Binary Variables

We begin by considering a single binary random variable z € {0,1}. For example,
 might describe the outcome of flipping a coin, with z = 1 representing ‘heads’,
and z = O representing ‘tails’. We can imagine that this is a damaged coin so that
the probability of landing heads is not necessarily the same as that of landing tails.
The probability of z = 1 will be denoted by the parameter 1 so that

plz=1lp) =p 2.1)
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where 0 < p < 1, from which it follows that p(z = 0|u} = 1 — p. The probability
distribution over 2 can therefore be written in the form

Bern{zly) = (1~ p)' =" 22)
Exercise 2.1 which is known as the Bernoulli distribution. Tt is easily verified that this distribution
is normalized and that it has mean and variance given by
Bzl = p 2.3)
varfz] = p(l-p). 2.4
Now suppose we have a data set D = {y,..., 7y} of observed values of .

We can construct the likelihood function, which is a function of 11, on the assumption
that the observations are drawn independently from p(x}u), so that

N N ]
p(Dlu) = [[ plaals) = [[ w5 (@ — )~ @.5)
n=1 n=1

In a frequentist setting, we can estimate a value for p by maximizing the likelihood
function, or equivalently by maximizing the logarithm of the likelihood. In the case
of the Bernoulli distribution, the log likelihood function is given by

N : . N
np(Dlp) =Y InpEalp) =D {zalnp+(I—z)n(l-p}. (26
n=1 n=1 -

At this point, it is worth noting that the log likelihood function depends on the N

observations z,, only through their sum ) | . This sum provides an example of a

sufficient statistic for the data under this distribution, and we shall study the impor-
Section 2.4 tant role of sufficient statistics in some detail. If we set the derivative of In p(D|u)
B with respect to p1 equal to zero, we obtain the maximum likelihood estimator

1 N
s = 5 Zl T @.7)
n=
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tribution (2.9) as a function of m for

Al
f Figure 2.1 Histogram plot of the binomial dis-
| N = 10and u = 0.25.
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n. If we denote the number of observations

which is also known as the sample mea
then we can write (2.7) in the form

of 2 = 1 (heads) within this data set by m,

m
L= (2.8) _

so that the probability of landing heads is given, in this maximum likelihood frame-

work, by the fraction of observations of heads in the data set.

Now suppose we fiip a coin, say, 3 times and happen to observe 3 heads. Then
N =m=3and gy, = 1. In this case, the maximum likelihood result would
predict that all future observations should give heads. Common sense tells us that
this is unreasonable, and in fact this is an extreme example of the over-fitting associ-
ated with maximum likelihood. We shall see shortly how to arrive at more sensible
conclusions through the introduction of a prior distribution over . '

We can atso work out the distribution of the number m of observations of z = 1,
given that the data sct has size N. This is called the binomial distribution, and
from (2.5) we see that'it is proportional to pm{l — p)¥-™. In order to obtain the
| normalization coefficient we note that out of N coin flips, we have to add up all
1 of the possible ways of obtaining m heads, so that the binomial distribution can be

i .
Fi wrilten
. N m N—m
Bin(mIN,p) = | _ |# (1—m 2.9
11 where N N _
| -
(m) = I —myiml @10

i Exercise 2.3 is the number of ways of choosing m objects out of a total of N identical objects.
2 Figure 2.1 shows a plot of the binomial distribution for N = 10 and p = 0.25.

X The mean and variance of the binomial distribution can be found by using the
result of Exercise 1.10, which shows that for independent events the mean of the
. sum is the sum of the means, and the variance of the sum is the sum of the variances.
Because m = ®1 + ... + TN, and for each observation the mean and variance are
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given by (2.3) and (2.4), respectively, we have

N
Efm] = Z mBin(m|N,p) = Np 2.1D
=0

N
var[m] = Z (m —~E[m])’ Bin(m{N,pn) = Np(l—p). (2.12)

These results can also be proved directly using calculus.

2.1.1 The beta distribution

We have seen in (2.8) that the maximum likelihood setting for the parameter g
in the Bernoulli distribution, and hence in the binomial distribution, is given by the
fraction of the observations in the data set having © = 1. As we have already noted,
this can give severely over-fitted results for small data sets. In order to develop a
Bayesian treatment for this problem, we need to introduce a prior distribution p{iz)
over the parameter y1. Here we consider a form of prior distribution that has a simple
interpretation as well as some useful analytical propertics. To motivate this prior,
we note that the likelihood function takes the form of the product of factors of the
form p®(1 — p)*~%. If we choose a prior to be proportional to powers of 4 and
(1 — p), then the posterior distribution, which is proportional to the product of the
prior and the likelihood function, will have the same functional form as the priar.
This property is called conjiugacy and we will see several examples of it later in this
chapter. We therefore choose a prior, called the beta distribution, given by

T'(a+b)
T{a)I'(b)

where I'(z) is the gamma function defined by (1.141), and the coefficient in (2.13)
ensures that the beta distribution is normalized, so that

Beta(ula, b) = [ () (2.13)

fl Beta(pla,b)dp = 1. 2.14)

The mean and variance of the E:eta distribution are given by
El = — (2.15)
varly] (a+b)2(aj Fo+1) 2.16)

The parameters a and b are often called hyperparameters because they control the
distribution of the parameter . Figure 2.2 shows plots of the beta distribution for
various values of the hyperparameters.

The posterior distribution of g is now obtained by multiplying the beta prior
(2.13) by the binomial fikelihood function (2.9) and normalizing. Keeping only the
factors that depend on g, we see that this posterior distribution has the form

p(pjm, 1, a,b) oc ™o (1 — py+el (2.17)
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Figure 2.2 Plots of the beta distribution Beta(u|a, b} given by (2.13) as a function of y for various values of the
hyperparameters ¢ and b.

where [ = N — m, and therefore corresponds to the number of ‘tails’ in the coin
example. We see that (2.17) has the same functional dependence on 4 as the prior
distribution, reflecting the conjugacy properties of the prior with respect to the like-
lihood function. Indeed, it is simply another beta distribution, and its normalization
coefficient can therefore be obtained by comparison with (2.13) to give

Pm+a+14+b) mia 1+b—1
= a=lfy . 2.18
p(plm,1,a,b) T(m + a0 £ )" (1-p) (2.18)

We see that the effect of observing a data set of m observations of z = 1 and
{ observations of # = O has been to increase the value of a by m, and the value of
bby I, in going from the prior distribution to the posterior distribution. This allows
us to provide a simple interpretation of the hyperparameters a and b in the prior as
an effective number of observations of x = 1 and z = 0, respectively. Note that
o and b need not be integers. Furthermore, the posterior distribution can act as the
prior if we subsequently observe additional data, To see this, we can imagine taking
observations one at a time and after each observation updating the current posterior
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Figure 2,3 Illustration of one step of sequential Bayesian inference. The prior is given by a beta distribution
with parameters & = 2, b = 2, and the likelihood function, given by (2.9} with N = m = 1, corresponds to a
single observation of z = 1, so that the posterior is given by a beta distribution with parametersa = 3, b= 2.

Section 2.3.5

distribution by multiplying by the likelihood function for the new observation and
then normalizing to obtain the new, revised posterior distribution. At each stage, the
posterior is a beta distribution with some total number of (prior and actual) observed
values for z = 1 and z = 0 given by the parameters a and b, Incorporation of an
additional observation of = = 1 simply corresponds to incrementing the value of a
by 1, whereas for an observation of = 0 we'increment b by 1. Figure 2.3 illustrates

“one step in this process.

We see that this sequential approach to learning arises naturally when we adopt
a Bayesian viewpoint. It is independent of the choice of prior and of the likelihood
function and depends only on the assumption of i.i.d. data. Sequential methods make
use of observations one at a time, or in small batches, and then discard them before
the next observations are used. They can be used, for example, in real-time learning
scenarios where a steady stream of data is arriving, and predictions must be made
before all of the data is seen. Because they do not require the whole data set to be
stored or loaded into memory, sequential methods are also useful for large data sets.
Maximum likelihood methods can also be cast into a sequential framework.

If our goal is to predict, as best we can, the outcome of the next trial, then we
must evaluate the predictive distribution of z, given the observed data set 2. From
the sum and product rules of probability, this takes the form

oo =11P) = [ ol = a)p(uiD) du = / pp(u{D) dpe = E[ulD].  2.19)

Using the result (2.18) for the posterior distribution p(p|D), together with the result
(2.15) for the mean of the beta distribution, we obtain

m+a
m+a+i+b

which has a simple interpretation as the total fraction of observations (both real ob-
servations and fictitious prior observations) that correspond to z = 1. Note that in
the limit of an infinitely large data set m,! — co the result (2.20) reduces to the
maximum likelihood result (2.8). As we shall see, it is a very general property that

plz =1{D) = (220)

. the Bayesian and maximum likelihood results will agree in the limit of an infinitely
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Evercise 2.7

Exercise 2.8

large data set, Fora finite data set, the posterior mean for p always lies between the
prior mean and the maximum likelihood estimate for corresponding to the relative
frequencies of events given by (2.7).

From Figure 2.2, we see that as the number of observations increases, so the
posterior distribution becomes more sharply peaked. This can also be seen from
the result (2.16) for the variance of the beta distribution, in which we see that the
variance goes to zero for @ — 00 Of b - oo. In fact, we might wonder whether it is
a general property of Bayesian learning that, as we observe more and more data, the
uncertainty represented by the posterior distribution will steadily decrease.

To address this, we can take a frequentist view of Bayesian learning and show
that, on average, such a property does indeed hold. Consider a general Bayesian
inference problem for a parameter @ for which we have observed a data set D, de-
scribed by the joint distribution p(@, D). The following result

Eg{0] = Ep [Ea[0lD]] (221

where

Eol8} = f p(8)8 do (2.22)

BolEoD) = | { [ etor) da}p(:o) 4D 229

says that the posterior mean of @, averaged over the distribution generating the data,
is equal to the prior mean of 6. Similarly, we can show that

varg{0] = Ep [vare[8|D]] + varp [Eo{01DY] . (2:24)

The term on the left-hand side of (2.24) is the prior variance of 8. On the right-
hand side, the first term is the average posterior variance of 6, and the second term
measures the variance in the posterior mean of #. Because this variance is a positive
quantity, this result shows that, on average, the posterior variance of 8 is smatler than
the prior variance. The reduction in vadiance is greater if the variance in the posterior
mean is greater. Note, however, that this result only holds on average, and that for a
particular observed data set it is possible for the posterior variance 0 be larger than
the prior variance.



