EM – the big idea

You have a generative model p(x, z; w)

- That contains missing (hidden) values z
- Either cluster membership or missing data

To find the MLE estimate of w

- Write a function that bounds the MLE
- Alternate steps that increase the MLE
 - E: fit a function q(z|x) that approximates p(z|x)
 - M: do an MLE estimate of w using the q(z|x) as the distribution over the missing values z

Learning objectives

Imputation Missing at random Indicator functions for missing data

Imputation for Missing at Random

◆ MAR: A fraction of the entries in X are deleted

• Selected at random

Impute missing values

- Assume a generative model form for **x**
- Estimate the parameters of that model
- Use the model to estimate them missing data

How to handle missing data?

- $\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_3 \quad \mathbf{X}_4 \qquad \mathbf{y}$
- 1.1 4 T 3.0 1
- NA 4 T 2.2 1
- 0.9 2 NA 0.8 0
- 1.0 3 F NA 0

Simple imputation

 x_1 x_2 x_3 x_4 y x_1 x_2 x_3 x_4 y1.14T3.011.14T3.01NA4T2.211.04T2.210.92NA0.800.92T0.801.03FNA01.03F2.00

Replace with average or majority

Simple imputation

 x_1 x_2 x_3 x_4 y x_1 x_2 x_3 x_4 y1.14T3.011.1413.01NA4T2.211.0412.210.92NA0.800.920.670.801.03FNA01.0302.00

Replace with average or majority

Fancier imputation

Use regression to estimate missing values

Imputation

Often done using EM

- If you know the regression models to predict each feature as a function of the others, you can estimate the missing values
- If you know all the missing values, you can fit the regression models

Missing at Random?

- Grades on front page of application to Penn
- Measured chemical composition (range 0.001-0.1)
- Sensor failure?
- Clicker: how valuable do you think attending lecture is?
- Tax return

Better: add indicators for missing

$\mathbf{X}_1 \mathbf{X}_1$	m X ₂ X	2m X ₃ X ₃	m X ₄ X _{4m}	У
1.1	4	1	3.0	1
NA	4	1	2.2	1
0.9	2	NA	0.8	0
1.0	3	0	NA	0

Better: add indicators for missing

How to handle categorical data?

X 1	X 1I	R X ₁ (_з х _{1е}	₃ X _{1N}	A
R	1	0	0	0	
G	0	1	0	0	
В	0	0	1	0	
R	1	0	0	0	
NA	0	0	0	1	

One hot encoding

What if there are *lots* of categories?

◆ ZIP codes (42,000)

♦ FIPS codes

♦ SIC Codes

1623	Water, Sewer, Pipeline, Comm & Power Line Construction
1629	Heavy Construction, Not Elsewhere Classified ^[6]
1700	Construction - Special Trade Contractors
1731	Electrical Work
2000	Food and Kindred Products
2011	Meat Packing Plants
2013	Sausages & Other Prepared Meat Products
2015	Poultry Slaughtering and Processing
2020	Dairy Products
2024	Ice Cream & Frozen Desserts
2030	Canned, Frozen & Preserved Fruit, Veg & Food Specialties
2033	Canned, Fruits, Veg, Preserves, Jams & Jellies

What if there are *lots* of categories?

- ◆ Dimensionality reduce: cluster, PCA, autoencode ...
- Possible features to cluster on
 - Geolocation, Demographics, Product sales, twitter language, ...
 - Co-occurrence
- Often someone has already done the clustering
- Or replace each feature with the mean value of y for the observations with that feature

Conclusions

- Most data is not missing at random
- So add an indicator variable to indicate missing
 - And fill in the missing value with mean or majority