Real World ML

Lyle Ungar

Evaluation metrics
The final project
Real-world ML issues

Final project

- ◆ Pick a group of 2-3 students and a team name
- Pick a problem and dataset
- Look up related problems
- ◆ Run 3-5 methods, plus a baseline
 - Optimize hyperparameters
 - Show results in a table
- ◆ What can you do that is clever?
 - Usually taking advantage of the specifics of the problem

Final project deliverables

- ◆ 11/14 Project proposal
 - Give us enough information to give you feedback
- ◆ 11/28 Project checkpoint
 - Show that you are making progress
- ◆ 12/7-12/9 presentations in pods
- ◆ 12/12 Project report, code and notebook

Real World ML

- ♦ Who cares? Why?
 - Loss functions
- Model form
 - Feature engineering
 - Semi-supervised learning
- **◆** Regularization
- **♦ Visualization/Interpretation**
 - Causality: "what if?"

Missing data

◆ Real valued

- Replace the missing item with zero or average
- Add a new variable indicating if it was missing

◆ Categorical

Treat it as a new category value

Categorical data

- Encode "one hot"
- **◆** Learn an embedding (semi-supervised)
- ◆ Use "mean encoding"
 - Replace the category variable with the average y-value for the corresponding category value.

```
      X1
      X2
      Y

      A
      3.7
      1

      A
      2.1
      2

      B
      0.9
      4

      X1'
      X2
      Y

      1.5
      3.7
      1

      4.0
      0.9
      4
```

What you should know

- ◆ Think about the 'true' loss function (utility)
 - Distinguish modeling from decision making
- ◆ Think about the features
 - What to you have? What can to get?
 - How should they be regularized (blocks)
- Think about what ML methods fit best
 - Compare several