Evaluating ML

Lyle Ungar

Probability vs loss Confusion matrix: TP/TN/FP/FN Precision, Recall, Sensitivity, Specificity ROC curves

What is Netflix trying to do?

?

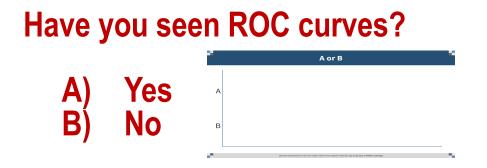
.

Тор

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Loss functions come from decision making

- We often optimize a loss function which is a surrogate for our true loss function
- Don't confuse probability or score with loss
 - One can optimize a model for probability and then use the probability in a decision rule
 - Or just directly optimize the loss resulting from a decision rule


Regression loss function

- For a linear regression predicting dollar amounts (e.g., income, housing prices)
 - What is the loss function being optimized for?
 - What is the residual plot likely to look like?

Does this meet the assumptions of the linear regression model?

• If not, how could you fix it?

Precision, Recall, Sensitivity, Specificity and ROC curves

Ways to be right or wrong

Claim\ls	True Yes	True No
Classify	True	False
Yes	Positive	Positive
Classify	False	True
No	Negative	Negative

Accuracy = (TP + TN)/(TP+FP+FN+TN)

Measuring Performance

Accuracy (symmetric)

- % correctly classified
- Asymmetric measures
 - Precision
 - P(yes | predicted as yes)
 - Recall (or Sensitivity)
 - P(predicted as yes | yes)
 - Specificity
 - P(predicted as no) no)

Precision/Recall Sensitivity/Specificity

Claim\ls	True Yes	True No	
Classify Yes	True Positive	False Positive	
Classify No	False Negative	True Negative	

- Precision
 - P(yes | predicted as yes) = TP/(TP+FP)
- Recall (or Sensitivity)
 - P(predicted as yes | yes) = TP/(TP+FN)
- Specificity
 - P (predicted as no)| no) = TN/(TN+FP)

Precision/Recall Example

Claim\ls	True Good	True Not Good	
Classify "Good"	70	50	
Classify "Not good"	30	350	
			500

- Precision
 - P(good | predicted as good) = 70/(70+50)
- Recall (or Sensitivity) = True Positive Rate (TPR)
 - P(predicted as good | good) = 70/(70+30)
- Specificity = 1 (False Positive Rate)
 - P (predicted as bad| bad) = 350/(350+50)

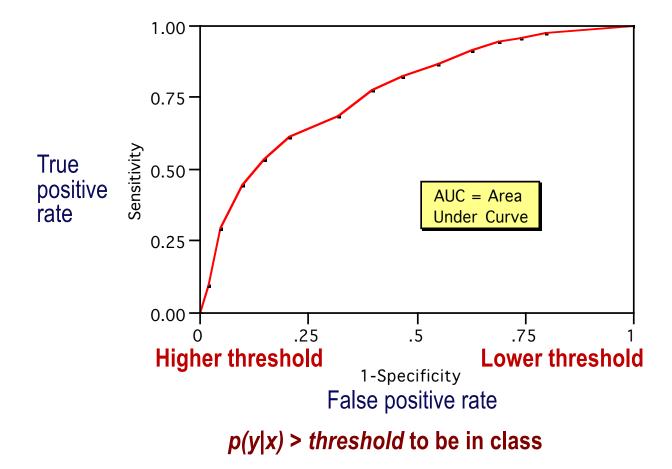
F1 combines Precision and Recall

Claim\ls	True Yes	True No
Classify	True	False
Yes	Positive	Positive
Classify	False	True
No	Negative	Negative

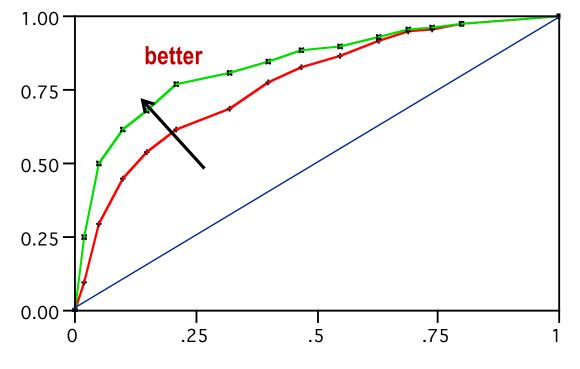
Precision

- F1
 - 2 precision * recall/(precision + recall)

- Recall
 - TP/(TP+FN)

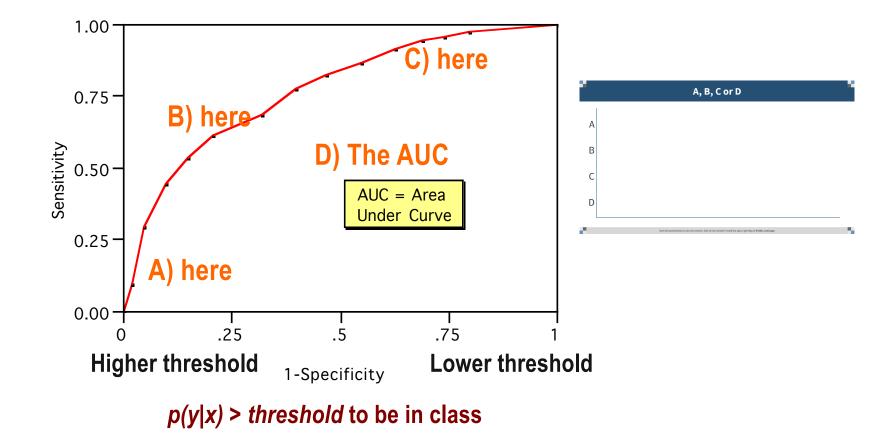

• TP/(TP+FP)

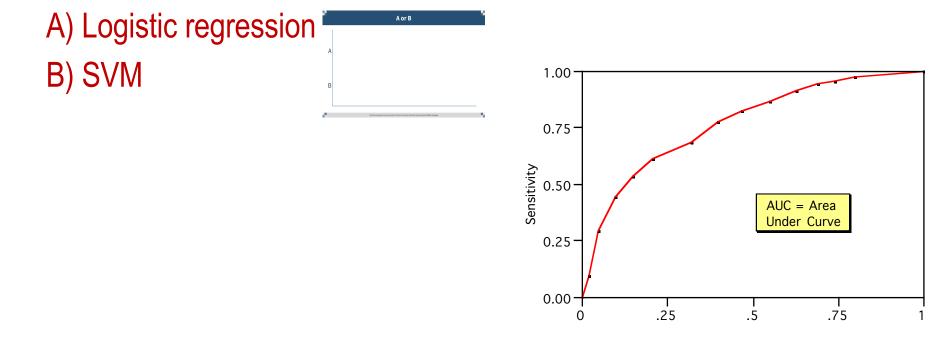
ROC (Receiver Operating Characteristic) Curve


- Sort all examples from highest probability (or score) of being 'yes', p(y='yes'|x), to lowest
- Sweep the threshold for predicting an example to be labeled 'yes' from 1 down to 0
 - This varies *specificity* from 1 to 0.
- At each threshold compute the sensitivity
 - i.e., the fraction of the true positives you found
- Plot the curve

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

ROC Chart Varies Threshold


ROC charts support comparison


1-Specificity

AUC = 0.5 is random guessing AUC = 1.0 is perfection **AUC** = Area Under the Curve

Where does google care about?

Which method is most likely to be better for generating an ROC curve?

1-Specificity

The Truth					
Test	Has the disease	Does not have the disease	1		
Score: Positive	True Positives (TP) a	False Positives (FP) b	PPV = TP TP + FP		
Negative	c False Negatives (FN)	d True Negatives (TN)	$\mathbf{NPV} = \frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FN}}$		
	Sensitivity	Specificity			
	TP	TN			
	TP + FN	TN + FP			
о		d			
	a + c	d + b			

Confusion Matrix

- A confusion matrix shows the counts of the actual versus predicted class values.
- Example (overall accuracy rate of 73.9%)

		Actual Class		
		Class A	Class B	Class C
Predicted	Class A	20	5	2
Class	Class B	6	20	4
	Class C	4	2	25

For the confusion matrix				
		Actual		
		purchase	no puro	chase
Predicted	purchase	10	60	
	no purchase	20	200	
 What is its precision? What is its recall? How do you a) increase precision (but decrease recall) b) increase both precision and recall 			call)	a) 10/20 b) 10/(10+20) c) 10/60 d) 10/(10+60 e) other A,B,C,Dore

Optimizing for true utility

Could one directly learn a model to optimize

- An asymmetric loss function?
- AUC?

You should know

Probability vs. loss

- Often use model to estimate score; then threshold for decision
- Loss function vs. utility function

Confusion matrix:

- TP/TN/FP/FN or TPR/TNR/FPR/FNR
- Precision, Recall, Sensitivity, Specificity, F1

ROC curves

• AUC