Exam Wednesday

- In class (unless otherwise arranged)
 - Email me or Ed private post if you have covid ASAP
- Bubble sheet bring pencil and eraser
- Exams from past years may cover different material
- ♦ No office hours or pods WθFSS after the exam
- ◆ HW4 due a week from Tuesday

Online Learning: LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard and Mitch Marcus (with lots of original slides by Lyle Ungar)

Learning Objectives
Complexity of OLS
LMS = SGD
Perceptron variations
online hinge loss optimization

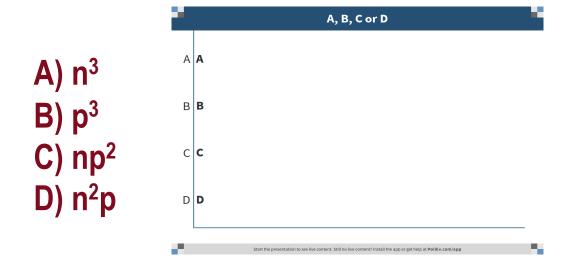
Note: not on midterm

Online (streaming) learning

- ◆ Streaming (in observations) vs streamwise (in features)
- **♦** Why do streamwise?
- ♦ Why do streaming?
 - Where have we seen streaming?

Why do online learning?

- ◆ Batch learning can be expensive for big datasets
 - How expensive is it to compute $(X^TX)^{-1}$?



Why do online learning?

- Batch learning can be expensive for big datasets
 - How hard is it to compute $(X^TX)^{-1}$?
 - np² to form X^TX
 - p³ to invert (with a naïve algorithm) Have you seen SVD?
 - Tricky to parallelize inversion (but easy to approximate)
- Online methods are easy in a map-reduce environment
 - They are often clever versions of stochastic gradient descent Have you seen map-reduce/hadoop?

Online learning methods

- ◆ Least Mean Squares (LMS)
 - Online regression -- L₂ error
 - Stochastic gradient descent
 - "Streaming"
- **♦** Perceptron
 - Online SVM -- Hinge loss

LMS: Online linear regression

- ♦ Minimize Err = Σ_i (y_i w^Tx_i)² using stochastic gradient descent
 - Look at each observation (x_i,y_i) sequentially and decrease its error: Err_i = (y_i - w^Tx_i)²
- ◆ LMS (Least Mean Squares) algorithm
 - $\mathbf{w}_{i+1} = \mathbf{w}_i \eta/2 \, dErr_i/d\mathbf{w}_i$
 - $dErr_i/dw_i = -2 (y_i w_i^T x_i) x_i = -2 r_i x_i$ • $w_{i+1} = w_i + \eta r_i x_i$ How do you pick the "learning rate" η ?

Note that *i* is the index for both the iteration and the observation, since there is one update per observation

Online linear regression

◆ LMS (Least Mean Squares) algorithm

$$\mathbf{w}_{i+1} = \mathbf{w}_i + \eta \mathbf{r}_i \mathbf{x}_i$$

- ♦ Converges for $0 < \eta < \lambda_{max}$
 - Where λ_{max} is the largest eigenvalue of the covariance matrix $\mathbf{X}^T\mathbf{X}$
- Convergence rate is proportional to $\lambda_{min}/\lambda_{max}$ (ratio of extreme eigenvalues of $\mathbf{X}^T\mathbf{X}$)

Perceptron Learning Algorithm

```
Input: A list T of training examples \langle \vec{x}_0, y_0 \rangle \dots \langle \vec{x}_n, y_n \rangle where \forall i: y_i \in \{+1, -1\}

Output: A classifying hyperplane \vec{w}

Randomly initialize \vec{w};

while model\ \vec{w} makes errors on the training data do

for \langle \vec{x}_i, y_i \rangle in T do

Let \hat{y} = sign(\vec{w} \cdot \vec{x}_i);

if \hat{y} \neq y_i then

\vec{w} = \vec{w} + y_i \vec{x}_i;

end

end

What do we do if error is zero?
```

Of course, this only converges for linearly separable data

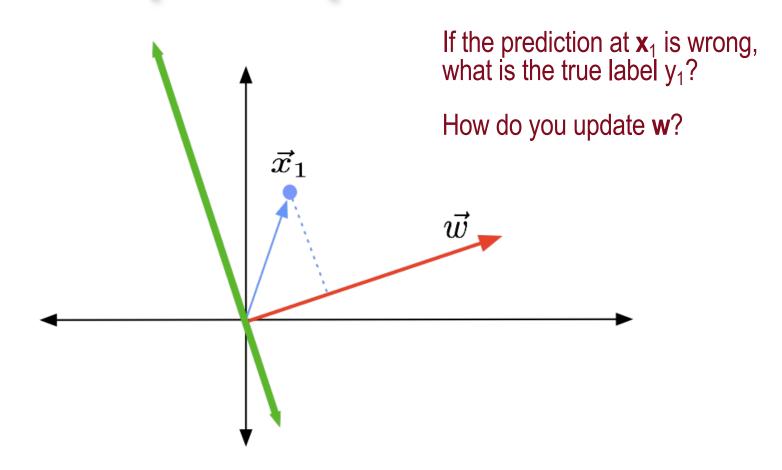
Perceptron Learning Algorithm

```
For each observation (\mathbf{x}_i, \mathbf{y}_i)

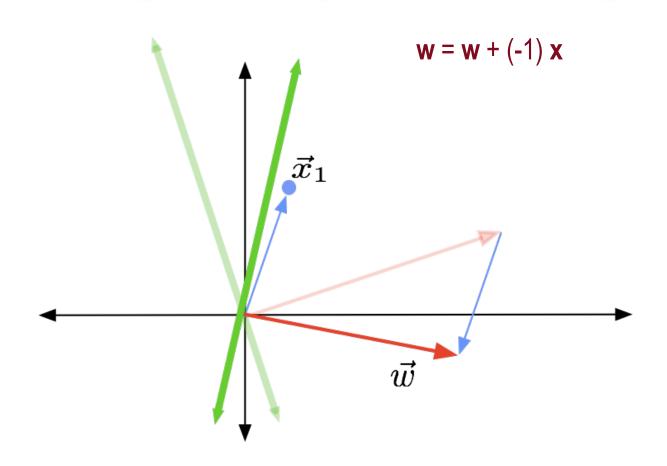
\mathbf{w}_{i+1} = \mathbf{w}_i + \eta \mathbf{r}_i \mathbf{x}_i
```

```
Where r_i = y_i - sign(\mathbf{w}_i^T \mathbf{x}_i)
and \eta = \frac{1}{2}
I.e., if we get it right: no change
if we got it wrong: \mathbf{w}_{i+1} = \mathbf{w}_i + y_i \mathbf{x}_i
How does this relate to SVMs?
```

Perceptron update



Perceptron update example



Properties of the simple perceptron

◆ Provably:

- If data are *linearly separable*, then the algorithm will converge to a solution
- The number of mistakes M it makes is bounded by

$$M < R^2/\gamma^2$$

where

$$R = \max_{i} ||\mathbf{x}_{i}||_{2}$$

$$\gamma < y_i \ \mathbf{w}^{*T} \mathbf{x}_i$$

size of biggest x

> 0 if separable; γ is the margin

Properties of the Simple Perceptron

But what if it isn't separable?

Then perceptron is unstable and bounces around

Voted Perceptron

- Works just like a regular perceptron, except you keep track of all the intermediate models you created
- ◆ When you want to classify something, you let each of the many models vote on the answer and take the majority

Often implemented after a "burn-in" period

Properties of Voted Perceptron

- ◆ Much better generalization performance than regular perceptron
 - Almost as good as SVMs
 - Can use the 'kernel trick' replace dot product with another kernel
- ◆ Training is as fast as a regular perceptron
- **◆ But run-time is slower**
 - Since we need **n** models

Averaged Perceptron

- ◆ The final model is the average of all the intermediate models
- Approximation to voted perceptron
- Again extremely simple!
 - and can use kernels
- ◆ Nearly as fast to train and exactly as fast to run as regular perceptron

Many possible perceptrons

- ◆ If point x_i is misclassified
 - $\mathbf{W}_{i+1} = \mathbf{W}_i + \eta \mathbf{y}_i \mathbf{X}_i$
- Different ways of picking learning rate η
- Standard perceptron: $\eta = 1$
 - Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)
 - Can get bounds on error even for non-separable case
- ◆ Alternate: pick η to maximize the margin (w_i^Tx_i) in some fashion

Can we do a better job of picking η ?

♦ Perceptron:

```
For each observation (y_i, \mathbf{x}_i)

\mathbf{w}_{i+1} = \mathbf{w}_i + \eta r_i \mathbf{x}_i

where r_i = y_i - \text{sign}(\mathbf{w}_i^T \mathbf{x}_i)

and \eta = \frac{1}{2}
```

Let's use the fact that we are actually trying to minimize a loss function

Passive Aggressive Perceptron

- Minimize the hinge loss at each observation
 - $L(\mathbf{w_i}; \mathbf{x_i}, y_i) = 0$ if $y_i \mathbf{w_i}^T \mathbf{x_i} >= 1$ (loss 0 if correct with margin > 1) 1 - $y_i \mathbf{w_i}^T \mathbf{x_i}$ else
- Pick w_{i+1} to be as close as possible to w_i while still setting the hinge loss to zero
 - If point x_i is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - $\mathbf{w}_{i+1} = \mathbf{w}_i + \eta y_i \mathbf{x}_i$
 - where $\eta = L(\mathbf{w_i}; \mathbf{x_i}, \mathbf{y_i})/||\mathbf{x_i}||^2$
- Can prove bounds on the total hinge loss.

Passive-Aggressive = MIRA

$$w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i$$

easy to show:
$$y_i(w_{i+1}\cdot x_i)=y_i\ (w_i+\frac{y_i-w_i\cdot x_i}{\|x_i\|^2}x_i)\cdot x_i=1$$
 new score
$$y_i\ (w_{i^*}x_i+y_i-w_{i^*}x_i)=y_i\ y_i$$

Moves hyperplane so that new point is on the margin

Margin-Infused Relaxed Algorithm (MIRA)

- ◆ Multiclass; each class has a prototype vector
 - Note that the prototype w is like a feature vector x
- ◆ Classify an instance by choosing the class whose prototype vector is most similar to the instance
 - Has the greatest dot product with the instance
- ◆ During training, make the 'smallest' change to the prototype vectors which guarantees correct classification by a specified margin
 - "passive aggressive"

Can we parallelize SGD?

◆ If I give you 1,000 machines, how do you speed SGD up?

What we didn't cover

◆ Feature selection in online learning (tricky)

What you should know

◆ LMS

Online regression

♦ Perceptrons

- Online SVM
 - Large margin / hinge loss
- Has nice mistake bounds (for separable case): see wiki
- In practice, use averaged perceptrons
- Passive Aggressive perceptrons and MIRA
 - Change *w* just enough to set its hinge loss to zero.