Midterm Review

2022

Lot of methods!

- Nonparametric
- Instance-based (k-nn)

Different model forms, Different loss functions Different optimizations

- Tree ensembles: random forest, gradient tree boosting
- Parametric
- Linear, logistic regression, SVM
- Different loss functions, penalties
- Equivalence between MLE/MAP and loss/penalized loss

Lots of concepts

- MLE/MAP
- Likelihood to loss function; prior to penalty
- Entropy, info-gain, KL-divergence
- Bias/variance
- Norm, distance, kernel
- L0, L1, L2
- Stagewise, residual, boosting
- Model forms: linear, logistic, RBF
- Reqularization methods...

How to characterize problems

- $n \gg$ or \sim ore $\ll p$
- Is there a clear distance measure between points?
- Is feature selection needed?

For supervised learning!
Later: unsupervised and reinforcement

What to use when?

-n $\gg p$

- Object recognition, speech recognition
- $p \gg n$
- Brain image classification
- Predict county-level health from twitter word counts
- Depression from cell phone sensor data
- $p \sim n$
- Disease diagnosis from medical records

What to use when?

- $n \gg p$ Deep learning
- Object recognition, speech recognition
- $\mathrm{p} \gg \mathrm{n}$ map to smaller feature space (RBF, PCA)
- Brain image classification (or K-NN)
- Predict county-level health from twitter word counts
- Depression from cell phone sensor data
- p ~ n Random Forest/GTB, logistic regression
- Disease diagnosis from medical records
- Need to regularize regression

How to regularize (p~n)

- If most features are expected to be correlated with the outcome
- If very few features are expected to be correlated with the outcome

How to regularize (p~n)

- If most features are expected to be correlated with the outcome
- L1/L2
- If very few features are expected to be correlated with the outcome
- L0 or L1

Where is the gradient in Gradient Tree Boosting?

- Stagewise updates the model by reducing the Error in the direction of the residual, r
- d Errl dr
- For an L2 loss, this is accomplished by reducing the residual, since
- d Err/ $d r=d\left\|y-\left(h_{t-1}(x)+r(x)\right)\right\|_{2}^{2} \sim r$

This allows us to make changes not by changing the weights (as in d Err/dw) in a parametric model, but by adding a correction to the model in the form of a tree

When to standardize data?

- Decision tree?
-k-nn?
- OLS?
- Elastic net?
$-L_{0}$ penalized regression?
- SVM?

Where do we use search?

- Decision tree?
- k-nn?
- OLS?

Elastic net?
$-L_{0}$ penalized regression?

- SVM?
- Deep learning?

Kullback Leibler divergence

- $P=$ true distribution;
- $Q=$ alternative distribution that is used to encode data
- KL divergence is the expected extra message length per datum that must be transmitted using Q

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{i} P\left(x_{i}\right) \log \left(P\left(x_{i}\right) / Q\left(x_{i}\right)\right) \\
& =\sum_{i} P\left(x_{i}\right)\left(-\log Q\left(x_{i}\right)--\log P\left(x_{i}\right)\right) \\
& =-\sum_{i} P\left(x_{i}\right) \log Q\left(x_{i}\right)--\sum_{i} P\left(x_{i}\right) \log P\left(x_{i}\right) \\
& =H(P, Q) \\
& =\text { Cross-entropy }
\end{aligned}
$$

- Measures how well Q approximates P

Where do we use KL-divergence?

- $D\left(p\left(y \mid x, x^{\prime}\right) \| p(y \mid x)\right)$
- $D(y \| h(x))$

Information and friends

- Entropy of the expected value of \qquad
- KL divergence is the expected value of
- Information gain is the difference between

Bias Variance Tradeoff

- Bias: if you estimate something many times on different training sets, will you systematically be high or low?
- Variance: if you estimate something many times on different training sets, how much does your estimate vary?
$\operatorname{Bias}(\hat{\theta})=E[\hat{\theta}-\theta]=E[\hat{\theta}]-E[\theta]$
$\operatorname{Var}(\hat{\theta})=E\left[(\hat{\theta}-E[\hat{\theta}])^{2}\right]$

Bias Variance Tradeoff - OLS

- Test Error = Variance + Bias $^{2}+$ Noise

$$
\mathbf{E}_{x, y, D}\left[(h(x ; D)-y)^{2}\right]=\underbrace{\mathbf{E}_{x, D}\left[(h(x ; D)-\bar{h}(x))^{2}\right]}_{\text {Variance }}+\underbrace{\mathbf{E}_{x}\left[(\bar{h}(x)-\bar{y}(x))^{2}\right]}_{\text {Bias }^{2}}+\underbrace{\mathbf{E}_{x, y}\left[(\bar{y}(x)-y)^{2}\right.}_{\text {Noise }}
$$

- This applies both to estimating w and to estimating y

$$
\text { Error }=E\left[(y-\hat{y})^{2}\right]=\operatorname{Bias}(\hat{y})^{2}+\operatorname{Var}(\hat{y})+\sigma^{2}
$$

Bias Variance Tradeoff - OLS

- Test Error = Variance + Bias $^{2}+$ Noise

$$
\mathbf{E}_{x, y, D}\left[(h(x ; D)-y)^{2}\right]=\underbrace{\mathbf{E}_{x, D}\left[(h(x ; D)-\bar{h}(x))^{2}\right]}_{\text {Variance }}+\underbrace{\mathbf{E}_{x}\left[(\bar{h}(x)-\bar{y}(x))^{2}\right]}_{\text {Bias }^{2}}+\underbrace{\mathbf{E}_{x, y}\left[(\bar{y}(x)-y)^{2}\right.}_{\text {Noise }}
$$

- This applies both to estimating w and to estimating y

$$
\text { Error }=E\left[(y-\hat{y})^{2}\right]=\operatorname{Bias}(\hat{y})^{2}+\operatorname{Var}(\hat{y})+\sigma^{2}
$$

Bias-Variance Trade-off

Higher complexity = larger or smaller?
bias ${ }^{2}$
variance
k of k-nn
λ of L_{p}
kernel width (RBF)
decision tree depth

$$
\begin{aligned}
& \ldots \\
& \mathbf{E}_{x}\left[(\bar{h}(x)-\bar{y}(x))^{2}\right] \\
& - \\
& \mathbf{E}_{x, D}\left[(h(x ; D)-\bar{h}(x))^{2}\right]
\end{aligned}
$$

Adaboost

Given: n examples $\left(\mathbf{x}_{i}, y_{i}\right)$, where $\mathbf{x} \in \mathcal{X}, y \in \pm 1$.
Initialize: $D_{1}(i)=\frac{1}{n}$
For $t=1 \ldots T$

- Train weak classifier on distribution $D(i), h_{t}(\mathbf{x}): \mathcal{X} \mapsto \pm 1$
- Choose weight α_{t} (see how below)
- Update: $D_{t+1}(i)=\frac{D_{t}(i) \exp \left\{-\alpha_{t} y_{i} h_{t}\left(\mathbf{x}_{i}\right)\right\}}{Z_{t}}$, for all i, where $Z_{t}=\sum_{i} D_{t}(i) \exp \left\{-\alpha_{t} y_{i} h_{t}\left(\mathbf{x}_{i}\right)\right\}$

Output classifier: $h(\mathbf{x})=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(\mathbf{x})\right)$
Where α_{t} is the log-odds of the weighted probability of the prediction being wrong

$$
\alpha_{t}=\frac{1}{2} \log \frac{1-\epsilon_{t}}{\epsilon_{t}} \quad \epsilon_{t}=\sum_{i} D_{t}(i) 1\left(y_{i} \neq h_{t}\left(\mathbf{x}_{\mathbf{i}}\right)\right)
$$

SVM: Hinge loss, ridge penalty

$$
h(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

$$
\min _{\mathbf{w}, b, \xi \geq 0} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i} \xi_{i}
$$

$\xi_{i}=\max \left(0,1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)$
0 if score is correct by 1 or more (hinge loss)

SVM as constrained optimization

Hinge primal:

$$
\begin{aligned}
\min _{\mathbf{w}, b, \xi \geq 0} & \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad i=1, \ldots, n
\end{aligned}
$$

$$
\xi_{i}=\max \left(0,1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)
$$

"Slack variable" - hinge loss from the margin

SVM dual

Hinge dual:

$$
\begin{aligned}
\max _{\alpha \geq 0} & \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j} \\
\text { s.t. } & \sum_{i} \alpha_{i} y_{i}=0, \quad \alpha_{i} \leq C, \quad i=1, \ldots, n
\end{aligned}
$$

$\mathrm{x}_{\mathrm{i}} \mathrm{T}_{\mathrm{j}}$ is the kernel matrix

$$
\mathbf{w}=\sum_{\underline{i}} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

C controls regularization

Kernel functions $\mathrm{k}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$

- Measure similarity or distance?
- How to check if something is a kernel function?
- Compute a Kernel matrix with elements $k\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathrm{i}}\right)$
- Make sure its eigenvalues are non-negative
- Example: $\mathrm{k}\left(\mathbf{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{x}_{\mathrm{i} 1}+\mathrm{x}_{\mathrm{i} 2}+\mathrm{x}_{\mathrm{j} 1}+\mathrm{x}_{\mathrm{j} 2}$
- Try the single point $\mathbf{x}=(1,-2)$
- $K(x, x)=1-2+1-2=[-3]$ which is a matrix with eigenvalue -3

When do we need search?

- Anything with discrete choices
- Features in or out of a model
- Number of hidden nodes or layers
- Activation function type
- Most optimization problems (gradient descent)
- Convex: Logistic regression, SVMs
- Nonconvex: neural nets

Stepwise regression

- Stepwise regression is used to minimize
A) Training set error (MLE)
B) L Lo penalized training set error
C) any penalized training set error
D) None of the above

Why?
Answer: B. If the problem is convex, we don't need stepwise regression

Stepwise regression

- Given p features of which q end up being selected
- Stepwise regression will estimate ...
A) q regressions
B) p regressions
C) q p regressions
D) more regressions...

Answer: C.

Streamwise regression

- Given p features of which q end up being selected
- Streamwise regression will estimate ...
A) q regressions
B) p regressions
C) q p regressions
D) more regressions...

Answer: B

Stagewise regression

- Given p features of which q end up being selected
- Stagewise regression will estimate ...
A) q regressions
B) p regressions
C) q p regressions
D) more regressions...

Answer: B, if one assumes it is being doing a streamwise search. One could also in theory do a stepwise search, in which case C would be right

Stepwise regression

- Given p features of which q end up being selected
- The largest matrix that needs to be inverted is
A) 1×1
B) $q \times q$
C) $p x p$
D) bigger

Answer: B

Stagewise regression

- Given p features of which q end up being selected
- The largest matrix that needs to be inverted is
A) 1×1
B) $q \times q$
C) $p x p$
D) bigger

Answer: A we only add one feature at a time!

Streamwise regression - example

- Assume the true model is

$$
\begin{aligned}
& y=2 x_{1}+0 x_{2}+2 x_{3}+5 x_{4} \\
& \text { with } x_{1}=x_{3} \quad \text { (two columns are identical) } \\
& \text { and all features standardized }
\end{aligned}
$$

- thus X_{4} will do the most to reduce the error

Streamwise: models are $y=$

$$
0,4 x_{1}, 4 x_{1}, 4 x_{1}, 4 x_{1}+5 x_{4}
$$

Stepwise: models are $y=$
0. $5 x_{1}, 4 x_{1}+5 x_{1}$ or $4 x_{2}+5 x_{1}$

RBF

- Transform X to Z using
- $z_{i \mathrm{i}}=\phi_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{k}\left(\mathrm{x}_{\mathrm{i}}, \mu_{\mathrm{j}}\right)$

RBF uses what kernel?

- How many μ_{j} do we use?
- A) $k<p$
- B) $k=p$
- C) $k>p$
- D) any of the above
- How do we pick k?
- What other complexity tuner do we have?
- Linearly regress y on Z

$$
y_{i}=\sum_{i} a_{i} \phi_{i}\left(\mathbf{x}_{\mathrm{i}}\right)
$$

Kernel question

$$
\begin{array}{cc}
\mathbf{x} & \mathbf{y} \\
(1,1) & +1 \\
(1,0) & -1 \\
(0,1) & -1 \\
(-1,1) & +1
\end{array}
$$

Can you make this linearly separable with 4 Gaussian kernels?

Can you make this linearly separable with 2 Gaussian kernels?

Can you make this linearly separable with 1 Gaussian kernel?

Logistic Regression

$$
\begin{gathered}
P(Y=1 \mid \mathbf{x}, \mathbf{w})=\frac{1}{1+\exp \left\{-\sum_{j} w_{j} x_{j}\right\}}=\frac{1}{1+\exp \left\{-\mathbf{w}^{\top} \mathbf{x}\right\}}=\frac{1}{1+\exp \left\{-y \mathbf{w}^{\top} \mathbf{x}\right\}} \\
P(Y=-1 \mid \mathbf{x}, \mathbf{w})=1-P(Y=1 \mid \mathbf{x}, \mathbf{w})=\frac{\exp \left\{-\mathbf{w}^{\top} \mathbf{x}\right\}}{1+\exp \left\{-\mathbf{w}^{\top} \mathbf{x}\right\}}=\frac{1}{1+\exp \left\{-y \mathbf{w}^{\top} \mathbf{x}\right\}} \\
\log \left(\frac{P(Y=1 \mid \mathbf{x}, \mathbf{w})}{P(Y=-1 \mid \mathbf{x}, \mathbf{w})}\right)=\mathbf{w}^{\top} \mathbf{x}
\end{gathered}
$$

Log likelihood of data

$$
\begin{aligned}
\log \left(P\left(D_{Y} \mid D_{X}, \mathbf{w}\right)\right) & =\log \left(\prod_{i} \frac{1}{1+\exp \left\{-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right\}}\right) \\
& =-\sum_{i} \log \left(1+\exp \left\{-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right\}\right)
\end{aligned}
$$

Decision Boundary

$$
\begin{aligned}
P(Y=1 \mid \mathbf{x}, \mathbf{w}) & =P(Y=-1 \mid \mathbf{x}, \mathbf{w}) \\
\frac{1}{1+\exp \left\{-\mathbf{w}^{\top} \mathbf{x}\right\}} & =\frac{\exp \left\{-\mathbf{w}^{\top} \mathbf{x}\right\}}{1+\exp \left\{-\mathbf{w}^{\top} \mathbf{x}\right\}} \\
\mathbf{w}^{\top} \mathbf{x} & =0
\end{aligned}
$$

Prediction: $y=\operatorname{sign}\left(w^{\top} \mathbf{x}\right)$

k-class logistic regression

$$
P(Y=k \mid \mathbf{x}, \mathbf{w})=\frac{\exp \left\{\mathbf{w}_{k}^{\top} \mathbf{x}\right\}}{\sum_{k=1}^{k} \exp \left\{\mathbf{w}_{k}^{\top} \mathbf{x}\right\}}, \text { for } k=1, \ldots, K
$$

Prediction: $\mathrm{y}=\operatorname{argmax}_{\mathrm{k}}\left(\mathbf{w}_{\mathrm{k}}{ }^{\top} \mathbf{x}\right)$

