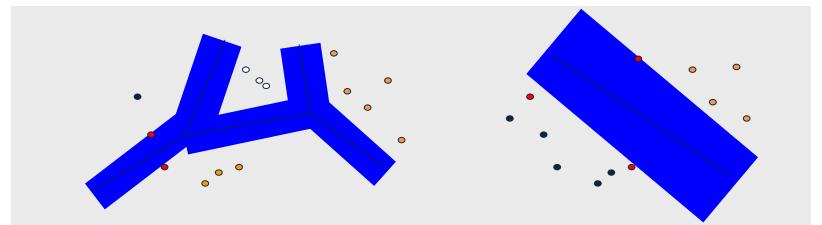
- The unified formulation is clear from the following examples:
- Multiclass
 - $\Rightarrow (x, (A>B, A>C, A>D))$
- Multilabel
 - $\Rightarrow (x, (A, B)) \Rightarrow (x, ((A>C, A>D, B>C, B>D))$
- Label Ranking
 - $(x, (5>4>3>2>1)) \Rightarrow (x, ((5>4, 4>3, 3>2, 2>1))$
- In all cases, we have examples (x,y) with $y \in S_k$
- Where **S**_k: partial order over class labels {1,...,k}
 - defines "preference" relation (>) for class labeling
- Consequently, the Constraint Classifier is: h: $X \rightarrow S_k$
 - h(x) is a partial order
 - h(x) is *consistent* with y if $(i < j) \in y \rightarrow (i < j) \in h(x)$

Just like in the multiclass we learn one $w_i \in \mathbb{R}^n$ for each label, the same is done for multi-label and ranking. The weight vectors are updated according with the requirements from $y \in S_k$

(Consult the Perceptron in Kesler construction slide)

Properties of Construction (Zimak et. al 2002, 2003)

- Can learn any argmax v_i.x function (even when i isn't linearly separable from the union of the others)
- Can use any algorithm to find linear separation
 - Perceptron Algorithm
 - ultraconservative online algorithm [Crammer, Singer 2001]
 - Winnow Algorithm
 - multiclass winnow [Masterharm 2000]
- Defines a multiclass margin
 - by binary margin in R^{kd}
 - multiclass SVM [Crammer, Singer 2001]



Margin Generalization Bounds

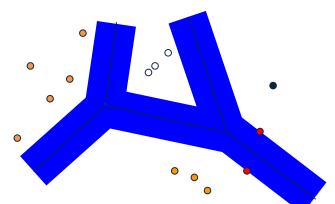
- Linear Hypothesis space:
 - $h(x) = argsort v_i.x$
 - V_i , $X \in \mathbb{R}^d$
 - argsort returns permutation of {1,...,k}
- CC margin-based bound
 - $\gamma = \min_{(x,y) \in S} \min_{(i < j) \in y} v_i.x v_j.x$

$$err_D(h) \le \Theta\left(\frac{C}{m}\left(\frac{R^2}{\gamma^2} - \ln(\delta)\right)\right)$$

 $R - \max_{x} ||x||$

 δ - confidence

C - average # constraints



VC-style Generalization Bounds

- Linear Hypothesis space:
 - $h(x) = argsort v_i.x$
 - V_i , $X \in \mathbb{R}^d$
 - argsort returns permutation of {1,...,k}
- CC VC-based bound

$$err_D(h) \le err(S,h) + \theta \sqrt{\frac{kd\log(mk/d) - \ln \delta}{porformance: even}}$$

m - number of examples
d - dimension of input space
delta - confidence

k - number of classes

Performance: even though this is the right thing to do, and differences can be observed in low dimensional cases, in high dimensional cases, the impact is not always significant.

Beyond MultiClass Classification

- Ranking
 - category ranking (over classes)
 - ordinal regression (over examples)
- Multilabel
 - x is both red and blue
- Complex relationships
 - x is more red than blue, but not green
- Millions of classes
 - sequence labeling (e.g. POS tagging)
 - The same algorithms can be applied to these problems, namely, to Structured Prediction
 - This observation is the starting point for CS546.

(more) Multi-Categorical Output Tasks

```
    Sequential Prediction (y ∈ {1,...,K}+)
        e.g. POS tagging ('(NVNNA)')
        "This is a sentence." ⇒ D V D N
        e.g. phrase identification
        Many labels: K<sup>L</sup> for length L sentence
    Structured Output Prediction (y ∈ C({1,...,K}+))
        e.g. parse tree, multi-level phrase identification
        e.g. sequential prediction
        Constrained by
        domain, problem, data, background knowledge, etc...
```