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Learning objectives
PCA as change of basis
PCA minimizes reconstruction error
PCA maximizes variance
PCA relation to eigenvalues/vectors

PCR: PCA for feature creation
Based in part on slides by  Jia Li 
(PSU) and Barry Slaff (Upenn)



PCA
u Express a vector x in terms of coefficients on 

an (orthogonal) basis vector (eigenvectors vk)
xi = Σk zikvk

l We can describe how well we approximate x in terms of 
the eigenvalues

u PCA is used for dimensionality reduction
l visualization
l semi-supervised learning
l eigenfaces, eigenwords, eigengrasps



PCA
u Express a vector x in terms of coefficients on 

an (orthogonal) basis vector (eigenvectors vk)
xi = Σk zikvk

u Find zik by projection
xi

. vj = Σk zikvk
. vj

xi
. vj = zij



PCA
u PCA can be viewed as 

l minimizing distortion ||X - ZVT||F
n Or the square of the above: Σi ||xi – Σk zikvk||22

n Note that either definition gives the same result
l A rotation to a new coordinate system to maximize the 

variance in the new coordinates

u Generally done by mean centering first
l Sometimes standardize



Nomenclature
X = ZVT

u Z    (n x k)

l principal component scores
u V   (m x k)

l Loadings
l Principal component coefficients
l Principal components

In PCA world, X is n x m



PCA minimizes Distortion
u Mean center X, then compute the eigvectors

l XTX uj



PCA minimizes Distortion
u First subtract off the average x from all the xi

l From here, we’ll assume this has been done
u Approximate x in terms of an orthonormal basis v

l !𝒙i = Σk zik vk or   X =  ZVT

u Distortion (this is the square of the earlier definition)



PCA minimizes distortion 

See the course wiki! See the course wiki!



PCA maximizes variance 

See the course wiki! See the course wiki!



PCA - Summary

See the course wiki!



Principal Component Analysis



Principal Component Analysis

= 100 li / Si li



Scree plot

https://en.wikipedia.org/
wiki/Scree_plot

Keep components 
above the “elbow”

https://en.wikipedia.org/wiki/Scree_plot


PCA
True or false: 
If X is any matrix, and X has singular value decomposition X = UDVT

then the principal component scores for X are the columns of
Z = UD

a) True
b) False



PCA
If X is mean-centered, then PCA finds…?
(a) Eigenvectors of XTX
(b) Right singular vectors of X
(c) Projection directions of maximum covariance of X
(d) All of the above



PCA: Reconstruction Problem



PCA via SVD
u X = ZVT = UDVT

l X n x p         U n x k         D k x k     VT k x p 
u Z = UD   - component scores or  "factor scores” 

l the transformed variable values corresponding to a particular 
data point

u VT - loadings 
l the weight by which each standardized original variable should 

be multiplied to get the component score



PCA via SVD
u xi = Σk zik vk

u What is zik ?
l xi = Σk uik dkk vk



Sparse PCA
u argminZ,V ||X - Z VT||F

l vi’vj = δij (orthonormality)
l Eigenvectors give the optimal solution

u you can add an L1 penalty
u argminZ,V ||X - Z VT||F + l1 ||Z||1 + l2||V||1

l No longer eigenvectors
l Convex in Z given V and in V given Z
l Solve by alternating gradient descent



What you should know
u PCA as minimum reconstruction error (‘distortion’)
u PCA as finding direction of maximum covariance
u Sensitivity of PCA to standardizing 
u Nomenclature: scores, coefficients/loadings
u Coming next: autoencoders, eigenfaces, eigenwords


