
Unsupervised Learning
u Spectral methods

l Eigenvector/singular vector decomposition (SVD) 
l PCA, CCA

u Reconstruction methods
l PCA, ICA, auto-encoders

u Clustering and Probabilistic methods
l K-means
l Gaussian mixtures
l Latent Dirichlet Allocation (LDA)



SVD

Lyle UngarLearning objectives
SVD and ‘thin SVD”
Matrix norms
Generalized inverse



Eigenvectors (review)
u A vi = λi vi

u Eigen-decomposition of a symmetric matrix A (n x n)    
l A = VDVT

u V: orthonormal, VTV = I (n x n) 
l Columns of V are the eigenvectors of A

u D: diagonal (n x n)
l Diagonal elements of D are the eigenvalues of A

l All non-negative if A = XTX

l Reported in decreasing order of magnitude down the diagonal



We don’t compute eigenvectors
u What symmetric matrix have we seen?
u In practice we rarely compute eigenvectors

l Why not?



Singular Value Decomposition
u Singular value decomposition of matrix X (n x p)    

l X = UDVT

u U: orthonormal, UTU = I (n x n) 
l Columns of U are the left singular vectors of X

u D: diagonal (n x p)
l Diagonal elements of D are the singular values of X

u V: orthonormal, VTV = I (p x p) 
l Columns of V are the right singular vectors of X



SVD



Review Questions
u Xn*p = U D VT

u What are the dimensions of U D and V?
u What are the eigenvectors of XTX?
u What are the eigenvalues of XTX?



Thin SVD – pick a smaller k



SVD and eigenvalues/eigenvectors



Frobenius norm
u How to measure the size of a matrix?

u Where σi are the singular values of A.
u One can also use an L1 norm  ||A||1 = ||s|| 1

Here: A is an arbitrary m x n 
matrix, what we often call X



Generalized Inverses
u Linear regression estimates w in y = Xw

u This uses a pseudo-inverse (“Moore-Penrose inverse”) 
X+ of X, so
l w = X+y

u Thus far, we have done this by
l X+= (XTX)−1 XT



Generalized Inverses
u We can also compute inverses using SVD
u The idea:

X+ = (U D-1 VT)T = V (D-1)T UT

u You can’t take the inverse of a rectangular matrix, 
but we can approximate it using the thin SVD

X+ ~ Vk Dk
-1 Uk

T



Pseudo-inverse of X = U D VT

u What are the dimensions of  X+ = V D-1 UT

u What is X Xk
+ 

l X X+  = U D VT V D-1 UT



Power Method
u Power method for a square matrix A

l Write any x = Σi zi vi      where zi = vi 
Tx

l Then Ax = A Σi zi vi = Σi zi A vi = Σi zi λi vi 

l So AAAAx = A4x = = Σi zi λi
4 vi 

u Find the largest eigenvalue/eigenvector
l Project it off from x and repeat

n x := x – (v1
Tx) v1



Fast ‘Randomized’ SVD
u Generalizes the power method 
u Input: 

l matrix A of size n×p, 
l the desired hidden state dimension k, 
l the number of “extra” singular vectors, l

u Simultaneously find all the largest singular 
values/vectors by alternately left and right multiplying 
by A

You are not required to know this



Randomized SVD for any matrix A

You are not required to know this



What you should know
u Eigenvalues/vectors & singular values/vectors
u Eigenvectors as a basis
u Thin SVD
u Frobenius norm
u Pseudo (“Moore-Penrose”) inverse
u Power method



To think about:
u What is an efficient way to do linear regression?

l w = (XTX)-1 XTy
l How does it scale with n and p?


