CIS 5200 Machine Learning Lyle Ungar

Poll Everywhere Poll Everywhere, Inc. Communication

E Everyone

This app is compatible with all of your devices.

Install *Poll Everywhere* from app store or go to https://pollev.com/lyleungar251 What's your favorite word?

happy

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

CIS 5200 Machine Learning

Lyle Ungar

Computer and information Science

Learning Objectives Is CIS5200 for you? What you need to know: Administrivia and Course Goals Types of machine learning

Should I be here?

You should know probability and linear algebra

• See prequiz from wiki

♦ If you're waiting to get into this course

• The course will be offered again in the spring

Alternate courses

• CIS 4190/5190 Applied Machine Learning less math

in R

- STAT 4710/5710/7010 Modern Data Mining
- CIS 5450 Big Data Analytics: more data handling
 ESE 5450 Data Mining more math?

Introductions

- Who am I?
- Who are you?
 - Why are you here?

What will this course look like?

- Lectures (MW) Review (F) live, livestreamed, and recorded on canvas
 - Slides, poll-everywhere, wiki
- Pods (Wθ) start next week
 - Mandatory attendance;
- Office hours: see "people" on the wiki
- Ed first stop for questions
- Worksheets Jupyter notebooks for code
- Homework
 - Conceptual (math in latex overleaf) and
 - Coding (python/numpy/sklearn/pytorch/jupyter colab)
 - Submit via Gradescope
- Exams
 - Midterm and final multiple choice with "cheat sheet"
- Quizzes, Surveys– each week on canvas
- Evolving over the semester, so lots of feedback to me!!!

The Course Cadence

- ◆ MW Lecture: new material
- Wθ Pods: discuss
- ♦ F: Review
- OFSSMT: quiz, survey, Worksheets, HW for preceding week

The course moves fast; you need to keep up!

Pods

Meet weekly, mandatory attendance

• Get to know people!

How do I sign up?

• Coming this weekend

What do I do if I can't make my pod?

- Let your pod leader know
- Come to make-up

The Course Philosophy

- Understand the huge number of math concepts behind machine learning
 - Lecture/quiz/midterm/final
- Be familiar with the standard ML coding platforms
 - Worksheets/HW

If Worksheets are taking more than 5 hours/week, then you should be doing them during special "pod hours" on the weekend.

Course goals

• Be familiar with all major ML methods

- Regression (linear, logistic), regularization, feature selection
- K-NN, Decision trees, random forests, SVM
- PCA, K-means, GMM
- Naive Bayes, Bayes Nets, HMMs
- Online learning: boosting, perceptrons, LMS
- Deep learning

Know their strengths and weaknesses

- know jargon, concepts, theory
- be able to modify and code algorithms
- be able to read current literature

Course goals

• Be familiar with math behind all major ML methods

- Information theory/entropy/KL divergence
- Norms and distances
- Likelihood: MLE/MAP
- Optimization via gradient descent
- EM
- RL

Administrivia

- Canvas
 - Homework, Lecture recordings, quizzes

♦ Gradescope

Course wiki

- Lecture notes, slides
- Resources
 - Grading scheme, academic integrity,
 - office hours, ...
- Readings -- including the Bishop 'textbook' -- free online
 - Mostly for reading after lectures
 - "supplemental" really means that
- ♦ Ed
 - look here first for answers!

Learning in the time of post?-COVID

This course is in beta

- Mix of synchronous and asynchronous.
- Give me lots of feedback!!!!

Let me know if you experience challenges

I care!!!

Do you have Poll Everywhere?

https://pollev.com/lyleungar251

Working Together

Homework is mostly "pair programming" and "pair problem solving"

If it is determined that code submitted by two students might have been copied

- A) Both will receive half credit
- B) The person who copied will be referred to the Office of Student Conduct (OSC)
- C) Both students will be referred to the Office of Student Conduct (OSC)
- D) None of the above

Asking Questions

Questions about homework should be

A) Asked during office hours
B) Emailed to the instructor or a TA
C) Asked on Ed
D) A or C
E) A, B or C

Python

• Python is a better ML language than matlab

- A) True
- B) False

Where is Machine Learning used?

https://alliance.seas.upenn.edu/~cis520/wiki/

EMC, Teradata, Oracle, SAP, Vmware, Splunk, MemSQL, Palantir, Trifacta, Datameer, Neo,, Infobright, Fractal Analytics

http://www.datamation.com/applications/30-big-data-companies-leading-the-way-1.html

ML unicorns: business

♦ 4Paradigm Anti-fraud for insurance & banking China Dataminr Business intelligence US Afiniti Behavior analytics US Platform for sales teams US InsideSales.com Avant Credit scores US Recruitment platform ♦ ZipRecruiter US SoundHound Voice-enabled AI assistants US Momenta AV perception software China Personalized news curation China Bytedance https://www.cbinsights.com/research/ai-unicorn-club/

ML: cybersecurity, surveillance

CrowdStrike
 Darktrace
 Tanium
 Face++
 Facial recognition China
 SenseTime
 Cloudwalk
 YITU Technology
 Facial recognition China
 medical imaging & diagnostics

ML: healthcare, drugs

- iCarbonX
 Personalized healthcare
 China
- Tempus Labs
 Drug R&D US
- BenevolentAl
 Drug R&D UK
- Butterfly Network
 Portable ultrasound
 US
- OrCam Technologies Wearables for visually impaired Israel

ML: manufacturing

- Preferred Networks Mfg, medical imaging & diagnostics, auto Japan
- Automation Anywhere Robotic process automation US
- UiPath Robotic process automation US
- ♦ C3 IIoT platform US
- Uptake Technologies IIoT platform US

ML: Automomous vehicles

Pony.ai Autonomous vehicles US
Zoox Autonomous vehicles US

Bestmile raises \$16.5 million to optimize autonomous vehicle fleets

CHRIS O'BRIEN @OBRIEN AUGUST 28, 2019 12:08 AM

Components of ML

♦ Representation

- feature set
- model form

Loss function

- Optimization method
 - For parameter estimation
 - For model selection and hyperparameter tuning

Components of ML

- ♦ Representation
 - $\hat{y} = f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$
- Loss function
 - $L(\mathbf{y}, \, \hat{\mathbf{y}}) = ||\mathbf{y} \hat{\mathbf{y}}||_2$
- Optimization method
 - $\operatorname{argmin}_{w} L(y, \hat{y}(w))$
 - gradient descent

Google ads as machine learning

 \rightarrow More on Google

Types of Learning

Supervised

- Given an observation **x**, what is the best label *y*?
- Unsupervised
 X
 - Given a set of **x**'s, cluster or summarize them
- Reinforcement
 - Given a sequence of states **x** and possible actions **a**, learn which actions maximize reward.

Types of Learning as Probabilities

Supervised

<u>X, y</u>

• *p*(*y*|*x*)

- conditional probability estimation
- $min \parallel \hat{y}(x) y \parallel$ optimization

Unsupervised

• *p(x)*

- X
- "generative" model

Types of models

♦ Generative

- *p(x)*
- ♦ Discriminative
 - *p(y*|**x**)

X: features, predictors, design matrix, input y: response, label, output

Types of models

♦ Parametric

- $\hat{y} = \mathbf{w} \cdot \mathbf{x}$
- $\hat{y} = f(\mathbf{x}; \theta)$
- **w** and θ are parameters

Non-parametric

• k-nn, decision trees

Semi-parametric"

• Deep learning

ML vs. Statistics vs. Data Science

Statistics

- more modeling, especially of the noise
- more hypothesis testing
- ◆ ML
 - more predictive accuracy
 - more flexible model forms

Data Science

- Includes data collection and cleaning
- More interpretation, less math

TODO

◆ Visit canvas <u>https://canvas.upenn.edu/</u>

- Take the self-test in canvas
- Do HW 0 (trivial latex; be able to run numpy in jupyter)

Join Ed

- Linked to from canvas
- ◆ Look at the wiki https://alliance.seas.upenn.edu/~cis520/wiki
- ♦ Get up to speed on python, numpy
 - By doing the worksheets

What you should know

- Turning a real-world problem into a well-posed ML problem is often hard
 - pick features/predictors, **x**
 - output/response, y
 - loss function L(y, f(x; θ))
- Unsupervised vs. supervised vs. reinforcement
 - generative $p(\mathbf{x})$ vs. conditional $p(y|\mathbf{x})$ models
- Parametric, non-parametric, semi-parametric
- Canvas, Ed, wiki

What questions do you have on today's class?

Тор

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app