
Neural Networks:
Deep Learning

Lyle Ungar

Multilevel network: architecture, link functions
CNNs: local receptive fields, max pooling
----------------------------------
Regularization: L2, early stopping, dropout
Gradient Descent (Adagrad again)
Semi-supervised and transfer learning
Later: autoencoders, including transformers



All machine learning is optimization
ŷ = f(x; θ)

argminθ ||y – ŷ||

So what’s new this decade?
(Slightly) different loss functions
(Slightly) different optimization methods
GPU instead of CPU
Different, flexible, functional forms for f

which require regularization



Loss functions
ŷ = f(x; θ)

argminθ ||y – ŷ||
||y – ŷ ||2 ||y – ŷ ||1 ||y – ŷ ||0
log-likelihood
hinge, exponential 
cross-entropy (KL-divergence)



Flexible model forms
ŷ = f(x; θ)

X y

Web page, ad Click on ad?
Past purchases…. NPV
Facebook posts Age, Sex, Personality, …



Flexible model forms
X            y 
biopsy image Cancer present?



Flexible model forms
X             y
Camera image Objects in it

nvidia



Flexible model forms
X            y
English sentence  Translation



Artificial Neural Nets
u Semi-parametric 

l Flexible model form
u Used when there are vast amounts of data

l Hence popular (again) now
l But recently with smaller training sets.

u Deep networks
l Idea: representation should have many different levels of 

abstraction



Neural Nets can be
u Supervised

l Generalizes logistic regression to a semi-parametric form
u Unsupervised

l Generalizes PCA to a semi-parametric form
u Adversarial (GANS)
u Semi-supervised
u Reinforcement

Neural nets often have built-in structure



“Real” and Artificial neuron

http://cs231n.github.io/neural-networks-1/



One neuron does logistic regression

Socher and Manning tutorial



Neural nets stack logistic regressions

Every line represents a 
parameter in the model



Neural nets stack logistic regressions

Every line represents a parameter in 
the model



Training
u Mini-batch gradient descent
u “Backpropagate” error derivatives through the 

model = chain rule



ANNs do pattern recognition
u Map input “percepts” to output categories or actions

l Image of an object ® what it is
l Image of a person ® who it is
l Picture ® caption describing it
l Board position ® probability of winning
l A word ® the sound of saying it
l Sound of a word ® the word
l Sequence of words in English ® their Chinese translation



MNIST

16



Street View House Numbers
☛



CIFAR-100

18



  

ImageNet Classification with Deep 
Convolutional Neural Networks

Alex Krizhevsky
Ilya Sutskever

Geoffrey Hinton

University of Toronto
Canada

Paper with same name to appear in NIPS 2012

“AlexNet”        2012



  

Neural networks

● A neuron ● A neural network
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x is called the total input 
to the neuron, and f(x) 
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A neural network computes a differentiable 
function of its input. For example, ours computes:
p(label | an input image)



  

Neurons

f(x) = tanh(x) f(x) = max(0, x)

Very bad (slow to train) Very good (quick to train)
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x is called the total input 
to the neuron, and f(x) 
is its output

Traditional: sigmoidal 
e.g. logistic function

But one can use any 
nonlinear function

Rectified Linear Unit (ReLU)Hyperbolic tangent



  

Overview of our model

● Deep: 7 hidden “weight” layers

● Learned: all feature extractors initialized at 
white Gaussian noise and learned from the 
data

● Entirely supervised

● More data = good

Image

Convolutional layer: convolves its input 
with a bank of 3D filters, then applies 
point-wise non-linearity

Fully-connected layer: applies linear 
filters to its input, then applies point-
wise non-linearity



Local receptive fields

In vision, a neuron may only get inputs 
from a limited set of “nearby” neurons

Input x



Local receptive fields

http://cs231n.github.io/convolutional-networks/

•spatial extent F = 3
•stride S =1

•spatial extent F = 3
•stride S = 2

input

hidden 
layer



Local receptive fields

http://cs231n.github.io/convolutional-networks/



Quick tensor background
u What’s a tensor?

l As in “tensorflow”
l Or “Tensor Processing Unit” (TPU)
l As in the basic data structure in pytorch

n Aside: there is a worksheet with more than you need 
to know about pytorch



  

Local pooling

Max

Max-pooling partitions the input image into local 
regions and outputs the maximum value for each.

Reduces the computational complexity 
Provides translation invariance. 



Max pooling

http://cs231n.github.io/convolutional-networks/

•Spatial extent F=2
•Stride S=2



  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000



  

Overview of our model

● Trained with stochastic gradient descent on 
two NVIDIA GPUs for about a week

● 650,000 neurons

● 60,000,000 parameters

● 630,000,000 connections

● Final feature layer: 4096-dimensional

Image

Convolutional layer: convolves its input 
with a bank of 3D filters, then applies 
point-wise non-linearity

Fully-connected layer: applies linear 
filters to its input, then applies point-
wise non-linearity



  

Training
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Local convolutional filters

Fully-connected filters
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Using stochastic gradient descent and the 
backpropagation algorithm (just repeated application 
of the chain rule)

Image Image

f(xi)        = softmax
log(f(xt)) = cross-entropy





Take advantage of invariances
u Build into the model (if possible) 

l The same feature detectors can be used anywhere in the image
u Use to augment the data

l The label doesn’t change under mild translation
l Or under reflection

u Build into the loss function (if all else fails)
l Make the chatbot avoid repetition, or give longer answers or …

“Inductive Bias”


