
Neural Networks:
Deep Learning

Lyle Ungar

Multilevel network: architecture, link functions
CNNs: local receptive fields, max pooling

Regularization: L2, early stopping, dropout
Gradient Descent (Adagrad again)
Semi-supervised and transfer learning
Later: autoencoders, including transformers

All machine learning is optimization
ŷ = f(x; θ)

argminθ ||y – ŷ||

So what’s new this decade?
(Slightly) different loss functions
(Slightly) different optimization methods
GPU instead of CPU
Different, flexible, functional forms for f

which require regularization

Loss functions
ŷ = f(x; θ)

argminθ ||y – ŷ||
||y – ŷ ||2 ||y – ŷ ||1 ||y – ŷ ||0
log-likelihood
hinge, exponential
cross-entropy (KL-divergence)

Flexible model forms
ŷ = f(x; θ)

X y

Web page, ad Click on ad?
Past purchases…. NPV
Facebook posts Age, Sex, Personality, …

Flexible model forms
X y
biopsy image Cancer present?

Flexible model forms
X y
Camera image Objects in it

nvidia

Flexible model forms
X y
English sentence Translation

Artificial Neural Nets
u Semi-parametric

l Flexible model form
u Used when there are vast amounts of data

l Hence popular (again) now
l But recently with smaller training sets.

u Deep networks
l Idea: representation should have many different levels of

abstraction

Neural Nets can be
u Supervised

l Generalizes logistic regression to a semi-parametric form
u Unsupervised

l Generalizes PCA to a semi-parametric form
u Adversarial (GANS)
u Semi-supervised
u Reinforcement

Neural nets often have built-in structure

“Real” and Artificial neuron

http://cs231n.github.io/neural-networks-1/

One neuron does logistic regression

Socher and Manning tutorial

Neural nets stack logistic regressions

Every line represents a
parameter in the model

Neural nets stack logistic regressions

Every line represents a parameter in
the model

Training
u Mini-batch gradient descent
u “Backpropagate” error derivatives through the

model = chain rule

ANNs do pattern recognition
u Map input “percepts” to output categories or actions

l Image of an object ® what it is
l Image of a person ® who it is
l Picture ® caption describing it
l Board position ® probability of winning
l A word ® the sound of saying it
l Sound of a word ® the word
l Sequence of words in English ® their Chinese translation

MNIST

16

Street View House Numbers
☛

CIFAR-100

18

ImageNet Classification with Deep
Convolutional Neural Networks

Alex Krizhevsky
Ilya Sutskever

Geoffrey Hinton

University of Toronto
Canada

Paper with same name to appear in NIPS 2012

“AlexNet” 2012

Neural networks

● A neuron ● A neural network

f(x)

w
1

w
2

w
3

f(z
1
) f(z

2
) f(z

3
)

x is called the total input
to the neuron, and f(x)
is its output

Output

Hidden

Data

x = w
1
f(z

1
) + w

2
f(z

2
) + w

3
f(z

3
)

A neural network computes a differentiable
function of its input. For example, ours computes:
p(label | an input image)

Neurons

f(x) = tanh(x) f(x) = max(0, x)

Very bad (slow to train) Very good (quick to train)

f(x)

w
1

w
2

w
3

f(z
1
) f(z

2
) f(z

3
)

x = w
1
f(z

1
) + w

2
f(z

2
) + w

3
f(z

3
)

x is called the total input
to the neuron, and f(x)
is its output

Traditional: sigmoidal
e.g. logistic function

But one can use any
nonlinear function

Rectified Linear Unit (ReLU)Hyperbolic tangent

Overview of our model

● Deep: 7 hidden “weight” layers

● Learned: all feature extractors initialized at
white Gaussian noise and learned from the
data

● Entirely supervised

● More data = good

Image

Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

Local receptive fields

In vision, a neuron may only get inputs
from a limited set of “nearby” neurons

Input x

Local receptive fields

http://cs231n.github.io/convolutional-networks/

•spatial extent F = 3
•stride S =1

•spatial extent F = 3
•stride S = 2

input

hidden
layer

Local receptive fields

http://cs231n.github.io/convolutional-networks/

Quick tensor background
u What’s a tensor?

l As in “tensorflow”
l Or “Tensor Processing Unit” (TPU)
l As in the basic data structure in pytorch

n Aside: there is a worksheet with more than you need
to know about pytorch

Local pooling

Max

Max-pooling partitions the input image into local
regions and outputs the maximum value for each.

Reduces the computational complexity
Provides translation invariance.

Max pooling

http://cs231n.github.io/convolutional-networks/

•Spatial extent F=2
•Stride S=2

Our model

● Max-pooling layers follow first, second, and
fifth convolutional layers

● The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

Overview of our model

● Trained with stochastic gradient descent on
two NVIDIA GPUs for about a week

● 650,000 neurons

● 60,000,000 parameters

● 630,000,000 connections

● Final feature layer: 4096-dimensional

Image

Convolutional layer: convolves its input
with a bank of 3D filters, then applies
point-wise non-linearity

Fully-connected layer: applies linear
filters to its input, then applies point-
wise non-linearity

Training

Fo
rw

ar
d

pa
ss

Local convolutional filters

Fully-connected filters

B
ackw

ard pass

Using stochastic gradient descent and the
backpropagation algorithm (just repeated application
of the chain rule)

Image Image

f(xi) = softmax
log(f(xt)) = cross-entropy

Take advantage of invariances
u Build into the model (if possible)

l The same feature detectors can be used anywhere in the image
u Use to augment the data

l The label doesn’t change under mild translation
l Or under reflection

u Build into the loss function (if all else fails)
l Make the chatbot avoid repetition, or give longer answers or …

“Inductive Bias”

