Unsupervised Learning

- Spectral methods
- Eigenvector/singular vector decomposition (SVD)
- PCA, CCA
- Reconstruction methods
- PCA, ICA, auto-encoders
- Clustering and Probabilistic methods
- K-means
- Gaussian mixtures
- Latent Dirichlet Allocation (LDA)

SVD

Learning objectives SVD and "thin SVD" Matrix norms Generalized inverse

Lyle Ungar

Eigenvectors (review)

- $A \mathbf{v}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathbf{v}_{\mathrm{i}}$
- Eigen-decomposition of a symmetric matrix $\mathbf{A}(\mathrm{n} \times \mathrm{n})$
- $\mathrm{A}=\mathrm{VDV}^{\top}$
- V: orthonormal, $\mathbf{V}^{\top} \mathbf{V}=I(n \times n)$
- Columns of V are the eigenvectors of A
- D: diagonal ($\mathrm{n} \times \mathrm{n}$)
- Diagonal elements of D are the eigenvalues of A
- All non-negative if $\boldsymbol{A}=\boldsymbol{X}^{\top} \boldsymbol{X}$
- Reported in decreasing order of magnitude down the diagonal

We don't compute eigenvectors

- What symmetric matrix have we seen?
- In practice we rarely compute eigenvectors
-Why not?

Singular Value Decomposition

- Singular value decomposition of matrix $\mathbf{X}(\mathrm{n} \times \mathrm{p})$
- $\mathbf{X}=U^{\prime} V^{\top}$
- \mathbf{U} : orthonormal, $U^{\top} U=I(n \times n)$
- Columns of \mathbf{U} are the left singular vectors of \boldsymbol{X}
- D: diagonal ($\mathrm{n} \times \mathrm{p}$)
- Diagonal elements of D are the singular values of \boldsymbol{X}
- V: orthonormal, $\mathbf{V}^{\top} \mathbf{V}=I(p \times p)$
- Columns of \mathbf{V} are the right singular vectors of \boldsymbol{X}

SVD

Singular value decomposition of X : $\mathbf{X}=\mathbf{U D V}^{\top}$

Let $\mathrm{k}=\min (\mathrm{n}, \mathrm{p})$. Then: $\quad \mathbf{X}=\sum_{i=1}^{\boldsymbol{k}} D_{i i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$
Since all $\boldsymbol{u}_{i}, \boldsymbol{v}_{i}$ are unit vectors, the importance of the $i^{\prime \prime}$ th term in the sum is determined by the size of $D_{i i}$.

Review Questions

$-X_{n^{*} p}=U D V^{\top}$

- What are the dimensions of U D and V?
- What are the eigenvectors of $X^{\top} X$?
- What are the eigenvalues of $X^{\top} X$?

Thin SVD - pick a smaller k

Singular value decomposition of X : $\mathbf{X}=\mathbf{U D V}^{\top}$

Let $\mathrm{k}=\min (\mathrm{n}, \mathrm{p})$. Then: $\quad \mathbf{X}=\sum_{i=1}^{\boldsymbol{k}} D_{i i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$
Since all $\boldsymbol{u}_{i}, \boldsymbol{v}_{i}$ are unit vectors, the importance of the i'th term in the sum is determined by the size of $D_{i i}$.

SMD and eig enver ues/eigenveciors

$$
X=U D V^{T}, \quad X^{T} X=V\left(D^{T} D\right) V^{T}
$$

The columns $\mathbf{v}_{\mathbf{1}}, \ldots \mathbf{v}_{\mathbf{p}}$ of \mathbf{V} are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$. Hence we can write

$$
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}=\sum_{i=1}^{\boldsymbol{p}}\left(D_{i i}\right)^{2} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}
$$

From before:

$$
\boldsymbol{X}=\sum_{i=1}^{\boldsymbol{k}} D_{i i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

$\mathrm{k}=\min (\mathrm{n}, \mathrm{p})$.
$D_{i i}$ are singular values of $\times,\left(D_{i i}\right)^{2}$ are eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$

Frobenius norm

- How to measure the size of a matrix?

$$
\|A\|_{\mathrm{F}}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\operatorname{trace}\left(A^{\dagger} A\right)}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}(A)}
$$

- Where σ_{i} are the singular values of \mathbf{A}.
- One can also use an L_{1} norm $\|\mathrm{A}\|_{1}=\|\sigma\|_{1}$

Generalized Inverses

- Linear regression estimates w in $y=X w$
- This uses a pseudo-inverse ("Moore-Penrose inverse") X^{+}of X, so
- $w=X^{+} y$
- Thus far, we have done this by
- $X^{+}=\left(X^{\top} X\right)^{-1} X^{\top}$

Generalized Inverses

- We can also compute inverses using SVD
- The idea:

$$
\mathbf{X}^{+}=\left(\mathbf{U} \mathbf{D}^{-1} \mathbf{V}^{\top}\right)^{\top}=\mathbf{V}\left(\mathbf{D}^{-1}\right)^{\top} \mathbf{U}^{\top}
$$

- You can't take the inverse of a rectangular matrix, but we can approximate it using the thin SVD

$$
\mathrm{X}^{+} \sim \mathrm{V}_{\mathrm{k}} \mathrm{D}_{\mathrm{k}}^{-1} \mathrm{U}_{\mathrm{k}}^{\top}
$$

Pseudo-inverse of $X=U$ V $^{\top}$

- What are the dimensions of $\mathrm{X}^{+}=V \mathrm{D}^{-1} \mathrm{U}^{\top}$
- What is $\mathrm{X}_{\mathrm{k}}{ }^{+}$
- $X X^{+}=U D V^{\top} V D^{-1} U^{\top}$

Power Method

- Power method for a square matrix A
- Write any $\mathbf{x}=\Sigma_{i} z_{i} \mathbf{v}_{i}$ where $z_{i}=v_{i}{ }^{\top} \mathbf{x}$
- Then $A x=A \Sigma_{i} z_{i} v_{i}=\Sigma_{i} z_{i} A v_{i}=\Sigma_{i} z_{i} \lambda_{i} v_{i}$
- So AAAAx $=A^{4} x==\Sigma_{i} z_{i} \lambda_{i}^{4} v_{i}$
\bullet Find the largest eigenvalue/eigenvector
- Project it off from x and repeat
- $\mathbf{x}:=\mathbf{x}-\left(\mathbf{v}_{1}{ }^{\top} \mathbf{x}\right) \mathbf{v}_{1}$

Fast ‘Randomized’ SVD

- Generalizes the power method
- Input:
- matrix A of size $n \times p$,
- the desired hidden state dimension k ,
- the number of "extra" singular vectors, I
- Simultaneously find all the largest singular values/vectors by alternately left and right multiplying by A

You are not required to know this

Randomized SVD for any matrix A

1. Generate a $(k+l) \times n$ random matrix Ω
2. Find the SVD $U_{1} D_{1} V_{1}^{T}$ of ΩA, and keep the $k+l$ components of V_{1} with the largest singular values
3. Find the SVD $U_{2} D_{2} V_{2}^{T}$ of $A V_{1}$, and keep the 'largest' $k+l$ components of U_{2}
4. Find the SVD $U_{3} D_{3} V_{\text {final }}^{T}$ of $U_{2}^{T} A$, and keep the 'largest' k components of $V_{\text {final }}$
5. Find the SVD $U_{\text {final }} D_{4} V_{4}^{T}$ of $A V_{\text {final }}$ and keep the 'largest' k components of $U_{\text {final }}$

Output: The left and right singular vectors $U_{\text {final }}, V_{\text {final }}^{T}$ You are not required to know this

What you should know

- Eigenvalues/vectors \& singular values/vectors
- Eigenvectors as a basis
- Thin SVD
- Frobenius norm
- Pseudo ("Moore-Penrose") inverse
- Power method

To think about:

-What is an efficient way to do linear regression?

- $\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
- How does it scale with n and p ?

