PCA
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Learning objectives

PCA as change of basis

PCA minimizes reconstruction error
PCA maximizes variance

PCA relation to eigenvalues/vectors

PCR: PCA for feature creation

Based in part on slides by Jia Li
(PSU) and Barry Slaff (Upenn)



PCA

¢ Express a vector x in terms of coefficients on
an (orthogonal) basis vector (eigenvectors v,)

X; =24 ZyVy

e \We can describe how well we approximate x in terms of
the eigenvalues

¢ PCA is used for dimensionality reduction
e Visualization
e semi-supervised learning
e eigenfaces, eigenwords, eigengrasps



PCA

¢ Express a vector x in terms of coefficients on
an (orthogonal) basis vector (eigenvectors v,)

X; =24 ZyVy
¢ Find z, by projection
Xi' Vj :Zk Z,-ka' V.



PCA

¢ PCA can be viewed as
e minimizing distortion ||X - ZV'||
= Or the square of the above: Z; ||x; — 2, ZyVi||,?
= Note that either definition gives the same result

e A rotation to a new coordinate system to maximize the
variance in the new coordinates

¢ Generally done by mean centering first
e Sometimes standardize



Nomenclature

X=2ZV'
®Z (nxk
e principal component scores
&V (mxk
e Loadings
e Principal component coefficients
e Principal components

In PCAworld, Xisnxm



PCA minimizes Distortion

¢ Mean center X, then compute the eigvectors
o XTX Uj



PCA minimizes Distortion

¢ First subtract off the average x from all the x;
e From here, we'll assume this has been done

¢ Approximate x in terms of an orthonormal basis v
O 5c\i=zk Zy V, Of X = ZVT

¢ Distortion (this is the square of the earlier definition)
Y X = &3 = X, B, (& - 202



PCA minimizes distortion

Distortion,, : Z Z ujT x —X)(x' — E)Tuj
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See the course wiki!



PCA maximizes variance

See the course wiki!



PCA - Summary

Syl — % mo i
X =X =X+ Y zu

Variance; + Distortion, =n ) " 1,

See the course wiki!



Principal Component Analysis

X —X_=UDVT =2ZVT
Xcis(nxp), Zis(nhxp), Vis (p X p).

Z is the transformation of X into “"PC space”
Column vector z; is the i'th PC score vector.
Column vector v; is the i'th PC direction or loading.

Since V is orthogonal, X_.V = ZVTV =Z, and therefore:
z; = X0 = u;Dy;

Hence z; is the projection of the row vectors of X_ on the
(unit) direction v;, scaled by D;;.



Principal Component Analysis
X —>X_=UDVT =2ZVT
p
XTX, = izzl(Dii )2 vl
“0% Variance explained by the i‘th principal component:”
(D;; )*?

= 100 - = . oy
755 =100%/Z




Eigenvalue
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https://en.wikipedia.org/
wiki/Scree plot



https://en.wikipedia.org/wiki/Scree_plot

PCA

True or false:

If X is any matrix, and X has singular value decomposition X = UDVT

then the principal component scores for X are the columns of
Z=UD

a) True
b) False




PCA

If X is mean-centered, then PCA finds...?

(a) Eigenvectors of XTX

(b) Right singular vectors of X

(c) Projection directions of maximum covariance of X

(d) All of the above




PCA: Reconstruction Problem

PCA can be viewed as an L, optimization, minimizing
distortion, the reconstruction error.

* * - T
Z5, VT = argmin | X, — ZV " |E
ZeRn*Xk yeRP>K,

T — 5. .
v; vj=8i;

Here we have constrained Z, V by dimension:

X, is still (n x p).
Z is (n x k), with k<p.
Vis (p x k).
If k=p then the reconstruction is perfect. k<p, not.



PCA via SVD

& X=2ZV"=UDV'
e X NXp U nxk D kxk V' kxp

¢ Z=UD -component scores or "factor scores”

o the transformed variable values corresponding to a particular
data point

¢ V' -loadings

e the weight by which each standardized original variable should
be multiplied to get the component score



PCA via SVD

® X =2,z V,
¢ Whatis z, ?
o X;= Xy Uy Oy Vi



Sparse PCA

& argmingy ||X - Z V||
e V/vi=0; (orthonormality)
e Eigenvectors give the optimal solution

¢ you can add an L, penalty

& argmingy [X - ZV'||z + 1 [IZ][4 + A,|[V]];
e No longer eigenvectors

e ConvexinZgivenVandinV given Z
e Solve by alternating gradient descent



What you should know

¢ PCA as minimum reconstruction error (‘distortion’)
¢ PCA as finding direction of maximum covariance

¢ Sensitivity of PCA to standardizing

¢ Nomenclature: scores, coefficients/loadings

¢ Coming next: autoencoders, eigenfaces, eigenwords



