The rest of the semester

¢ HWs get less demanding
o Two weeks for HW7
o Replaced by work on the project

+ Start thinking about final project
e 3 person teams
o Real data set
= With enough complexity to be interesting
» Kaggle = minimal
= But not too much data cleaning!
o Details and rubric next week



Self-Supervised learning
Unsupervised Neural Nets:
Autoencoders and ICA

ICA vs. PCA

Autoencoder types !—y|.9 Ungar
denoising with figures from
variational

Quoc Le, Socher & Manning



Unsupervised Neural Nets

¢ Auto-encoders generalize PCA
o Take same image as input and output

o Avoid perfect fitting
» Pass through a “bottleneck™ or impose sparsity

= Or add noise to the input
* Denoising auto-encoder

http://ufldl.stanford.edu/wiki/index.php/Autoencoders_
and_Sparsity



Denoising Auto-encoder

¢ Image reconstruction (in CNN)
e X =1Image with noise added
e Y =original image
¢ Intermediate neural outputs are an embedding



Transformer
¢ Masking in NLP (in LSTM)

e X = sentence with words removed
e Y =the words that were removed

¢ Intermediate neural outputs are an embedding



Variational Auto-Encoder (VAE)

& Minimize reconstruction error and

maximize independence of "components”
o Reminiscent of a mixture model (which we
haven't covered yet)

¢ Intermediate neural outputs (components)
are an embedding



Variational Auto-Encoder (VAE)
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Variational Auto-Encoder (VAE)

neural network
decoder

neural network

encoder

loss = ||x-x]|]* + KL ,NO,1)] = || x-d(2) |]? + KL ,N(©O,1)]

https:/towardsdatascience.com/understanding-variational-
autoencoders-vaes-f70510919f73



Independent Components Analysis (ICA)

& Given observations X, find W such that components s;0f S =
XW are “as mdependent of each other as possible”
e E.g. have maximum KL-divergence or low mutual information
o Alternatively, find directions in X that are most skewed
=« farthest from Gaussian
e Usually mean center and “whiten” the data
= Whiten: make unit covariance
= whiten: X (XTX)12
¢ Very similar to PCA
e But the loss function is not quadratic
e S0 optimization cannot be done by SVD

Trendy deep learning generalization: “disentanglement”



Independent Components Analysis (ICA)

& Given observations X, find W and S such that components
s;of S = XW are “as independent of each other as possible’
o S ="“sources” should be independent

¢ Reconstruct X ~ (XW)W* = SW*

e S like principal component scores
o W*like loadings
o X~ Sw

¢ Auto-encoder — nonlinear generalization that “encodes” X
as S and then “decodes’ it



Reconstruction ICA (RICA)

¢ Reconstruction ICA: find W to minimize
e Reconstruction error
= [|X - SWH[, = [[X - (XW)WF,
And minimize

e Mutual information between sources S = XW

K Difference between the
1(s,,8,...5.)=> H(s)—-H(s) entropy of each “source” s,

i and the entropy of all of
them together

H(y)=-[ p(»log p(y)dy

Note: this is a bit more complex
than it looks, as we have real
numbers, not distributions

http://mathworld.wolfram.com/DifferentialEntropy.html



Mutual information

MI(y1,Y2,...Ym) = KL(P(Y1,Y2,---Ym) | PCY4)P(Y2) --P(Ym))

How well do the independent distributions approximate
the joint distribution?



Auto-encoders

¢ Take same image as input and output

¢ often adding noise to the input
(denoising auto-encoder)

¢ Learn weights to minimize the
reconstruction error

# This can be done repeatedly
(reconstructing features)

¢ Used for semi-supervised learning

from Socher and Manning

Unsupervised deep learning



PCA = Linear Manifold =
Linear Auto-encoder

input x, 0-mean
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x
W = principal eigen-basis of Cov(X)

Linear manifold

LSA example:
X = (normalized) distribution

of co-occurrence frequencies

from Socher and Manning



The Manifold Learning Hypothesis

e Examples concentrate near a lower dimensional
“manifold” (region of high density where small changes are only
allowed in certain direction~"
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Auto-Encoders are like nonlinear PCA
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Stacking for deep learning

reconstruction
of input

Q@0® @ input

from Socher and Manning



Stacking for deep learning

reconstruction 000
of features

?
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iInput OO ...
Now learn to reconstruct the features
(using more abstract ones)

from Socher and Manning



Stacking for deep learning

¢ Recurse — many layers deep

¢ Gives embeddings to use in supervised learning
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from Socher and Manning



Tera-scale deep learning

Quoc V. Le

Stanford University and Google
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TICA: Reconstruction ICA:
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Lemma 3.1 When the input data {x'Y}"™, is whitened, the reconstruction cost
AN ANWIW 2D — 29|12 is equivalent to the orthonormality cost \|WTW —1||%.

m £=i=1

Lemma 3.2 The column orthonormality cost \|WTW — L, ||% is equivalent to the row orthonor-
mality cost \|WW7T — 1, H‘)T up to an additive constant.

—> Equivalence between Sparse Coding, Autoencoders, RBMs and ICA

———> Build deep architecture by treating the output of one layer as input to
another layer

Le, et al., ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning. NIPS 2011




Training

Dataset: 10 million 200x200 unlabeled images from YouTube/Web
Train on 2000 machines (16000 cores) for 1 week
1.15 billion parameters

- 100x larger than previously reported
- Small compared to visual cortex

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Visualization of features learned
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The face neuron

Top stimuli from the test set Optimal stimulus
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



The cat neuron

Top stimuli from the test set Optimal stimulus
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012



What you should know

¢ ICA

o Like PCA but does disentanglement as well as reconstruction

¢ Unsupervised neural nets (auto-encoders)
o Generalize PCA or ICA
e Denoising or variational
o Often trained recursively
o Often learn an “overcomplete basis”
e Used in semi-supervised learning

& Transformers use masking



