Ensembles: Random Forests and Boosting

Learning objectives

Lyle Ungar

Ensembles: random forests Review stagewise regression Know adaboost well See gradient tree boosting

Ensemble: average many predictors

Ensemble method

• Weighted combination of *T* weak models: $h_t(\mathbf{x})$

$$h(\mathbf{x}) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

- Often $\alpha_t = 1$
- For real values, average $h_t(x)$
 - I.e., instead of taking the sign, divide by $\sum_{t=1}^{T} \alpha_t$

Ensembles are great!!!

Bagging

 Generate h_t(x) by resampling a fraction f of the n training points for each of T training sets

$$h(\mathbf{x}) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

- Often $\alpha_t = 1$
- For real values, often average $h_t(x)$

When is bagging a good idea?

- Linear regression?
- Decision trees?
- Deep learning?

When is bagging a good idea?

Linear regression?

• No; when you add a bunch of linear regressions, you still get a linear regression

Decision trees?

• Yes; when you add a bunch of decision trees you get a much more complex decision surface.

Deep learning?

• It gives better accuracy, but mostly people don't do it because it is too expensive

Random Forests

Repeat k times:

- Choose a training set by choosing *f n* training cases
 - with replacement ('bootstrapping')
- Build a decision tree as follows
 - For each node of the tree, randomly choose *m* features and find the best split from among them
- Repeat until the tree is built

To predict, take the modal prediction of the k trees
 Typical values:
 k = 1,000 m = sqrt(p)

Random forests are widely used

They don't overfit

- Why not?
- Where is the regularization?

They don't underfit (much)

- Why are they so much better than decision trees?
- Than logistic regression?

Questions?

Тор

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Stagewise Regression

• Sequentially learn the weights α_t

• Never readjust previously learned weights

$$h(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t \phi_t(\mathbf{x})$$

$$h_0(\mathbf{x}) = 0$$
For $t = 1:T$

$$r_t = y - h_{t-1}(\mathbf{x})$$
find
pick $\phi_t(\mathbf{x})$
regress $r_t = \alpha_t \phi_t(\mathbf{x})$ to find α_t

$$h_t(\mathbf{x}) = h_{t-1}(\mathbf{x}) + \alpha_t \phi_t(\mathbf{x})$$
up

find residual pick next feature

update model

Boosting

Ensemble method

• Weighted combination of weak learners $h_t(\mathbf{x})$

$$h(\mathbf{x}) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

Estimated stagewise

• At each stage, boosting gives more weight to what it got wrong before

Adaboost

Given: n examples (\mathbf{x}_i, y_i) , where $\mathbf{x} \in \mathcal{X}, y \in \pm 1$. Initialize: $D_1(i) = \frac{1}{n}$ For $t = 1 \dots T$

- Train weak classifier on distribution D(i), $h_t(\mathbf{x}) : \mathcal{X} \mapsto \pm 1$
- Choose weight α_t (see how below)
- Update: $D_{t+1}(i) = \frac{D_t(i) \exp\{-\alpha_t y_i h_t(\mathbf{x}_i)\}}{Z_t}$, for all i, where $Z_t = \sum_i D_t(i) \exp\{-\alpha_t y_i h_t(\mathbf{x}_i)\}$

Output classifier: $h(\mathbf{x}) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$

Where α_{t} is the log-odds of the weighted probability of the prediction being wrong

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$
 $\epsilon_t = \sum_i D_t(i) \mathbf{1}(y_i \neq h_t(\mathbf{x_i}))$

Adaboost example

https://alliance.seas.upenn.edu/~cis520/dynamic/2 021/wiki/index.php?n=Lectures.Boosting

Questions?

Тор

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Adaboost minimizes exponential loss

Boosting : $\exp(-y_i f_\alpha(\mathbf{x}_i))$ **Logistic** : $\log(1 + \exp(-y_i f_\mathbf{w}(\mathbf{x}_i)))$

And it learns it exponentially fast

 $\frac{1}{n} \sum_{i} \mathbf{1}(y_i \neq h(\mathbf{x}_i)) \leq \prod_{t=1}^{T} Z_t \leq \exp\{\sum_t -2(0.5 - \epsilon_t)^2\} \leq \exp\{-2T\gamma^2\}$

Average Error

where $\gamma = \min_t (0.5 - \epsilon_t)$.

Exponential in stages T and the accuracy of the weak learner γ

Gradient Tree Boosting

Current state-of-the-art for moderate-sized data sets

• on average very slightly better than random forests

Ensemble of Trees

Adaboost used 'stumps'

Gradient Boosting

- Model: $h(\mathbf{x}) = \Sigma_t \alpha_t h_t(\mathbf{x}) + const$
- Loss function: L(y,h(x))
 - L₂ or logistic or ...
- Base learner: h_t(x)
 - Decision tree of specified depth
- Optionally subsample features
 - "stochastic gradient boosting"
- Do stagewise estimation of h(x)
 - Estimate $h_t(x)$ and α_t at each iteration t

Gradient Tree Boosting for Regression

Loss function: L₂

Base learners h_t(x)

- Fixed-depth regression tree fit on residual
- Gives a constant prediction for each leaf of the tree
- Stagewise: find weights on each h_t(x)
 - Fancy version: fit different weights for each leaf of tree

Gradient Tree Boosting

• Stagewise estimation $h(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})$

♦ For L₂ loss

Initialize $h_0(\mathbf{x}) = average y$ For t = 1:Tpick fraction f of n observations bag $r_t = y - h_{t-1}(\mathbf{x})$ find fit decision tree: $\phi_t(\mathbf{x})$ pick regress $r_t = \alpha_t \phi_t(\mathbf{x})$ to find α_t not $h_t(\mathbf{x}) = h_{t-1}(\mathbf{x}) + \eta \alpha_t \phi_t(\mathbf{x})$ upd

find residual pick weak learner not needed here update model

Gradient Tree Boosting Regularization

- ◆ Tree depth: d
- Number of stages: T
- ◆ Bag size: f n
- Learning rate: η

Regularization helps

http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html

What you should know

Boosting

- Stagewise regression, upweighting previous errors
- Gives highly accurate ensemble models
- Relatively fast
- Tends not to overfit (but still: use early stopping!)

Gradient Tree Boosting

- "base learner" is a decision tree
- Stagewise (on pseudo-residuals)
- Very accurate!!!

Questions?

Тор

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app