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Exams
 1. Overall:
 Mean: 62 (18.6 - 13.2 - 18.7 - 10.5)
 Std Dev: 13.8 (2.5 - 6.7 - 4.4 - 5.8)
 Max: 94, Min: 27.5
 2. CIS 519 (91 students):
 Mean: 61.48 (18.4 - 12.8 - 18.5 - 10.75)
 Std Dev: 14.7 (2.6 - 7.1 - 4.5 - 5.9)
 Max: 94   Min: 27.5
 3. CIS 419 (47 students):
 Mean: 63.6 (19 - 14 - 19 - 10)
 Std Dev: 12 (2.2 - 5.9 - 4.1 - 5.8)
 Max: 93, Min: 41
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• Solutions are available.

• Midterms will be made 
available at the recitations, 
Tuesday and Wednesday. 

• This will also be a good 
opportunity to ask the Tas
questions about the grading.

Questions?
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Projects
 Please start working!

 Come to my office hours at least once in the next 3 weeks to discuss 
the project.
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Hard SVM Optimization
 We have shown that the sought after weight vector w is 

the solution of the following optimization problem:

SVM Optimization:  (***)
Minimize:  ½ ||w||2

Subject to: ∀ (x,y) Є S:     y wT x ≥ 1 

 This is a quadratic optimization problem in (n+1) variables, 
with |S|=m inequality constraints.   

 It has a unique solution.

4
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Duality
 This, and other properties of Support Vector Machines are 

shown by moving to the dual problem.

 Theorem: Let w* be the minimizer of
the SVM optimization problem (***)
for S = {(xi, yi)}.   
Let I= {i: yi (w*Txi +b)= 1}. 
Then there exists coefficients αi >0 
such that:

w* = ∑i Є I αi yi xi

5
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Soft SVM

 Notice that the relaxation of the constraint:                                                      
yiwTxi ≥ 1

 Can be done by introducing a slack variable 𝜉𝜉𝑖𝑖 (per 
example) and requiring:    

yiwTxi ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0
 Now, we want to solve: 

6

min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t yiwTxi ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

A large value of C means 
that misclassifications 

are bad – we focus on a 
small training error (at 

the expense of margin). 
A small C results in more 

training error, but 
hopefully better true 

error.
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Soft SVM (2)

 Now, we want to solve: 

 Which can be written as:

min
𝑤𝑤

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶�

𝑖𝑖

max(0, 1 − 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖) .

 What is the interpretation of this?
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min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t yiwTxi ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

In  optimum, ξi = max(0, 1 − yiwTxi)

min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t 𝜉𝜉𝑖𝑖 ≥ 1 − yiwTxi; 𝜉𝜉𝑖𝑖≥ 0 ∀𝑖𝑖
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SVM Objective Function

8

 The problem we solved is:
Min ½ ||w||2 + c ∑ 𝜉𝜉𝑖𝑖

 Where 𝜉𝜉𝑖𝑖 > 0 is called a slack variable, and is defined by:
 𝜉𝜉𝑖𝑖 = max(0, 1 – yi wtxi)
 Equivalently, we can say that: yi wtxi ¸ 1 - 𝜉𝜉𝑖𝑖; 𝜉𝜉𝑖𝑖 ≥ 0

 And this can be written as:
Min  ½ ||w||2 +             c ∑ 𝜉𝜉𝑖𝑖

 General Form of a learning algorithm:
 Minimize empirical loss, and Regularize (to avoid over fitting) 
 Theoretically motivated improvement over the original algorithm we’ve seen 

at the beginning of the semester.

Can be replaced by other loss functionsCan be replaced by other regularization 
functions

Empirical lossRegularization term
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Balance between regularization and empirical 
loss
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Balance between regularization and empirical 
loss

10
(DEMO)

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/js-toy/example.html
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Optimization: How to Solve

11

 1. Earlier methods used Quadratic Programming. Very slow.
 2. The soft SVM problem is an unconstrained optimization problems. It is 

possible to use the gradient descent algorithm.
 Many options within this category: 

 Iterative scaling; non-linear conjugate gradient; quasi-Newton methods; 
truncated Newton methods; trust-region newton method.

 All methods are iterative methods, that generate a sequence wk that 
converges to the optimal solution of the optimization problem above.

 Currently: Limited memory BFGS is very popular 

 3. 3rd generation algorithms are based on Stochastic Gradient Decent 
 The runtime does not depend on n=#(examples); advantage when n is very large. 
 Stopping  criteria is a problem: method tends to be too aggressive at the beginning and 

reaches a moderate accuracy quite fast, but it’s convergence becomes slow if we are 
interested in more accurate solutions.

 4. Dual Coordinated Descent (& Stochastic Version)
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SGD for SVM

12

 Goal:   min
𝑤𝑤

𝑓𝑓 𝑤𝑤 ≡ 1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶

𝑚𝑚
∑𝑖𝑖 max 0, 1 − 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 . m: data size

 Compute sub-gradient of 𝑓𝑓 𝑤𝑤 :
𝛻𝛻𝑓𝑓 𝑤𝑤 = 𝑤𝑤 − 𝐶𝐶𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 if  1 − 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 ≥ 0 ; otherwise 𝛻𝛻𝑓𝑓 𝑤𝑤 = 𝑤𝑤

1. Initialize 𝑤𝑤 = 0 ∈ 𝑅𝑅𝑛𝑛

2. For every example xi, yi ∈ 𝐷𝐷

If 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 ≤ 1 update the weight vector to 

𝑤𝑤 ← 1 − 𝛾𝛾 𝑤𝑤 + 𝛾𝛾𝐶𝐶𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 (𝛾𝛾 - learning rate)

Otherwise    𝑤𝑤 ← (1 − 𝛾𝛾)𝑤𝑤

3. Continue until convergence is achieved
This algorithm 
should ring a bell…

Convergence can be proved for a slightly 
complicated version of SGD (e.g, Pegasos)

m is here for mathematical correctness, it 
doesn’t matter in the view of modeling.
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Nonlinear SVM

13

 We can map data to a high dimensional space: x → 𝜙𝜙 𝑥𝑥 (DEMO)

 Then use Kernel trick: 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 = 𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇 𝜙𝜙 𝑥𝑥𝑗𝑗 (DEMO2)

Primal: 

min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t yiwT𝜙𝜙 𝑥𝑥𝑖𝑖 ≥ 1 − 𝜉𝜉𝑖𝑖

𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

Dual:

min
𝛼𝛼

1
2
𝛼𝛼𝑇𝑇Q𝛼𝛼 − 𝑒𝑒𝑇𝑇𝛼𝛼

s.t 0 ≤ 𝛼𝛼 ≤ 𝐶𝐶 ∀𝑖𝑖

Q𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖 𝑦𝑦𝑗𝑗𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
Theorem: Let w* be the minimizer of the primal 
problem, 𝛼𝛼∗ be the minimizer of the dual problem.
Then w∗ = ∑𝑖𝑖 𝛼𝛼∗ yixi

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/svmtoy3d/examples/
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/js-toy/example.html
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Where are we?
 Algorithms

 DTs
 Perceptron + Winnow
 Gradient Descent
 [NN] 

 Theory
 Mistake Bound
 PAC Learning 

 We have a formal notion of “learnability”
 We understand Generalization

 How will your algorithm do on the next example?

 How it depends on the hypothesis class (VC dim)
 and other complexity parameters

 Algorithmic Implications of the theory?

14
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Boosting

 Boosting is (today) a general learning paradigm for putting 
together a Strong Learner, given a collection (possibly 
infinite) of Weak Learners.

 The original Boosting Algorithm was proposed as an 
answer to a theoretical question in PAC learning. [The 
Strength of Weak Learnability; Schapire, 89]

 Consequently, Boosting has interesting theoretical 
implications, e.g., on the relations between PAC 
learnability and compression.
 If a concept class is efficiently PAC learnable then it is efficiently 

PAC learnable by an algorithm whose required memory is 
bounded by a polynomial in n, size c and log(1/ε).

 There is no concept class for which efficient PAC learnability 
requires that the entire sample be contained in memory at one 
time – there is always another algorithm that “forgets” most of 
the sample. 

15
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Boosting Notes

 However, the key contribution of Boosting has been 
practical, as a way to compose a good learner from many 
weak learners.

 It is a member of a family of Ensemble Algorithms, but has 
stronger guarantees than others.

 A Boosting demo is available at 
http://cseweb.ucsd.edu/~yfreund/adaboost/

 Example
 Theory of Boosting

 Simple & insightful  

16

http://cseweb.ucsd.edu/%7Eyfreund/adaboost/
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Boosting Motivation

17
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The Boosting Approach

 Algorithm
 Select a small subset of examples
 Derive a rough rule of thumb
 Examine 2nd set of examples
 Derive 2nd rule of thumb
 Repeat T times
 Combine the learned rules into a single hypothesis

 Questions:
 How to choose subsets of examples to examine on each round?
 How to combine all the rules of thumb into single prediction rule?

 Boosting 
 General method of converting rough rules of thumb into highly 

accurate prediction rule

18
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Theoretical Motivation

 “Strong” PAC algorithm:
 for any distribution
 ∀δ, ε > 0
 Given polynomially many random examples 
 Finds hypothesis with error ≤ε with probability ≥ (1- δ)

 “Weak” PAC algorithm 
 Same, but only for some ε ≤ ½ - ϒ

 [Kearns & Valiant ’88]: 
 Does weak learnability imply strong learnability?
 Anecdote: the importance of the distribution free assumption

 It does not hold if PAC is restricted to only the uniform distribution, 
say

19
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History

 [Schapire ’89]:
 First provable boosting algorithm
 Call weak learner three times on three modified distributions 
 Get slight boost in accuracy 
 apply recursively

 [Freund ’90]:
 “Optimal” algorithm that “boosts by majority”

 [Drucker, Schapire & Simard ’92]:
 First experiments using boosting
 Limited by practical drawbacks

 [Freund & Schapire ’95]:
 Introduced “AdaBoost” algorithm
 Strong practical advantages over previous boosting algorithms

 AdaBoost was followed by a huge number of papers and 
practical applications

20

Some lessons for Ph.D. students
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A Formal View of Boosting
 Given training set (x1, y1), … (xm, ym)
 yi Є {-1, +1} is the correct label of instance xi Є X
 For t = 1, …, T

 Construct a distribution Dt on {1,…m}
 Find weak hypothesis (“rule of thumb”)

ht : X  {-1, +1}
with small error εt on Dt:

εt = PrD [ht (xi) ≠ yi]

 Output: final hypothesis Hfinal

21
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Adaboost
Constructing Dt on {1,…m}:
 D1(i) = 1/m 
 Given Dt and ht : 

 Dt+1 =             Dt(i)/zt e-αt if yi = ht(xi)

Dt(i)/zt e+αt if yi ≠ ht (xi)
=              Dt(i)/zt exp(-αt yi ht (xi))

where zt = normalization constant
and 
αt = ½ ln{ (1 - εt)/εt } 

 Final hypothesis: Hfinal (x) = sign (∑t αt ht(x) )

22

< 1; smaller weight
> 1; larger weight

Notes about αt:               
 Positive due to the weak learning 

assumption
 Examples that we predicted correctly are 

demoted, others promoted
 Sensible weighting scheme:   better 

hypothesis (smaller error)  larger weight

Think about unwrapping it all 
the way to 1/m

e+αt = sqrt{(1-εt)/εt }>1 
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A Toy Example

23
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A Toy Example

24
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A Toy Example

25
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A Toy Example

26
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A Toy Example

27

A cool and important note 
about the final hypothesis: 
it is possible that the 
combined hypothesis makes 
no mistakes on the training 
data, but boosting can still 
learn, by adding more weak 
hypotheses.
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Analyzing Adaboost

28

1. Why is the theorem stated in terms of 
minimizing training error? Is that what we 
want?
2. What does the bound mean?

εt (1- εt) = (1/2-ϒt)(1/2+ ϒt)) = 1/4 - ϒt
2

1-(2ϒt)2 · exp(-(2ϒt)2)

Need to prove only 
the first inequality, 
the rest is algebra.
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AdaBoost Proof (1)

29

Need to prove only 
the first inequality, 
the rest is algebra.

The final “weight” of 
the i-th example
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AdaBoost Proof (2)

30

The definition 
of training error

Always holds for 
mistakes (see above)

Using Step 1

D is a distribution 
over the m examples
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AdaBoost Proof(3)

31

Splitting the sum to 
“mistakes” and no-
mistakes”

The definition of εt

The definition of αt

By definition of Zt; it’s a 
normalization term

Steps 2 and 3 together prove the Theorem.
 The error of the final hypothesis can be as 
low as you want.

e+®t = sqrt{(1 - εt)/ εt }>1 

A strong assumption due to 
the “for all distributions”.
But – works  well in practice

Why does it work? 
The Weak Learning 
Hypothesis
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Boosting The Confidence

 Unlike Boosting the accuracy (ε), Boosting the 
confidence (δ) is easy. 

 Let’s fix the accuracy parameter to ε. 
 Suppose that we have a learning algorithm L such 

that for any target concept c Є C and any 
distribution D, L outputs h s.t. error(h) < ε with 
confidence at least 1- δ0, where δ0 = 
1/q(n,size(c)), for some polynomial q.

 Then, if we are willing to tolerate a slightly higher 
hypothesis error, ε + γ (γ > 0, arbitrarily small) 
then we can achieve arbitrary high confidence 1-
δ.

32
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Boosting The Confidence(2)

 Idea: Given the algorithm L, we construct a new algorithm 
L’ that simulates algorithm L k times (k will be determined 
later) on independent samples from the same distribution

 Let h1, …hk be the hypotheses produced. Then, since the 
simulations are independent, the probability that all of h1,. 
hk have error >ε is as most (1-δ0)k. Otherwise, at least one 
hj is good. 

 Solving (1-δ0)k < δ/2 yields that value of k we need,             
k > (1/δ0) ln(2/δ)

 There is still a need to show how L’ works. It would work 
by using the hi that makes the fewest mistakes on the 
sample S; we need to compute how large S should be to 
guarantee that it does not make too many mistakes.     
[Kearns and Vazirani’s book]

33
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Summary of Ensemble Methods 

 Boosting
 Bagging
 Random Forests

34
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Boosting

 Initialization:
 Weigh all training samples equally

 Iteration Step:
 Train model on (weighted) train set
 Compute error of model on train set
 Increase weights on training cases model gets wrong!!!

 Typically requires 100’s to 1000’s of iterations
 Return final model: 

 Carefully weighted prediction of each model

35
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Boosting: Different Perspectives

 Boosting is a maximum-margin method
(Schapire et al. 1998, Rosset et al. 2004)

 Trades lower margin on easy cases for higher margin on harder cases

 Boosting is an additive logistic regression model  (Friedman, Hastie and 
Tibshirani 2000)

 Tries to fit the logit of the true conditional probabilities

 Boosting is an equalizer
(Breiman 1998) (Friedman, Hastie, Tibshirani 2000)

 Weighted proportion of times example is misclassified by base learners 
tends to be the same for all training cases

 Boosting is a linear classifier, over an incrementally acquired “feature 
space”.

36
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Bagging
 Bagging predictors is a method for generating multiple versions of a 

predictor and using these to get an aggregated predictor.
 The aggregation averages over the versions when predicting a 

numerical outcome and does a plurality vote when predicting a class.
 The multiple versions are formed by making bootstrap replicates of 

the learning set and using these as new learning sets.
 That is, use samples of the data, with repetition

 Tests on real and simulated data sets using classification and 
regression trees and subset selection in linear regression show that 
bagging can give substantial gains in accuracy.

 The vital element is the instability of the prediction method. If 
perturbing the learning set can cause significant changes in the 
predictor constructed then bagging can improve accuracy.

37
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Example: Bagged Decision Trees

 Draw 100 bootstrap samples of data
 Train trees on each sample  100 trees
 Average prediction of trees on out-of-bag samples

38

…

Average prediction
(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24
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Random Forests (Bagged Trees++)

 Draw 1000+ bootstrap samples of data
 Draw sample of available attributes at each split
 Train trees on each sample/attribute set  1000+ trees
 Average prediction of trees on out-of-bag samples

39

…

Average prediction
(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24
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So Far: Classification
 So far we focused on Binary Classification
 For linear models: 

 Perceptron, Winnow, SVM, GD, SGD

 The prediction is simple: 
 Given an example x, 
 Prediction = sgn(wTx)
 Where w is the learned model

 The output is a single bit

40
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Multi-Categorical Output Tasks
 Multi-class Classification (y  ∈ {1,...,K})

 character recognition (‘6’)
 document classification (‘homepage’)

 Multi-label Classification (y ⊆ {1,...,K})
 document classification (‘(homepage,facultypage)’)

 Category Ranking (y  ∈ π(K))
 user preference (‘(love > like > hate)’)
 document classification (‘hompage > facultypage > sports’)

 Hierarchical Classification (y ⊆ {1,..,K})
 cohere with class hierarchy
 place document into index where ‘soccer’ is-a ‘sport’

41
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Setting
 Learning:

 Given a data set D = {(xi , yi)}1
m

 Where xi Є Rn, yi Є {1,2,…,k}.

 Prediction (inference):
 Given an example x, and a learned function (model),
 Output a single class labels y.

42
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Binary to Multiclass
 Most schemes for multiclass classification work by 

reducing the problem to that of binary classification.
 There are multiple ways to decompose the multiclass 

prediction into multiple binary decisions
 One-vs-all
 All-vs-all
 Error correcting codes

 We will then talk about a more general scheme:
 Constraint Classification

 It can be used to model other non-binary classification 
schemes and leads to Structured Prediction.

43



CIS419/519 Spring ’18

One-Vs-All
 Assumption: Each class can be separated from all the rest

using a binary classifier in the hypothesis space.
 Learning: Decomposed to learning k independent binary 

classifiers, one for each class label.
 Learning: 

 Let D be the set of training examples. 
 ∀ label l, construct a binary classification problem as follows:

 Positive examples: Elements of D with label l
 Negative examples: All other elements of D

 This is a binary learning problem that we can solve, producing k 
binary classifiers w1, w2, …wk

 Decision: Winner Takes All (WTA): 
 f(x) = argmaxi wi

Tx

44
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Solving MultiClass with 1vs All learning

 MultiClass classifier
 Function  f : Rn {1,2,3,...,k}

 Decompose into binary problems

 Not always possible to learn 
 No theoretical justification 

 Need to make sure the range of all classifiers is the same

 (unless the problem is easy)
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Learning via One-Versus-All (OvA) Assumption

 Find vr,vb,vg,vy ∈ Rn such that 
 vr.x > 0 iff y = red     ⊗
 vb.x > 0 iff y = blue √
 vg.x > 0 iff y = green √
 vy.x > 0 iff y = yellow √

 Classification: f(x) = argmaxi vi x

H = Rnk

Real 
Problem
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All-Vs-All
 Assumption: There is a separation between every pair of classes using 

a binary classifier in the hypothesis space.
 Learning: Decomposed to learning [k choose 2] ~ k2 independent 

binary classifiers, one corresponding to each pair of class labels. For 
the pair (i, j):
 Positive example: all exampels with label i
 Negative examples: all examples with label j 

 Decision: More involved, since output of binary classifier may not 
cohere. Each label gets k-1 votes.

 Decision Options: 
 Majority: classify example x to take label i if i wins on x more often than j 

(j=1,…k) 
 A tournament: start with n/2 pairs; continue with winners .
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Learning via All-Verses-All (AvA) Assumption

 Find vrb,vrg,vry,vbg,vby,vgy ∈ Rd such that 

 vrb.x > 0 if y = red
< 0 if y = blue

 vrg.x > 0 if y = red
< 0 if y = green

 ... (for all pairs)

Individual 
Classifiers

Decision 
Regions

H = Rkkn

How to 
classify?

It is possible to 
separate all k 
classes with the 
O(k2) classifiers
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Classifying with AvA

Tournament

1 red, 2 yellow, 2 green
 ?

Majority Vote

All are post-learning and might cause weird stuff
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One-vs-All vs. All vs. All
 Assume m examples, k class labels. 

 For simplicity, say, m/k in each.
 One vs. All:

 classifier fi: m/k (+) and (k-1)m/k (-)
 Decision: 
 Evaluate k linear classifiers and do Winner Takes All (WTA): 
 f(x) = argmaxi fi(x)  =  argmaxi wi

Tx
 All vs. All:

 Classifier fij: m/k (+) and m/k (-)
 More expressivity, but less examples to learn from.
 Decision: 
 Evaluate k2 linear classifiers; decision sometimes unstable.  

 What type of learning methods would prefer All vs. All (efficiency-
wise)?  

50
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Error Correcting Codes Decomposition
 1-vs-all uses k classifiers for k labels; can you use only log2 k?
 Reduce the multi-class classification to random binary problems.

 Choose a “code word” for each label.  
 K=8:  all we need is 3 bits, three classifiers 

 Rows: An encoding of each class (k rows)
 Columns: L dichotomies of the data, each corresponds to a new classification 

problem
 Extreme cases:  

 1-vs-all: k rows, k columns 
 k rows log2 k columns

 Each training example is mapped to one example per column
 (x,3)  {(x,P1), +; (x,P2), -; (x,P3), -; (x,P4), +} 

 To classify a new example x:
 Evaluate hypothesis on the 4 binary problems

{(x,P1) , (x,P2), (x,P3), (x,P4),} 
 Choose label that is most consistent with the results.

 Use Hamming distance (bit-wise distance)
 Nice theoretical results as a function of the performance of the Pi s (depending on code &  size)
 Potential Problems? 

Label P1 P2 P3 P4
1 - + - +
2 - + + -
3 + - - +
4 + - + +
k - + - -

Can you separate any dichotomy? 
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Problems with Decompositions
 Learning optimizes over local metrics

 Does not guarantee good global performance
 We don’t care about the performance of the local classifiers

 Poor decomposition ⇒ poor performance
 Difficult local problems
 Irrelevant local problems

 Especially true for Error Correcting Output Codes
 Another (class of) decomposition
 Difficulty: how to make sure that the resulting problems are separable.

 Efficiency: e.g., All vs. All vs. One vs. All
 Former has advantage when working with the dual space.

 Not clear how to generalize multi-class to problems with a very large # of 
output variables.
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1 Vs All:  Learning Architecture
 k label nodes; n input features, nk weights.
 Evaluation: Winner Take All
 Training: Each set of  n weights, corresponding to the i-th label, is trained 

 Independently, given its performance on example x, and 
 Independently of the performance of label j on x. 

 Hence: Local learning; only the final decision is global, (Winner Takes All (WTA)).
 However, this architecture allows multiple learning algorithms; e.g., see the 

implementation in the SNoW/LbJava Multi-class Classifier 
Targets (each an LTU)

Features

Weighted edges (weight 
vectors)
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Recall: Winnow’s Extensions
 Winnow learns monotone Boolean functions
 We extended to general Boolean functions via
 “Balanced Winnow”

 2 weights per variable; 
 Decision: using the “effective weight”, 

the difference between w+ and w-

 This is equivalent to the Winner take all decision 
 Learning: In principle, it is possible to use the 1-vs-all rule and update each set 

of n weights separately, but we suggested the “balanced” Update rule that 
takes into account how both sets of n weights predict on example x

 

If [(w+ − w−)• x ≥ θ] ≠ y, wi
+ ← wi

+ry xi , wi
− ← wi

−r−y xi

Positive
w+

Negative
w-

Can this be generalized to the 
case of k labels, k >2? We need a “global” 

learning approach
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Extending Balanced

55

 In a 1-vs-all training you have a target node that represents 
positive examples and target node that represents negative
examples. 

 Typically, we train each node separately (mine/not-mine 
example).

 Rather, given an example we could say: this is more a + example 
than a – example. 

 We compared the activation of the different target nodes 
(classifiers) on a given example.  (This example is more class +
than class -)

 Can this be generalized to the case of k labels, k >2? 

 

If [(w+ − w−) • x ≥ θ] ≠ y, wi
+ ← wi

+ry xi , wi
− ← wi

−r−y xi
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Where are we?

 Introduction

 Combining binary classifiers
 One-vs-all

 All-vs-all

 Error correcting codes

 Training a single (global) classifier
 Multiclass SVM

 Constraint classification
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Recall: Margin for binary classifiers

 The margin of a hyperplane for a dataset is the distance 
between the hyperplane and the data point nearest to it.
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Multiclass Margin

58
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Multiclass SVM (Intuition)
 Recall: Binary SVM

 Maximize margin
 Equivalently, 

Minimize norm of weight vector, while keeping the closest points to the 
hyperplane with a score § 1

 Multiclass SVM
 Each label has a different weight vector (like one-vs-all)
 Maximize multiclass margin
 Equivalently,

Minimize total norm of the weight vectors while making sure  that the 
true label scores at least 1 more than the second best one.
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Multiclass SVM in the separable case

60

Recall hard binary SVM

The score for the true label is higher 
than the score for any other label by 1

Size of the weights. 
Effectively, regularizer
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Multiclass SVM: General case

61

Size of the weights. 
Effectively, regularizer

The score for the true label is higher 
than the score for any other label by 1

Slack variables. Not all 
examples need to 
satisfy  the margin 

constraint. 

Total slack. Effectively, 
don’t allow too many 

examples to violate the 
margin constraint

Slack variables can 
only be positive
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Multiclass SVM: General case

62

The score for the true label is higher than 
the score for any other label by 1 - ξi

Size of the weights. 
Effectively, regularizer

Slack variables. Not all 
examples need to 
satisfy  the margin 

constraint. 

Total slack. Effectively, 
don’t allow too many 

examples to violate the 
margin constraint

Slack variables can 
only be positive
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Multiclass SVM
 Generalizes binary SVM algorithm

 If we have only two classes, this reduces to the binary (up to 
scale)

 Comes with similar generalization guarantees as the 
binary SVM

 Can be trained using different optimization methods
 Stochastic sub-gradient descent can be generalized 

 Try as exercise
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Multiclass SVM: Summary
 Training:

 Optimize the “global” SVM objective

 Prediction:
 Winner takes all

argmaxi wi
Tx

 With K labels and inputs in Rn, we have nK weights in all
 Same as one-vs-all

 Why does it work?
 Why is this the “right” definition of multiclass margin?

 A theoretical justification, along with extensions to other algorithms 
beyond SVM is given by “Constraint Classification”
 Applies also to multi-label problems, ranking problems, etc. 
 [Dav Zimak; with D. Roth and S. Har-Peled]
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Constraint Classification
 The examples we give the learner are pairs (x,y), y Є {1,…k}
 The “black box learner” (1 vs. all) we described might be thought of as 

a  function of x only but, actually, we made use of the labels y
 How is y being used?

 y decides what to do with the example x; that is, which of the k classifiers 
should take the example as a positive example (making it a negative to all 
the others).

 How do we predict?
 Let: fy(x) = wy

T x
 Then, we predict using:    y* = argmaxy=1,…k fy(x)

 Equivalently, we can say that we predict as follows:
 Predict y iff
 ∀y’ 2 {1,…k}, y’≠y (wy

T – wy’
T ) x ≥ 0    (**)

 So far, we did not say how we learn the k weight vectors wy (y = 1,…k)
 Can we train in a way that better fits the way we predict? 
 What does it mean? 

Is it better in any well defined way?
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 We are learning k n-dimensional weight vectors, so we can concatenate 
the k weight vectors into 

w= (w1, w2,…wk) 2 Rnk

 Key Construction: (Kesler Construction; Zimak’s Constraint Classification)
 We will represent each example (x,y), as an nk-dimensional vector, xy, with x

embedded in the y-th part of it (y=1,2,…k) and the other coordinates are 0.

 E.g.,     xy = (0,x,0,0) ∈ Rkn (here k=4, y=2)
 Now we can understand the n-dimensional decision rule: 
 Predict y iff ∀ y’ 2 {1,…k}, y’: =y  (wy

T – wy’
T ) ¢x ¸ 0    (**)

 Equivalently, in the nk-dimensional space. 
 Predict y iff ∀ y’ 2 {1,…k}, y’≠y wT (xy – xy’)  ≡ wT xyy’ ≥ 0  

 Conclusion: The set (xyy’ , + ) ≡ (xy – xy’ , +) is linearly separable from the 
set        (-xyy’ , - ) using the linear separator w Є Rkn

’
 We solved the voroni diagram challenge. 

Notice: This is just a representational 
trick. We did not say how to learn the 
weight vectors. 

66

We showed: if pairs of labels are separable (a reasonable assumption) than in 
some higher dimensional space, the problem is linearly separable. 

Linear Separability for Multiclass
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Constraint Classification

Training: 
 [We first explain via Kesler’s construction; then show we 

don’t need it]
 Given a data set {(x,y)}, (m examples) with x Є Rn, y Є {1,2,…k}

create a binary classification task (in Rkn):
(xy - xy’, +), (xy’ – xy -),  for all y’ ≠ y (2m(k-1) examples)
Here xy Є Rkn

 Use your favorite linear learning algorithm to train a binary 
classifier. 

Prediction: 
 Given an nk dimensional weight vector w and a new example 

x, predict:                      argmaxy wT xy
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Details: Kesler Construction & 
Multi-Class Separability

 Transform Examples

2>1
2>3
2>4

2>1

2>3

i>j fi(x) - fj(x) > 0
wi ⋅ x - wj ⋅ x > 0
W ⋅ Xi - W ⋅ Xj > 0
W ⋅ (Xi - Xj) > 0
W ⋅ Xij > 0

Xi = (0,x,0,0) ∈ Rkd

Xj = (0,0,0,x) ∈ Rkd

Xij = Xi - Xj = (0,x,0,-x)

W = (w1,w2,w3,w4) ∈ Rkd

2>4
If (x,i) was a given n-
dimensional example (that 
is, x has is labeled i, then 
xij, ∀ j=1,…k, j≠ i, are 
positive examples in the 
nk-dimensional space. –xij
are negative examples. 
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Kesler’s Construction (1)

 y = argmaxi=(r,b,g,y) wi.x
 wi , x ∈ Rn

 Find wr,wb,wg,wy ∈ Rn such that
 wr.x > wb.x
 wr.x > wg.x
 wr.x > wy.x

H = Rkn
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Kesler’s Construction (2)

 Let w = (wr,wb,wg,wy ) ∈ Rkn

 Let 0n, be the n-dim zero vector

 wr.x > wb.x w.(x,-x,0n,0n) > 0  w.(-x,x,0n,0n) < 0
 wr.x > wg.x w.(x,0n,-x,0n) > 0  w.(-x,0n,x,0n) < 0
 wr.x > wy.x w.(x,0n,0n,-x) > 0  w.(-x,0n,0n ,x) < 0

x -x -x x
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Kesler’s Construction (3)
 Let

 w = (w1, ..., wk) ∈ Rn x ... x Rn = Rkn

 xij = (0(i-1)n, x, 0(k-i)n) – (0(j-1)n, –x, 0(k-j)n) ∈ Rkn

 Given (x, y) ∈ Rn x {1,...,k}
 For all j ≠ y (all other labels)

 Add to P+(x,y), (xyj, 1)
 Add to P-(x,y), (–xyj, -1)

 P+(x,y) has k-1 positive examples (∈ Rkn)
 P-(x,y) has k-1 negative examples (∈ Rkn)

-xx
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Learning via Kesler’s Construction
 Given (x1, y1), ..., (xN, yN) ∈ Rn x {1,...,k}
 Create 

 P+ = ∪ P+(xi,yi)
 P– = ∪ P–(xi,yi)

 Find w = (w1, ..., wk) ∈ Rkn, such that 
 w.x separates P+ from P–

 One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.
 To understand how to update the weight vector in the n-dimensional space, 

we note that
 wT xyy’ ≥ 0 (in the nk-dimensional space)
 is equivalent to: 
 (wy

T – wy’
T ) x ≥ 0 (in the n-dimensional space)
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Perceptron in Kesler Construction 
 A perceptron update rule applied in the nk-dimensional space due to a 

mistake in wT xij ≥ 0              
 Or, equivalently to  (wi

T – wj
T )x ≥ 0  (in the n-dimensional space)

 Implies the following update:

 Given example (x,i) (example x 2 Rn, labeled i)
 ∀ (i,j), i,j = 1,…k,  i  ≠ j                      (***)
 If (wi

T - wj
T ) x < 0  (mistaken prediction; equivalent to wT xij < 0 )

 wi wi +x (promotion)           and wj wj – x (demotion)

 Note that this is a generalization of balanced Winnow rule.

 Note that we promote wi and demote k-1 weight vectors wj
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Conservative update
 The general scheme suggests: 
 Given example (x,i) (example x Є Rn, labeled i)

 ∀ (i,j), i,j = 1,…k,  i : = j                      (***)

 If (wi
T - wj

T ) x < 0  (mistaken prediction; equivalent to wT xij < 0 )
 wi wi +x (promotion)           and wj wj – x (demotion)

 Promote wi and demote k-1 weight vectors wj

 A conservative update: (SNoW and LBJava’s implementation):
 In case of a mistake: only the weights corresponding to the target node i and  

that closest node j are updated. 
 Let: j* = argmaxj=1,…k wj

T x   (highest activation among competing labels) 
 If (wi

T – wj*
T ) x < 0  (mistaken prediction) 

 wi wi +x (promotion)           and wj* wj* – x (demotion)
 Other weight vectors are not being updated.
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Multiclass Classification Summary 1:
Multiclass Classification

75

From the full dataset, 
construct three binary 
classifiers, one for each class

wblue
Tx > 0 for 

blue inputs
worg

Tx > 0 for 
orange inputs

wblack
Tx > 0 for 

black inputs

Winner Take All will predict the right answer. 
Only the correct label will have a positive score

Notation: Score 
for blue label
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Multiclass Classification Summary 2:
One-vs-all may not always work

76

Red points are not separable with a single 
binary classifier
The decomposition is not expressive enough!

wblue
Tx > 0 

for blue
inputs

worg
Tx > 0 

for orange
inputs

wblack
Tx > 0 

for black 
inputs

???
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Summary 3: 
Local Learning: One-vs-all classification

77

 Easy to learn
 Use any binary classifier learning algorithm

 Potential Problems
 Calibration issues

 We are comparing scores produced by K classifiers trained independently. 
No reason for the scores to be in the same numerical range!

 Train vs. Train
 Does not account for how the final predictor will be used
 Does not optimize any global measure of correctness

 Yet, works fairly well 
 In most cases, especially in high dimensional problems (everything is 

already linearly separable).  
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Summary 4:
Global Multiclass Approach [Constraint Classification, Har-Peled et. al ‘02]

 Create K classifiers w1, w2, …, wK. ; 

 Predict with WTA: argmaxi wi
Tx

 But, train differently: 
 For examples with label i, we want 

wi
Tx > wj

Tx for all j
 Training: For each training example (𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊) :         

�𝑦𝑦 ← 𝑎𝑎𝑎𝑎𝑎𝑎max
𝒋𝒋
𝒘𝒘𝒋𝒋
𝑇𝑇𝜙𝜙(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)

if �𝑦𝑦 ≠ 𝑦𝑦𝑖𝑖
𝒘𝒘𝑦𝑦𝑖𝑖 ← 𝒘𝒘𝑦𝑦𝑖𝑖 + 𝜂𝜂𝒙𝒙𝑖𝑖 (promote)

𝒘𝒘�𝑦𝑦 ← 𝒘𝒘�𝑦𝑦 − 𝜂𝜂𝒙𝒙𝑖𝑖 (demote)
𝜂𝜂: learning rate
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Significance  
 The hypothesis learned above is more expressive than when the OvA

assumption is used. 
 Any linear learning algorithm can be used, and algorithmic-specific 

properties are maintained (e.g., attribute efficiency if using winnow.)
 E.g., the multiclass support vector machine can be implemented by 

learning a hyperplane to separate P(S) with maximal margin.

 As a byproduct of the linear separability observation, we get a natural 
notion of a margin in the multi-class case, inherited from the  binary 
separability in the nk-dimensional space. 
 Given example  xij Є Rnk,                      margin(xij,w) = min

ij
wT xij

 Consequently, given x Є Rn, labeled i
margin(x,w) = min

j
(wi

T - wj
T ) x 
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Margin

80
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Multiclass Margin
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Constraint Classification

 The scheme presented can be generalized to provide a uniform view 
for multiple types of problems: multi-class, multi-label, category-
ranking 

 Reduces learning to a single binary learning task
 Captures theoretical properties of binary algorithm
 Experimentally verified
 Naturally extends Perceptron, SVM, etc...

 It is called “constraint classification” since it does it all by representing 
labels as a set of constraints or preferences among output labels.
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Multi-category to Constraint Classification
 The unified formulation is clear from the following examples:
 Multiclass

 (x, A)       ⇒ (x, (A>B, A>C, A>D) )
 Multilabel

 (x, (A, B)) ⇒ (x, ( (A>C, A>D, B>C, B>D) ) 
 Label Ranking

 (x, (5>4>3>2>1))   ⇒ (x, ( (5>4, 4>3, 3>2, 2>1) )

 In all cases, we have examples (x,y)  with  y ∈ Sk

 Where Sk : partial order over class labels {1,...,k}
 defines “preference” relation ( > ) for class labeling

 Consequently, the Constraint Classifier is:  h: X → Sk

 h(x) is a partial order

 h(x) is consistent with y if (i<j) ∈ y  (i<j) ∈h(x)

Just like in the multiclass 
we learn one wi Є Rn for 
each label, the same is 
done for multi-label and 
ranking. The weight 
vectors are updated 
according with the 
requirements from y Є Sk
(Consult the Perceptron in Kesler construction slide)
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Properties of Construction (Zimak et. al 2002, 2003)

 Can learn any argmax vi.x function (even when i isn’t linearly separable 
from the union of the others) 

 Can use any algorithm to find linear separation
 Perceptron Algorithm

 ultraconservative online algorithm [Crammer, Singer 2001]
 Winnow Algorithm

 multiclass winnow [ Masterharm 2000 ] 

 Defines a multiclass margin
 by binary margin in Rkd

 multiclass SVM [Crammer, Singer 2001]
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Margin Generalization Bounds
 Linear Hypothesis space: 

 h(x) = argsort vi.x
 vi, x ∈Rd

 argsort returns permutation of {1,...,k}

 CC margin-based bound
 γ = min(x,y)∈S min (i < j)∈y vi.x – vj.x

 

errD (h) ≤ Θ
C
m

R2

γ 2 − ln(δ)
 

 
 

 

 
 

 

 
 

 

 
 

 m - number of examples
 R - maxx ||x||
 δ - confidence
 C - average # constraints
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VC-style Generalization Bounds
 Linear Hypothesis space: 

 h(x) = argsort vi.x
 vi, x ∈Rd

 argsort returns permutation of {1,...,k}

 CC VC-based bound

 

errD (h) ≤ err(S,h) + θ kd log(mk /d) − lnδ
m

 

 
 

 

 
 

 m - number of examples
 d - dimension of input space
 delta - confidence
 k - number of classes

Performance: even though 
this is the right thing to do, 
and differences can be 
observed in low dimensional 
cases, in high dimensional 
cases, the impact is not 
always significant. 
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Beyond MultiClass Classification

 Ranking
 category ranking (over classes)
 ordinal regression (over examples)

 Multilabel
 x is both red and blue

 Complex relationships
 x is more red than blue, but not green

 Millions of classes
 sequence labeling (e.g. POS tagging)
 The same algorithms can be applied to these problems, namely, to Structured 

Prediction
 This observation is the starting point for CS546.
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(more) Multi-Categorical Output Tasks

 Sequential Prediction (y ∈ {1,...,K}+)
e.g. POS tagging (‘(NVNNA)’)

“This is a sentence.” ⇒ D V D N 
e.g. phrase identification
Many labels: KL for length L sentence

 Structured Output Prediction (y ∈ C({1,...,K}+))
e.g. parse tree, multi-level phrase identification
e.g. sequential prediction
Constrained by 

domain, problem, data, background knowledge, etc...
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