Recitation: AutoML, Active Learning, RL Lyle Ungar

Auto-ML

• What is the meta-model learned by auto-sklearn?

- **Inputs:** meta-features of a dataset, hyperparameters
- Output: model test accuracy
- Why is this called "meta-learning" using "metafeatures?
- What is "Bayesian" about this approach?

Active Learning

Active learning

- Uncertainty sampling
- Query by committee
- Information-based loss functions
- Optimal experimental design
- Response surface modeling

What is the difference between uncertainty sampling and maximizing information gain?

How is "Query by Committee" a kind of uncertainty sampling?

Active Learning

Active learning

- Uncertainty sampling
- Query by committee
- Information-based loss functions
- Optimal experimental design
- Response surface modeling

How is "Query by Committee" a kind of uncertainty sampling?

The amount of disagreement between the weak learners (e.g. the Decision Trees in a RF) is a measure of uncertainty

What is the difference between uncertainty sampling and maximizing information gain? **uncertainy:** argmin_x |f(x,w) - 0.5|

Info gain: argmax_x KL(f(x,w({X,x}), f(x,w(X))

Find A-optimal design for regression

Current model

- $y = x_1 + 2 x_2$
- Current data
 - **X** = [1 1; 1 2]
- Which data point is better to label: (0,0) or (2,2)?
- How do you answer this?

Goal: Minimize variance of *w*

If $y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ then $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

 $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\beta}, \, \boldsymbol{\sigma}^2(\mathbf{X}^T \mathbf{X})^{-1}) \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \, \boldsymbol{\sigma}^2)$

We want to minimize the variance of our parameter estimate \mathbf{w} , so pick training data \mathbf{X} to minimize $(\mathbf{X}^T \mathbf{X})^{-1}$

But that is a matrix, so we need to reduce it to a scalar
A-optimal (average) design minimizes
D-optimal (determinant) design minimizes
E-optimal (extreme) design minimizestrace(X^TX)⁻¹
log det(X^TX)⁻¹
max eigenvalue of (X^TX)⁻¹

Alphabet soup of other criteria (C-, G-, L-, V-, etc.)

Find A-optimal design for regression

Current data

• X = [1 1; 1 2]

◆ Which data point is better to label: (0,0) or (2,2)?

(0,0) 7.0000000000000 (2,2) 3.00000000000003

Uncertainty sampling

Current model

• $log(p(y)/(1-p(y)) = x_1 + 2 x_2$

Current data

- X = [1 1; 1 2]
- Which data point is better to label: (0,0) or (2,2)?
- How do you answer this?

Uncertainty sampling

Current model

• $log(p(y)/(1-p(y)) = x_1 + 2 x_2$

♦ Which data point is better to label: (0,0) or (2,2)?

- (0,0) : log(p(y)/(1-p(y)) = 0
- (2,2): log(p(y)/(1-p(y)) = 6
- Which is more uncertain?
 - (0,0): p(y)/(1-p(y)) = 1
 - $(2,2): p(y)/(1-p(y)) = e^6$

Response surface modeling

- Goal: find argmin_x f(x)
 Assume y = f(x) = w₀ + w₁x + w₂x²
 Start with three (x,y) points

 (0,0) (1,-1) (2,1)
- What do I do?

Response surface modeling

- Assume $y = f(x) = w_0 + w_1 x + w_2 x^2$
- Start with three (x,y) points
 - (0,0) (2,0) (3,3) -- currently at x=1
- What do I do?
 - Fit model : $f(x) = 0 2x + x^2$
 - Find better x: x=1
 - **Observe** *y*: *y* = -1
 - Repeat