PCA

Lyle Ungar

Learning objectives

PCA as change of basis
PCA minimizes reconstruction error PCA maximizes variance
PCA relation to eigenvalues/vectors
PCR: PCA for feature creation

Based in part on slides by Jia Li (PSU) and Barry Slaff (Upenn)

PCA

- Express a vector x in terms of coefficients on an (orthogonal) basis vector (eigenvectors v_{k})

$$
x_{i}=\Sigma_{k} z_{i k} v_{k}
$$

- We can describe how well we approximate x in terms of the eigenvalues
- PCA is used for dimensionality reduction
- visualization
- semi-supervised learning
- eigenfaces, eigenwords, eigengrasps

PCA

- Express a vector x in terms of coefficients on an (orthogonal) basis vector (eigenvectors v_{k})

$$
x_{i}=\Sigma_{k} z_{i k} v_{k}
$$

- Find $z_{i k}$ by projection

$$
\begin{aligned}
x_{i} \cdot v_{j} & =\Sigma_{k} z_{i k} v_{k} \cdot v_{j} \\
x_{i} \cdot v_{j} & =z_{i j}
\end{aligned}
$$

PCA

- PCA can be viewed as
- minimizing distortion \|X - $\mathbf{Z V}^{\top} \|_{F}$
- Or the square of the above: $\Sigma_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\Sigma_{\mathrm{k}} \mathrm{z}_{\mathrm{i}} \mathrm{v}_{\mathrm{k}}\right\|_{2}{ }^{2}$
- Note that either definition gives the same result
- A rotation to a new coordinate system to maximize the variance in the new coordinates
- Generally done by mean centering first
- Sometimes standardize

Nomenclature

$\mathbf{X}=\mathbf{Z} \mathbf{V}^{\boldsymbol{\top}}$

- Z (nxk)
- principal component scores
- $V(m \times k)$
- Loadings
- Principal component coefficients
- Principal components

In PCA world, X is $n \times m$

PCA minimizes Distortion

- Mean center X , then compute the eigvectors
- $X^{\top} X^{u_{j}}$

PCA minimizes Distortion

- First subtract off the average x from all the x_{i}
- From here, we'll assume this has been done
- Approximate \mathbf{x} in terms of an orthonormal basis \mathbf{v}
- $\widehat{x}_{\mathrm{i}}=\Sigma_{\mathrm{k}} \mathrm{Z}_{\mathrm{i}} \mathrm{v}_{\mathrm{k}}$ or $\mathrm{X}=\mathrm{ZV}^{\top}$
- Distortion (this is the square of the earlier definition)

$$
\sum_{i=1}^{n}\left\|\mathbf{x}^{i}-\hat{\mathbf{x}}^{i}\right\|_{2}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{j}^{i}-\hat{x}_{j}^{i}\right)^{2}
$$

PCA minimizes distortion

$\operatorname{Distortion}_{k}: \sum_{i=1}^{n} \sum_{j=k+1}^{m} \mathbf{u}_{j}^{\top}\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)^{\top} \mathbf{u}_{j}$

$$
\begin{aligned}
& =\sum_{j=k+1}^{m} \mathbf{u}_{j}^{\top}\left(\sum_{i=1}^{n}\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)^{\top}\right) \mathbf{u}_{j} \\
& =n \sum_{j=k+1}^{m} \mathbf{u}_{j}^{\top} \Sigma \mathbf{u}_{j}=n \sum_{j=k+1}^{m} \lambda_{j}
\end{aligned}
$$

See the course wiki!

PCA maximizes variance

$\begin{aligned} \text { Variance }_{k}: & \sum_{i=1}^{n} \sum_{j=1}^{k}\left(\mathbf{u}_{j}^{\top} \mathbf{x}^{i}-\mathbf{u}_{j}^{\top} \overline{\mathbf{x}}\right)^{2} \\ & =\sum_{j=1}^{k} \mathbf{u}_{j}^{\top}\left(\sum_{i=1}^{n}\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{i}-\overline{\mathbf{x}}\right)^{\top}\right) \mathbf{u}_{j} \\ & =n \sum_{j=1}^{k} \mathbf{u}_{j}^{\top} \Sigma \mathbf{u}_{j} .\end{aligned}$
See the course wiki!

PCA - Summary

$$
\hat{\mathbf{x}}^{i}=\mathbf{x}^{i}=\overline{\mathbf{x}}+\sum_{j=1}^{m} z_{j}^{i} \mathbf{u}_{j}
$$

Variance $_{k}+$ Distortion $_{k}=n \sum_{j=1}^{m} \lambda_{j}$

See the course wiki!

Principal Component Analysis

$\mathbf{X} \rightarrow \mathbf{X}_{\mathbf{c}}=\mathbf{U D V}^{\boldsymbol{\top}}=\mathbf{Z} \mathbf{V}^{\boldsymbol{\top}}$
X_{c} is $(n \times p), \mathbf{Z}$ is $(n \times p), \mathbf{V}$ is $(p \times p)$.
\mathbf{Z} is the transformation of \mathbf{X} into "PC space"
Column vector $\boldsymbol{z}_{\boldsymbol{i}}$ is the i^{\prime} th $P C$ score vector.
Column vector \boldsymbol{v}_{i} is the i^{\prime} th $P C$ direction or loading.
Since \mathbf{V} is orthogonal, $\mathbf{X}_{\mathbf{c}} \mathbf{V}=\mathbf{Z} \mathbf{V}^{\top} \mathbf{V}=\mathbf{Z}$, and therefore:

$$
\boldsymbol{z}_{i}=\boldsymbol{X}_{\boldsymbol{c}} \boldsymbol{v}_{i}=\boldsymbol{u}_{i} D_{i i}
$$

Hence $\boldsymbol{z}_{\boldsymbol{i}}$ is the projection of the row vectors of $\boldsymbol{X}_{\boldsymbol{c}}$ on the (unit) direction \boldsymbol{v}_{i}, scaled by $D_{i i}$.

Principal Component Analysis

$$
\begin{gathered}
\mathbf{X} \rightarrow \mathbf{X}_{\mathrm{c}}=\mathbf{U D V ^ { \top } =} \mathbf{Z V}^{\top} \\
\boldsymbol{X}_{\boldsymbol{c}}^{\boldsymbol{T}} \boldsymbol{X}_{\boldsymbol{c}}=\sum_{i=1}^{p}\left(D_{i i}\right)^{2} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}
\end{gathered}
$$

"\% Variance explained by the i'th principal component:"

$$
=100 \cdot \frac{\left(D_{i i}\right)^{2}}{\sum_{j=1}^{\boldsymbol{p}}\left(D_{j j}\right)^{2}}=100 \lambda_{i} / \sum_{i} \lambda_{i}
$$

Scree plot

https://en.wikipedia.org/ wiki/Scree plot

PCA

True or false:

If \mathbf{X} is any matrix, and \mathbf{X} has singular value decomposition $\mathbf{X}=\mathbf{U D V}^{\top}$ then the principal component scores for \mathbf{X} are the columns of

$$
Z=U D
$$

a) True
b) False

PCA

If X is mean-centered, then PCA finds...?
(a) Eigenvectors of $X^{\top} \boldsymbol{X}$
(b) Right singular vectors of \boldsymbol{X}
(c) Projection directions of maximum covariance of \boldsymbol{X}
(d) All of the above

PCA: Reconstruction Problem

PCA can be viewed as an L_{2} optimization, minimizing distortion, the reconstruction error.

$$
\begin{aligned}
& Z^{*}, V^{*}=\underset{z \in \mathbb{R}^{n \times k}, V \in \mathbb{R}}{\operatorname{argmin}},\left|X_{c}-Z V^{T}\right|_{F} \\
& v_{i}^{T} v_{j}=\delta_{i j}
\end{aligned}
$$

Here we have constrained Z, V by dimension:

$$
\begin{gathered}
\mathbf{X}_{\mathrm{c}} \text { is still }(\mathrm{n} \times \mathrm{p}) . \\
\mathbf{Z} \text { is }(\mathrm{n} \times k), \text { with } k \leq \mathrm{p} . \\
\mathbf{V} \text { is }(p \times k) .
\end{gathered}
$$

If $k=p$ then the reconstruction is perfect. $k<p$, not.

PCA via SVD

$-\mathbf{X}=\mathbf{Z V}^{\boldsymbol{\top}}=\mathbf{U D V}{ }^{\top}$

- Xnxp Unxk Dkxk $\mathbf{V}^{\top} k x p$
- Z = UD - component scores or "factor scores"
- the transformed variable values corresponding to a particular data point
$-\mathrm{V}^{\top}$ - loadings
- the weight by which each standardized original variable should be multiplied to get the component score

PCA via SVD

- $\mathrm{X}_{\mathrm{i}}=\Sigma_{\mathrm{k}} \mathrm{Z}_{\mathrm{ik}} \mathrm{V}_{\mathrm{k}}$
- What is $Z_{i k}$?
- $x_{i}=\sum_{k} u_{i k} d_{k k} v_{k}$

Sparse PCA

$\bullet \operatorname{argmin}_{Z, \mathrm{v}}\left\|\mathbf{X}-\mathbf{Z} \mathbf{V}^{\top}\right\|_{\mathrm{F}}$

- $\mathbf{v}_{\mathrm{i}}^{\prime} \mathbf{v}_{\mathrm{j}}=\delta_{\mathrm{ij}} \quad$ (orthonormality)
- Eigenvectors give the optimal solution
- you can add an L_{1} penalty
$\bullet \operatorname{argmin}_{\mathbf{Z}, \mathrm{V}}\left\|\mathbf{X}-\mathbf{Z} \mathbf{V}^{\top}\right\|_{\mathrm{F}}+\lambda_{1}\|\mathbf{Z}\|_{1}+\lambda_{2}\|\mathbf{V}\|_{1}$
- No longer eigenvectors
- Convex in \mathbf{Z} given \mathbf{V} and in \mathbf{V} given \mathbf{Z}
- Solve by alternating gradient descent

What you should know

- PCA as minimum reconstruction error ('distortion')
- PCA as finding direction of maximum covariance
- Sensitivity of PCA to standardizing
- Nomenclature: scores, coefficients/loadings
- Coming next: autoencoders, eigenfaces, eigenwords

