Neural Networks:

Deep Learning
Lyle Ungar

Multilevel network: architecture, link functions
CNNs: local receptive fields, max pooling
Regularization: L,, early stopping, dropout
Gradient Descent (Adagrad again)
Semi-supervised and transfer learning
Later: autoencoders, including transformers

All machine learning is optimization

y =1(x; 6)
argming ||y - ¥l

So what'’s new this decade?
(Slightly) different loss functions
(Slightly) different optimization methods
GPU instead of CPU
Different, flexible, functional forms for f
which require regularization

Loss functions
y=f(x; 0)
argming ||y - Y|

ly=yll. lly-yll 1y =¥ llo
log-likelihood

hinge, exponential

cross-entropy (KL-divergence)

Flexible model forms

y =1(x; 6)

X y

Web page, ad Click on ad?
Past purchases.... NPV

Facebook posts Age, Sex, Personality, ...

Flexible model forms

X y
biopsy image Cancer present?

Flexible model forms

X y
Camera image Objects in it

nvidia

Flexible model forms

X y

English sentence Translation
English - detected v &) & Arabic v Ir D)
| love machine AV alai Caal
|ea|’ning 'uhibb taelam alala

Open in Google Translate Feedback

Artificial Neural Nets

¢ Semi-parametric
o Flexible model form

¢ Used when there are vast amounts of data
e Hence popular (again) now
o But recently with smaller training sets.

¢ Deep networks

o |dea: representation should have many different levels of
abstraction

Neural Nets can be

¢ Supervised
o (Generalizes logistic regression to a semi-parametric form

¢ Unsupervised
o Generalizes PCA to a semi-parametric form

¢ Adversarial (GANS)
¢ Semi-supervised

¢ Reinforcement
Neural nets often have built-in structure

“Real” and Artificial neuron

impulses carried
toward cell body
branches
of axon

dendrites

V. axon

nucleus terminals

impulses carried

away from cell body
cell body

o wo

~@ synapse
axon from a neuron
woxo

cell body

7 3 (Zw,-a:,—)= b)
Zwi:ci + b 1

output axon

activation
function

w22

real ‘
output | !

artificial
output

Voltage

'—"-15—'!' .. — ..
H L,_,.-ﬁo-ﬁ*w———-b-

+irve |

L N B A e e rv-o--»-rl-'-o-»-rl-'-o-oo-

before after

http://cs231n.github.io/neural-networks-1/

One neuron does logistic regression

h,,(x)= fw'x+b)<—

1
f(z)—1

+ e

—Z

X

|
1 —6
X2
hw,b(x)
X3
+1

Socher and Manning tutorial

Neural nets stack logistic regressions

Layer L,

Every line represents a
Layer L, parameter in the model

Neural nets stack logistic regressions

Every line represents a parameter in
the model

Training

¢ Mini-batch gradient descent

¢ “Backpropagate” error derivatives through the
model = chain rule

ANNSs do pattern recognition

¢ Map input “percepts” to output categories or actions
e Image of an object — what it is
e Image of a person — who it is
e Picture — caption describing it
e Board position — probability of winning
o Aword — the sound of saying it
e Sound of a word — the word
e Sequence of words in English — their Chinese translation

MNIST

m Classify 28x28 images of
handwritten digits

| | § & 3
: Tost: 10000 7SS S 3
sS 92 06

5.0 KNN Lecun et al. (1998)
3.6 1k RBF + linear classifier Lecun et al. (1998)
1.6 2-layer NN Simard et al. (2003)
1.53 boosted stumps Kegl et al. (2009)
1.4 SVM Lecun et al. (1998)
0.79 DNN Srivastava (2013)
0.45 conv-DNN Goodfellow et al. (2013)
0.21 conv-DNN Wi et al. (2013)

Street View House Numbers

Classify 32x32 color i f r ---M 4-‘1
m Classify 32x32 color images o » : .
wm GRS
Digits taken f h b :
" in Google Street View TP |
= Train: 604,388 51 | R B
m Test: 26,032 8601 (b6 [0 | e | Sl
I
e B
36.7 WDCH Netzer et al. (2011)
15 HOG Netzer et al. (2011) _---M m
9.4 KNN Netzer et al. (2011)
2.47 conv-DNN Goodfellow et al. (2013)
2 Human Netzer et al. (2013) -=

1.92 conv-DNN Lee et al. (2015)

CIFAR-100

m Classify 32x32 color images into
100 classes

m Images taken from Tinylmages
dataset at MIT

m Train: 50,000
m Test: 10,000

DTS
Smal WEET ¥
T ul -
EE BN @2 W (R ¥
il sE s 1 la &
B B B _ &
B £ 3) o e S T

h

Error (%) | Method

43.77 SVM
39.20 OMP
38.57 conv-DNN
36.18 DNN
34.57 conv-DNN

Jia et al. (2012)
Lin and Kung (2014)
Goodfellow et al. (2013)

Srivastava and Alakhutdinov (2015)

Lee et al. (2015)

ImageNet Classification with Deep
Convolutional Neural Networks

Alex Krizhevsky
llya Sutskever
Geoffrey Hinton

University of Toronto
Canada

“AlexNet” 2012

Neural networks

e A Neuron

)
W1 W3
W2

‘li\f(Z 1) ‘(\f(z 2) ‘(\f(z 3)/}

x=w.f(z) +w,f(z,) + wji(z)

X is called the total input
to the neuron, and f(x)
IS its output

e A neural network

Output

Hidden

Data

A neural network computes a differentiable
function of its input. For example, ours computes:
p(label | an input image)

Traditional: sigmoidal Neurons

e.g. logistic function

f(x) = tanh(x) T

=T o)
T W, w
+1.0 T W2 3

. S @) @) fz)
o x = w,f(z,) + wi(z,) + w.f(z,)
- X is called the total input

. to the neuron, and f(x)
) Is its output
Hyperbolic tangent

Very bad (slow to train)

But one can use any

nonlinear function
f(x) = max(0, x)

Rectified Linear Unit (ReLU)

Very good (quick to train)

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

Overview of our model

Deep: 7 hidden “weight” layers

Learned: all feature extractors initialized at
white Gaussian noise and learned from the
data

Entirely supervised
More data = good

Convolutional layer: convolves its input
Q with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

Local receptive fields

layer m+ |)
layer m
|
layer m-|
Input x

In vision, a neuron may only get inputs
from a limited set of “nearby” neurons

Local receptive fields

hidd
'alyefen

ofl1]2(-1]|1]-3[0]| input

spatial extent F = 3 spatial extent F = 3
estride S =1 stride S =2

http://cs231n.github.io/convolutional-networks/

© © ©o o o o o o o ©o o o o ok

L

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3)
:,0] w0[:,:,0
0oflofofo o o [[-1]-1
offiffz2]1 o o [f-1]1
offiffo]o o o [f1 |1
2 1 2 0 O wl[z,:,1
2 2 220 4
50 [0 oV Ji aUE
0 0 0 0 ol 1
wO[:,+72
To oo o !
T[T 240 o b
2 Jfo o] 1 yd il
. Bias bQA1x1x1)
2 20 b0[7,:,0]
1 0 2
0 0 0
/
ofofe o o
o 2fr |1
1o 0
2 2 1 1 0
1 01 1 0
01 2 1 0
00 00 O

=1 9] @ @] @ @ @

Local receptive fields

S = N = = = 0 O = O O N o oF

(= N o = =T

Filter W1 (3x3x3) Output Volume (3x3x2)
wl[:,:,0] o[:,:,0]
Nl 6 0
-1 0 1 5 4 2
0 -1 -1 1 -2 -2
wlf[:,:,1] o[:,:,1]
-1 -1 0 34 -1
0 1 1 0 -1 0
0 -1 -1 3 2 11
wl[:,:,2]

1 1 1

1 1 -1

1 0 O

Bias bl (1x1x1)
bl[:,:,0]
0

toggle movement

http://cs231n.github.io/convolutional-networks/

Quick tensor background

¢ What's a tensor?
e As in “tensorflow”
e Or “Tensor Processing Unit” (TPU)
e As in the basic data structure in pytorch

= Aside: there is a worksheet with more than you need
to know about pytorch

Local pooling

Max-pooling partitions the input image into local
regions and outputs the maximum value for each.

AN
AN

. Max

Reduces the computational complexity
Provides translation invariance.

Max pooling

g i Single depth slice
112x112x64 | |
pool 1111214
= max pool with 2x2 filters
516 |7 |8 and stride 2 6|8
| T 3 | 2 .] 3|4
1 | 2
224 downsampling] e
112 >
224 ¥
*Spatial extent F=2
Stride S=2

http://cs231n.github.io/convolutional-networks/

Our model

 Max-pooling layers follow first, second, and
fifth convolutional layers

 The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

55
27
13 13 13

~\ T
[~ A == —— —
t 5 _ . 3 _— Al 3 —_ 1= -
N T= |13 = = 13 3 = |13 dense dense
5 27 3 1 3]

55 384 384 256 100C
Max
256 . 5

Max Max pooling 4096 4096
Stride 96 pooling pooling

of 4

\
V|
\|'ll

\1"
\/

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

Overview of our model

Trained with stochastic gradient descent on
two NVIDIA GPUs for about a week

650,000 neurons

60,000,000 parameters

630,000,000 connections

Final feature layer: 4096-dimensional

Convolutional layer: convolves its input
O with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

‘?‘

Forward pass

/lmage

O

Training

A Using stochastic gradient descent and the

backpropagation algorithm (Just repeated appl
of the chain rule)

One output unit per class
x; = total input to output unit 2

2,) — —oxp@)
f() Z;iﬂlﬂ exp(:cj)

We maximize the log-probability
of the correct label, log f(x;)

f(x;) = softmax
log(f(x;)) = cross-entropy

Local convolutional filters

Fully-connected filters

‘?‘

ication ¥

ssed premyoeg

Image

Data augmentation

e Our neural net has 60M real-valued
parameters and 650,000 neurons

* It overfits a lot. Therefore we train on 224x224
patches extracted randomly from 256x256
Images, and also their horizontal reflections.

Take advantage of invariances

¢ Build into the model (if possible)
o The same feature detectors can be used anywhere in the image

¢ Use to augment the data

o The label doesn’t change under mild translation
e Or under reflection

< Build into the loss function (if all else fails)
o Make the chatbot avoid repetition, or give longer answers or ...

“Inductive Bias”

