NETFLIX

Lyle Ungar

Recommender Systems case study in real world ML

The Netflix training data

◆ Training data

- 480,000 users
- 18,000 movies
- 100,000,000 ratings

◆ Data is sparse

- 100,000,000/(18,000*480,000) = 0.01
- but it is worse than that!

\$1,000,000 prize money for first team to beat the baseline by 10%

Validation and Test data sets

- ◆ Validation ("Quiz") set
 - 1.4 million ratings used to calculate leaderboard
- ◆ Test set
 - 1.4 million ratings used to determine winners

What kind of problem is this

- **◆** Supervised? Unsupervised? Other?
- ◆ How would you go about solving it?

What models to use?

- **◆** An ensemble of many models
- Main methods
 - K-nearest neighbors
 - Matrix reconstruction

K-NN

$$\hat{r}_{ui} = (1/k) \sum_{j \in N(i;u)} r_{uj}$$

 $r_{ui} = \text{rating by user } u \text{ for movie } i$

N(i;u) = the set of k (typically 20–50) movies for which user u has provided a rating that are most similar to movie i

How do you measure movie similarity?

K-NN - the steps

$$\hat{r}_{ui} = (1/k) \sum_{j \in N(i;u)} r_{uj}$$

 $r_{ui} = \text{rating by user } u \text{ for movie } i$

- 1) Find the movies *j* that user *u* has rated
- 2) Of those, find the *k* that are most similar to the target movie *i* that you want to estimate the rating of
- 3) Average the user u's ratings of those similar movies, r_{uj}

Similarity measures

Compute the distance or similarity between movies *i* and *j*

Each movie is represented by the ratings of it by all the people, but that most of those are missing

distance
$$d(\mathbf{r}_i, \mathbf{r}_j)^2$$

$$\sum_{u \in NM} (r_{ui} - r_{uj})^2 / |NM|$$
 cosine similarity $\cos(\mathbf{r}_i, \mathbf{r}_j)$
$$\sum_{u \in NM} (r_{ui} r_{uj}) / (||\mathbf{r}_i|| ||\mathbf{r}_j||)$$

NM is the set of users u where r_{ui} and r_{uj} are present |NM| is the number of users in that set || \mathbf{r}_i || = sqrt ($\sum_{u \in NM} r_{ui}^2$)

How to improve?

?

Top

Soft K-NN

$$\hat{r}_{ui} = \sum_{j \in N(i;u)} s_{ij} r_{uj} / \sum_{j \in N(i;u)} s_{ij}$$

 r_{ui} = rating by user u for movie i

 s_{ij} = similarity between movies i and j

K-NN – subtract off a baseline

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in N(i;u)} s_{ij} (r_{uj} - b_{uj}) / \sum_{j \in N(i;u)} s_{ij}$$

r_{ui} = rating by user *u* for movie *i*

 s_{ij} = similarity between movies *i* and *j*

 b_{ui} = baseline rating - e.g. mean rating of user u or movie i

This doesn't account for

- **◆ Similar movies are redundant**
 - e.g. a series like Star Wars or Avengers
- ◆ Movies may be more or less similar
 - If less similar, then 'shrink' more to the baseline

K-NN with regression instead of similarity

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in N(i;u)} w_{ij} (r_{uj} - b_{uj})$$

 r_{ui} = rating by user u for movie i

 w_{ii} = weight learned by regression

 b_{ui} = baseline rating - e.g. mean rating of user u or movie i

 w_{ij} measures how much a rating of movie j tells you about rating of movie i

K-NN with regression

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in N(i;u)} w_{ij} (r_{uj} - b_{uj})$$

 r_{ui} = rating by user u for movie i

w_{ij} = weight learned by regression

 b_{ui} = baseline rating - e.g. mean rating of user u or movie i

Find w_{ij} by seeing what weights on similar movies j would have best estimated the rating r_{vi} on the target movie i by people v other than the user u.

$$\operatorname{argmin}_{w}[\sum_{v \neq u} (r_{vi} - \hat{r}_{vi})^{2}] = \operatorname{argmin}_{w}[\sum_{v \neq u} (r_{vi} - b_{vi} - \sum_{j \in N(i;v)} w_{ij} (r_{vj} - b_{vj}))^{2}]$$

This can be expensive

- ◆ Need to compare every user against every other user to find the most similar users
 - Based on movies in common
- ◆ How to speed up?

Matrix factorization

- Factor the rating matrix R
- \bullet **R** = **PQ** or $\hat{\mathbf{r}}_{ui} = \mathbf{p}_{u} \mathbf{q}_{i}^{\mathsf{T}}$
 - P is (number of users) * (number of hidden factors)
 - Q is (number of movies) * (number of hidden factors)
 - Number of hidden factors, k = 60
- ◆ P looks like principal component scores
- ◆ Q looks like loadings

Matrix factorization

 $\sum_{(u,i)\in K}[(r_{ui}-p_uq^T_i)^2 + \lambda(||p_u||_2^2 + ||q_i||_2^2)]$ reconstruction error ridge penalty

where the summation is over the set K of (u,i) pairs for which r_{ui} are known.

◆ Solve using alternating least squares

- first fix P and solve for Q using Ridge regression
- then fix Q and solve for P using Ridge regression
- repeat.

Matrix factorization - made fancy

- ◆ Further regularize by forcing the elements of P and Q to be non-negative
 - Non-Negative Matrix Factorization (NNMF)
- ◆ And do locally weighted matrix factorization
 - $\sum_{(u,i)\in K} [s_{ij}(r_{ui}-p_uq^T_i)^2+\lambda(|p_u|_2+|q_i|_2)]$
 - Where s_{ii} is the similarity between movies i and j.

What is out-of-sample?

♦ How to handle new users or movies?

What does Netflix really want to maximize?

What you should know

- ◆ Everything we've done can be extended to only use the loss over the observations we have.
 - Regression
 - Matrix factorization
 - Generalizes PCA to include Ridge penalty, NNMF
- **◆** For highest accuracy, ensemble all the methods
 - Subtract off (and add back in) baseline
- ◆ Follow-up competition was cancelled because...
- Lots of other features can be used