Neural Networks:
Deep Learning (2)

Lyle Ungar

Multilevel network: architecture, link functions
CNNs: local receptive fields, max pooling
Regularization: L,, early stopping, dropout
Gradient Descent (again + Adgrad)
Semi-supervised and transfer learning
Visualization



Modern deep nets
o Often use rectified linear units (ReLUs) /

o Faster, less problems of saturation than logistic

¢ Use a variety of loss functions
e Cross-entropy with softmax  o(z);

¢ Can be very deep
¢ Solved with mini-batch gradient descent

¢ Regularized using L, and L, penalty plus
“dropout”
e and partial convergence and ..
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Regularization

¢ L,and/or L,
¢ Early stopping
¢ Max norm (L.)
o Weight clipping
o Gradient clipping
¢ Dropout
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http://cs231n.github.io/neural-networks-3/



Dropout

¢ Randomly (temporarily) remove a fraction p of

the nodes (with replacement)
o Usually,p=1/2

¢ Repeatedly doing this samples (in theory) over

exponentially many networks
e Bounces the network out of local minima

¢ For the final network
use all the weights,
but shrink them by p




Gradient descent

¢ Gradient descent OErT Err(w+h)—Err(w—h)

o Minibatch oW 2h
o Gradient clipping
¢ Momentum Aw' =n 5?;;’” + mAw—1

¢ Learning rate adaptation
o Adagrad and friends



Learning rate adaption

¢ Adjust the learning rate over time

ﬂ(f) 5Err

¢ Adagrad: make the Iearnlng rate depend on
previous changes in each weight

e increases the learning rate for more sparse parameters
and decreases the learning rate for less sparse ones.
Awl = n OErr
T 116wl ow;
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Feature Scaling (standardizing)

+ ldea: Ensure that features have similar scales
Before Feature Scaling After Feature Scaling
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¢ Can do this for hic?den layer outputs as well for each
minibatch

¢ Makes gradient descent converge much faster
Is deep learning scale invariant?



A word on hyperparameters

¢ Regularization
O L1, | 2
e Dropout
e Early stopping
e Learning rate
¢ Architecture
o Number of layers, and nodes/layer
e Filter, maxpool, fully connected




Lots of fancy network structures
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Validation classification
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Validation classification
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Validation localizations
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Retrieval experiments

First column contains query images from ILSVRC-2010 test set, remaining
columns contain retrieved images from training set.




Now used for image search;
Benefit: Good Generalization

Both recognized as "meal” =
Jeff Dean, google



Sensible Errors (sometimes)

“snake”

Jeff Dean, google



Now used for image search

Works in practice... for real users

Wow

The new Google plus photo search s a bit insane

Jeff Dean, google



Now used for image search

Works in practice... for real users
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Transfer learning

¢ Use one data set (X,, ¢,) to train a model
¢ Find feature transformations ¢(x)

¢ Use those transformations ¢(x) on data from
data set with a different label, y.
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Data set for learning ¢(x) Data set with target y.




Transfer learning for NNets
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New Al can guess whether you're gay or
straight from a photograph

An algorithm deduced the sexuality of people on a dating site with up to 91%
accuracy, raising tricky ethical questions
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https://www.theguardian.com/te
chnology/2017/sep/07/new-
artificial-intelligence-can-tell-
whether-youre-gay-or-straight-
from-a-photograph



Deep neural networks are more accurate than humans
at detecting sexual orientation from facial images.

Michal Kosinski & Yilun Wang

We show that faces contain much more information about sexual orientation than can be perceived
and interpreted by the human brain. We used deep neural networks to extract features from 35,326
facial images. These features were entered into a logistic regression aimed at classifying sexual
orientation. Given a single facial image, a classifier could correctly distinguish between gay and
heterosexual men in 81% of cases, and in 74% of cases for women. Human judges achieved much
lower accuracy: 61% for men and 54% for women. The accuracy of the algorithm increased to 91%
and 83%, respectively, given five facial images per person. Facial features employed by the classifier
included both fixed (e.g., nose shape) and transient facial features (e.g., grooming style). Consistent
with the prenatal hormone theory of sexual orientation, gay men and women tended to have gender-
atypical facial morphology, expression, and grooming styles. .... Additionally, given that companies
and governments are increasingly using computer vision algorithms to detect people’s intimate traits,
our findings expose a threat to the privacy and safety of gay men and women.

https:/losf.io/fk3xr/ 2017



Deep learning case study

¢ Download images and labels from a dating site
e Where people declare their sexual orientation

¢ Only keep images with a single “good” face
o Use Face++ to identify faces -- yielded 35,000 faces

¢ Use M-turkers to QC & restrict to Caucasians

¢ Use pretrained CNN to compute ~ 4,000 ‘scores’/image
o VGG-Face was trained on 2.6 million faces

¢ Use logistic regression on SVD of the 4,000 scores
e report cross-validation error predicting gay/straight



Limitations of NNs

¢ For many problems, tree ensemble methods are
better than NNs. Why?



Visualizing networks

¢ Display pattern of hidden unit activations

e Just shows they are distributed and sparse

o Better: feed activations into a linear model to predict something
¢ Show input that maximizes a node’s output

e Over all inputs in the training set

e Over the space of possible inputs

¢ Show effect of occluding parts of an image on

classification accuracy
http://cs231n.github.io/understanding-cnn/



What happens where

¢ In CNN’s for images
o Early layers do feature detection
o Later layers do object detection
¢ In Neural nets for language

o Early layers do Part of Speech detection
o Later layers do co-references ...



Maximally activating inputs for the
first CONV layer of an AIexNet

http://cs231n.qithub.io/u

nderstanding-cnn/



http://cs231n.github.io/understanding-cnn/

Maximally activating images for some 5th
maxpool layer neurons of an AlexNet.




P(correct label) after occlusion

Matthew Zeiler’s

Visualizing and

Understanding
Convolutional

Networks:


http://arxiv.org/abs/1311.2901

What you should know

¢ CNN
e local receptive field, max pooling

¢ Rectified Linear Unit (ReLU)

¢ At least four kinds of regularization
e Dropout

¢ Back-propagation, momentum, Adagrad, mini-
batch

¢ Transfer learning



