Unsupervised Learning

o Spectral methods

« Eigenvector/singular vector decomposition (SVD)
« PCA, CCA

+ Reconstruction methods
o PCA, ICA, auto-encoders

o Clustering and Probabilistic methods

« K-means
 Gaussian mixtures
o Latent Dirichlet Allocation (LDA)



SVD

Learning objectives Lyle Ungar
SVD and ‘thin SVD”

Matrix norms

Generalized inverse
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Eigenvectors (review)

Av,i=Av
Eigen-decomposition of a symmetric matrix A (n x n)
« A=VDV'
V: orthonormal, V'V =1 (n x n)
« Columns of V are the eigenvectors of A
D: diagonal (n x n)
« Diagonal elements of D are the eigenvalues of A
o All non-negative if A = XX
« Reported in decreasing order of magnitude down the diagonal



We don’t compute eigenvectors

¢ What symmetric matrix have we seen?

¢ In practice we rarely compute eigenvectors
e Why not?



Singular Value Decomposition

«+ Singular value decomposition of matrix X (n x p)
« X=UDV'

+ U: orthonormal, U'U =1(n x n)
o« Columns of U are the left singular vectors of X

+ D: diagonal (n x p)
« Diagonal elements of D are the singular values of X

« V:orthonormal, V'V =1 (p x p)
« Columns of V are the right singular vectors of X



SVD

Singular value decomposition of X: X = UDVT

X D

NS

Let k = min(n,p). Then: X = Zé‘=1 D;u; v}

i

Since all u;, v; are unit vectors, the importance of the i‘th
term in the sum is determined by the size of D;;.



Review Questions

¢ X, =UDVT

¢ What are the dimensions of U D and V?
¢ What are the eigenvectors of X'X?

¢ What are the eigenvalues of X'X?



Thin SVD - pick a smaller k

Singular value decomposition of X: X = UDVT

X D

NS

Let k = min(n,p). Then: X = Z£‘=1 D;u; v}

i

Since all u;, v; are unit vectors, the importance of the i‘th
term in the sum is determined by the size of D;;.



SVD and eigenvalues/eigenvectors

X =UDVT, XX =v(DTD)VvT

The columns v,,...v,of V are the eigenvectors of the covariance
matrix XTX. Hence we can write

p
XTX = > (D)2 vvl
i=1

k
X = Z Dil—uivr{
i=1
k = min(n,p).

D;; are singular values of X, (D;; )? are eigenvalues of XTX

From before:



Frobenius norm Here: A is an arbitrary m x n

matrix, what we often call X

& How to measure the size of a matrix?

m n min{m,n}
M = 323 lul” = = \[trace(A' 4) = \ X
i=1 j=1 i=1

¢ Where o; are the singular values of A.
¢ One can also use an L, norm ||A||, =||o]|,



Generalized Inverses

¢ Linear regression estimates win y = Xw

¢ This uses a pseudo-inverse (“Moore-Penrose inverse”)
X" of X, so
o W =X+_V
¢ Thus far, we have done this by
O X+=(XTX)_ TXT



Generalized Inverses

¢ We can also compute inverses using SVD
¢ The idea:
X* =(UD'VN)T=V (D)TUT
¢ You can’t take the inverse of a rectangular matrix,
but we can approximate it using the thin SVD

X+ ~ Vk Dk-1 UkT



Pseudo-inverse of X=UD VT

¢ What are the dimensions of X*=VD'UT

¢ What is X X,*
e XX*=UDVTVDTUT



Power Method

¢ Power method for a square matrix A
o Writeanyx =2,z v, wherez=v;'x
e ThenAX=A2 zVvi=2,ZAV=2Z AV
o SOAAAAX =AY ==z AV
¢ Find the largest eigenvalue/eigenvector

e Project it off from x and repeat
n X = X—(Vq'X) v,



Fast ‘Randomized’ SVD

¢ Generalizes the power method

¢ Input:
e matrix A of size n X p,
¢ the desired hidden state dimension Kk,
o the number of “extra” singular vectors, |

¢ Simultaneously find all the largest singular
values/vectors by alternately left and right multiplying
by A

You are not required to know this



Randomized SVD for any matrix A

1. Generate a (k + [) X n random matrix £2
2. Find the SVD U1D1V1T of A, and keep the k + [ components of V1 with the largest singular values
3. Find the SVD U2D2V2T of AV, and keep the ‘largest’ k + [ components of U,

4. Find the SVD U3 D5 fonal of UJ'A, and keep the ‘largest’ k components of Vi,

5. Find the SVD Uf,-nalD4V4T of AVinar and keep the ‘largest’ k components of Uy,

Output: The left and right singular vectors Ugipg;, Vfﬁn .

You are not required to know this



What you should know

¢ Eigenvalues/vectors & singular values/vectors
¢ Eigenvectors as a basis

¢ Thin SVD

¢ Frobenius norm

¢ Pseudo (“Moore-Penrose”) inverse

¢ Power method



To think about:

¢ What is an efficient way to do linear regression?
o w=(XX)"XTy
e How does it scale with n and p?



