Online Learning:
LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard
and Mitch Marcus (and lots original slides by Lyle Ungar)
Learning Objectives
Complexity of OLS
LMS = SDG
Perceptron variations Note: not on midterm
online hinge loss optimization

Why do online learning?

+ Batch learning can be expensive for big datasets
o How expensive is it to compute (XTX)"?

A,B,CorD

A)n? ah
B)p’ i
C)np? e
D)nzp bl

Why do online learning?

+ Batch learning can be expensive for big datasets
e How hard is it to compute (X™X)"?
= Np? to form X™X
= p°toinvert
o Tricky to parallelize inversion

¢ Online methods are easy in a map-reduce environment

o They are often clever versions of stochastic gradient descent

Have you seen map-reduce/hadoop? & "=
O o8

Online learning methods

¢ Least Mean Squares (LMS)

e Online regression -- L, error

¢ Perceptron
e Online SVM -- Hinge loss

LMS: Online linear regression

¢ Minimize Err = 2. (y,— w'x,)? using stochastic gradient
descent
o Look at each observation (x;,y;) sequentially and decrease its
error Err, = (y;— w'x,)?
¢ LMS (Least Mean Squares) algorithm
o Wi =W —n/2dErm/dw,
o dErr/dw,=-2 (y—w'x) X; =—2r1X;
Wit = Wit 1 11X How do you pick the “learning rate” n?

Note that i is the index for both the iteration and the observation, since there is one update
per observation

Online linear regression

¢ LMS (Least Mean Squares) algorithm
Wit = Wit 16X
¢ Converges for 0<m < Ao

o Where A, IS the largest eigenvalue of the covariance
matrix X"X

¢ Convergence rate is proportional to A /A,
(ratio of extreme eigenvalues of X'X)

Perceptron Learning Algorithm

Input: A list T of training examples (Zg, yo) - - - (T, Yn) Where
Vi:y; € {+1,—1}
Output: A classifying hyperplane w
Randomly initialize w;
while model W makes errors on the training data do
for (.’fz, y7,> in T do
Let § = sign(w - T;);
if y_?é yi then If you were wrong, make

W =W + Y Tyi; w look more like x
end

end

end What do we do if error is zero?

Of course, this only converges for linearly separable data

Perceptron Learning Algorithm

For each observation (X, y;)
Wi = Wit M X

Where r, = y;— sign(w;"x;)
andn =7
|.e., if we get it right: no change
if we got it wrong: Wi, =W, + y; X
Ho does this relate to SVMs?

Perceptron update

If the prediction at x, is wrong,
A what is the true label y;?

How do you update w?

w

Perceptron update example

w=w+(-1)x

Properties of the simple perceptron

+ Provably:

o Ifit's possible to separate the data with a hyperplane
(i.e. if it's linearly separable), then the algorithm will

converge to that hyperplane.
o And it will converge such that the number of mistakes M
It makes is bounded by
M < R?/y?
where
R =max [|xi|, size of biggest x
v >y WX > () if separable

Properties of the Simple Perceptron

But what if it isn’t separable?
e Then perceptron is unstable and bounces around

Voted Perceptron

& Works just like a regular perceptron, except you keep track
of all the intermediate models you created

¢ When you want to classify something, you let each of the
many models vote on the answer and take the majority

Often implemented after a “burn-in” period

Properties of Voted Perceptron

¢ Simple!
¢ Much better generalization performance than
regular perceptron

o Almost as good as SVMs

o Can use the ‘kernel trick’ — replace dot product with
another kernel

¢ Training is as fast as a regular perceptron

¢ But run-time is slower
e Since we need n models

Averaged Perceptron

+ The final model is the average of all the
intermediate models

¢ Approximation to voted perceptron
Again extremely simple!
e and can use kernels

Nearly as fast to train and exactly as fast to run
as regular perceptron

Many possible perceptrons

¢ If point x; is misclassified
® Wi =W tNYiX
+ Different ways of picking learning rate

« Standard perceptron: n =1

o Guaranteed to converge to the correct answer in a finite
time if the points are separable (but oscillates otherwise)

o Can get bounds on error even for non-separable case

¢ Alternate: pick n to maximize the margin (w;"x:)
in some fashion

Can we do a better job of picking n?

¢ Perceptron:
For each observation (y;, x;)
Wi = W+ 1 X
where r; = ;- sign(w;"x)
and n = %

Let's use the fact that we are actually trying to
minimize a loss function

Passive Aggressive Perceptron

« Minimize the hinge loss at each observation
o L(w;;x,y)=0ify;w'x;>=1 (loss 0O if correct with margin > 1)
T-vy;w/'x; else
« Pick w;,, to be as close as possible to w; while still

setting the hinge loss to zero
o If point x; is correctly classified with a margin of at least 1
= NO change
o Otherwise
= Wi SWit Y X
= Where 1 = L(w;; x;,y;)/||xi[|
. Can prove bounds on the total hinae loss

Passive-Aggressive = MIRA

Yi — Wi~ Ty

Wi41 = Wi - EAE T
(
easy to show: b -,
yi(wirs i) = y; (wi + = ||x-lz\2) = 1 |
X ' perceptron

newscore Vi (WiX t+Yi-Wi«X)= Yy 7\ ~/
SR 4MIRA
/

NS
.&.N
S/
w; /]
~

Moves hyperplane so that new point is on the margin

Margin-Infused Relaxed Algorithm (MIRA)

¢ Multiclass; each class has a prototype vector
o Note that the prototype w s like a feature vector x

Classify an instance by choosing the class whose prototype
vector is most similar to the instance

o Has the greatest dot product with the instance

¢ During training, make the ‘smallest’ change to the prototype
vectors which guarantees correct classification by a
specified margin

e ‘passive aggressive’

Can we parallelize SGD?

¢ If | give you 1,000 machines, how do you speed
SDG up?

What we didn’t cover

¢ Feature selection

What you should know

¢ LMS

e Online regression

¢ Perceptrons
e Online SVM
=« Large margin / hinge loss
e Has nice mistake bounds (for separable case): see wiki
e In practice, use averaged perceptrons
o Passive Aggressive perceptrons and MIRA
= Change w just enough to set its hinge loss to zero.

