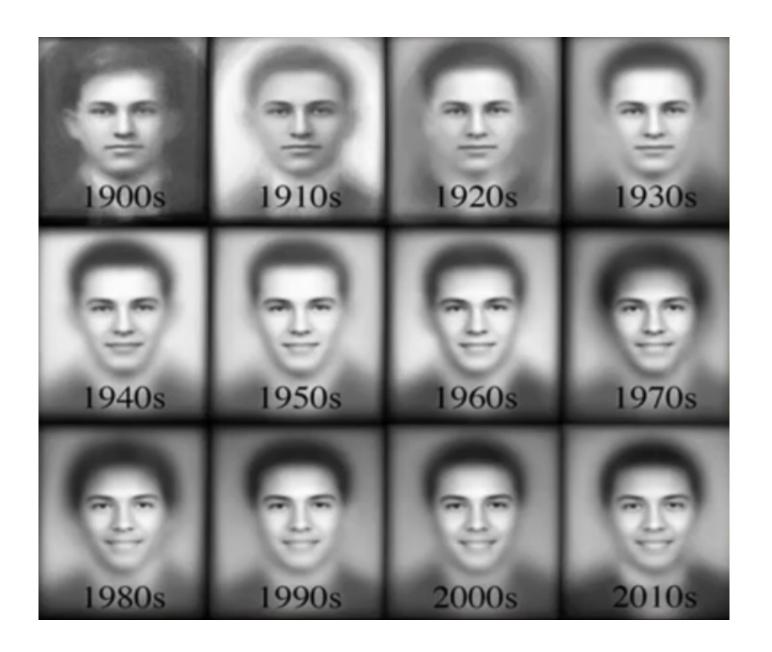
loving beautiful princess Cute yummy hubby time_with her loved cake wishes_she so_much super_excited husband such a loves_her girl ove_vouso_happysoo husband such a loves_her girl ove_thankful ugh husband such a loves_her girl ove_you_guys having_a mommy hair 2.3 having_a mommy hair 2.3 having_a mommy bed herself boyfriend sad girls can't_wait lovely 3 yay_like_it_on: her_new_make_me baby laugh with_my daddy babies go_away cleaning

Model Interpretation

Lyle Ungar

Exploratory Data Analysis Images, word clouds Univariate vs. multivariate Feature importance


Figure 1: Example Twitter profile pictures for users scorin high in a personality trait.

Visualization matters

- ◆ Check data quality
- Understand the data
- Understand the model
 - To aid in model development
 - To explain results to users

Exploratory Data Analysis (EDA)

- ◆ Look at the data!!!
- ◆ Look at some images; read some posts
- Counts
 - Present/missing
- Means/standard deviations
- **♦** Histograms
- Correlations of features with outputs

Shiry Ginosaur et al.

Shiry Ginosaur et al.

Variable explanation/importance

- **◆** Interpretation
 - Find items closest to the cluster center
 - Find words closest to a vector embedding
- ◆ Method specific or agnostic variable importance
- argmax_x f(x) for hidden nodes or outputs
 - Which input (Image, document ...) maximizes the p(Y=y)?

argmax_x f(x)

(a) Extraverted.

(b) Conscientious.

Figure 1: Example Twitter profile pictures for users scoring high in a personality trait.

Variable Importance

- \bullet y = 1000 $x_1 + x_2$
- \bullet Which is more important: x_1 or x_2 ?
- ◆ How should you measure importance?
- Possible answers:
 - Standardize x₁ and x₂
 - Change each of the features over its usual range and see you much y changes
 - Remove each of the features and see how the prediction changes - with or without retraining the model

Variable Importance: Regression

- Univariate and multivariate are different
 - Since features are usually highly redundant
- **◆ True model:** $y = x_1 + x_5$
- ♦ Fit: $y = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 + c_5 x_5$
 - with $x_1 = x_2 = x_3 = x_4$
- Giving: $y = \frac{1}{4}x_1 + \frac{1}{4}x_2 + \frac{1}{4}x_3 + \frac{1}{4}x_4 + c_5 x_5$
- lacktriangle How important is x_1 ?
 - ½ or 1?

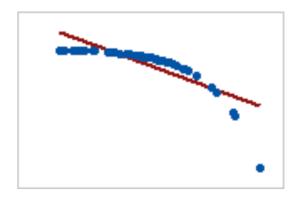
Kinds of generic variable importance

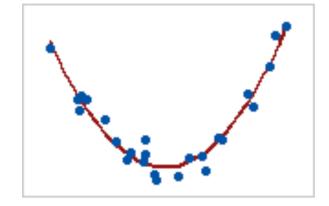
- The accuracy loss from leaving out a variable when building a model
 - What is the importance of x₁ in

$$y = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 + c_5 x_5$$

with $x_1 = x_2 = x_3 = x_4$

◆ The accuracy loss from pegging a variable to its average value in a trained model


Random Forest Variable Importance


- ◆ Find test set error, Err
- ◆ Permute a variable x_i, find new test set error, Err_t
- ◆ Variable importance is the difference, (Err Err_t) divided by the standard error

From the R package for Random forests

For interpretation

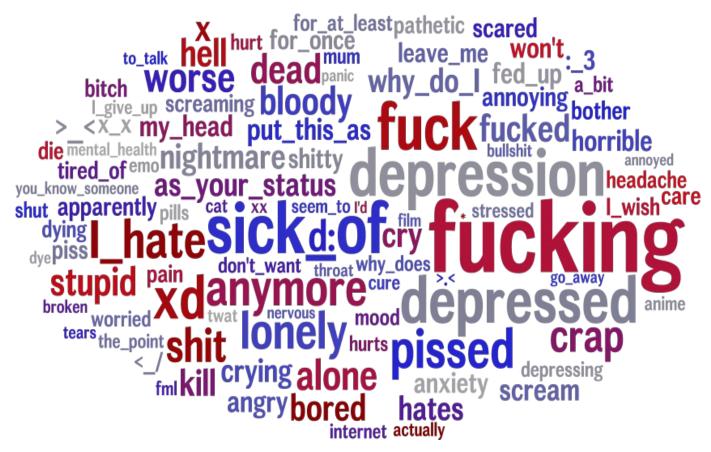
- **◆ Find correlation of each feature** x_j with y
 - But beware on nonlinear relations
 - Pearson vs. Spearman correlations

Pearson = -0.799, Spearman = -1

Look at the data!

- **♦** Frequency
- **◆** Correlation (Pearson)

$$corr(x,y) = E[(x-\mu_x)(y-\mu_y)] / \sigma_x \sigma_y$$


Words reflect who says them

Words reflect who says them

Neurotic words

Well adjusted (anti-neurotic) words

What you should know

- **◆ Start by looking at distributions**
 - Look for outliers
 - Label clusters with frequent items close to the center
- \bullet argmax_x f(x) for feature detectors or outputs
 - Images, words/documents ...
- Correlations (Pearson or Spearman)
 - E.g., word clouds
- ◆ Univariate vs. multivariate variable importance