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Naïve Bayes: each doc is on a topic

Mixture of Unigrams = Naïve Bayes
Model: For each document:
p Choose a topic zd with p(topici) = q
p Choose N words wn by drawing each one independently from a 

multinomial conditioned on zd with p(wn=wordj|topici=z) = bz
p Multinomial: take a (non-uniform prior) dice with a word on each 

side; roll the dice N times and count how often each word comes up
In NB, we have exactly one topic per document
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LDA: Each doc is a mixture of topics
u LDA: each document is a (different) mixture of topics

l Naïve Bayes assumes each document is on a single topic
l LDA lets each word be on a different topic
• For each document, d:

• Choose a multinomial distribution qd over topics for that document
• For each of the N words wn in the document

—Choose a topic zn with p(topic) = qd

—Choose a word wn from a multinomial conditioned on zn with 
p(w=wn|topic=zn)

—Note: each topic has a different probability of generating each word



Dirichlet Distributions
u In the LDA model, we want the topic mixture proportions for each 

document to be drawn from some distribution.
l distribution = “probability distribution”, so it sums to one

u So, we want to put a prior distribution on multinomials.  That is, k-tuples
of non-negative numbers that sum to one.
l We want probabilities of probabilities
l These multinomials lie in a (k-1)-simplex

n Simplex = generalization of a triangle to (k-1) dimensions.
u Our prior:

l Defined for a (k-1)-simplex.
l Conjugate to the multinomial



3 Dirichlet Examples (over 3 topics)

Corners: only one topic
Center: uniform mixture of topics
Colors indicate probability of seeing the topic distribution



Dirichlet Distribution

u Dirichlet distribution 
l is defined over a (k-1)-simplex.  I.e., it takes k non-negative arguments which 

sum to one. 
l is the conjugate prior to the multinomial distribution.  

n I.e. if our likelihood is multinomial with a Dirichlet prior, then the posterior 
is also Dirichlet

l The Dirichlet parameter ai can be thought of as the prior count of the ith class.



The LDA Model
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u For each document,
l Choose the topic distribution q ~ Dirichlet(a)
l For each of the N words wn:

n Choose a topic z ~ Multinomial(q)
n Choose a word wn ~ Multinomial(bz)

w Where each topic has a different parameter vector b for the words



The LDA Model: “Plate representation”

u For each of M documents,
l Choose the topic distribution q ~ Dirichlet(a)
l For each of the N words wn:

n Choose a topic z ~ Multinomial(q)
n Choose a word wn ~ Multinomial(bz)



Parameter Estimation
u Given a corpus of documents, find the parameters a and b which 

maximize the likelihood of the observed data (words in documents), 
marginalizing over the hidden variables q, z

u E-step: 
l Compute p(q,z|w,a,b), the posterior of the hidden variables (q,z) 

given each document w, and parameters a and b.  
u M-step

l Estimate parameters a and b given the current hidden variable 
distribution estimates

u Unfortunately, the E-step cannot be solved in a closed form
l So people use a “variational” approximation

q: topic distribution for the document
z: topic for each word in the document



Variational Inference

•In variational inference, we consider a simplified graphical model with 
variational parameters g, f and minimize the KL Divergence between the 
variational and posterior distributions.

• q approximates p

You don’t need to know the details; 
only what is hidden and what 
observed; and that EM works here.



Parameter Estimation: Variational EM
u Given a corpus of documents, find the parameters a and b

which maximize the likelihood of the observed data.
u E-step: 

l Estimate the variational parameters g and f in q(g,f;a,b) by 
minimizing the KL-divergence to p (with a and b fixed)

u M-step
l Maximize (over a and b) the lower bound on the log 

likelihood obtained using q in place of p (with g and f fixed)
You don’t need to know the details; 
only what is hidden and what 
observed; and that EM works here.





LDA topics can be used for semi-
supervised learning



LDA requires fewer topics than NB

perplexity = 2H(p) 

per word

I.e.,
log2(perplexity) = 
entropy, H



There are many LDA extensions
The author-topic model

z =  topic x =  author

You don’t need to know the details; only 
that there are different hidden and observed 
features; and that EM works here.



Ailment Topic Aspect Model

Observed 
word w
aspect y = symptom, treatment or other

Hidden 
topic type: background? (l), non-ailment (x)
topic distribution Paul & Dredze



What you should know about LDA
u Each document is a mixture over topics
u Each topic looks like a Naïve Bayes model

l It produces words with some probability
u Estimation of LDA is messy

l Requires variational EM or Gibbs sampling
u In a plate model, each “plate” represents repeated 

nodes in a network
n The plate model shows conditional independence, but not the form of 

the statistical distribution (e.g. Gaussian, Poisson, Dirichlet, ….)



LDA generation - example
u Topics = {sports, politics}
u Words = {football, baseball, TV, win, president}
α = (0.8,0.2)
β =                   sports politics
football 0.30     0.01
baseball 0.25     0.01
TV 0.10    0.15
win 0.30     0.25
president 0.01     0.20
OOV 0.04     0.38



LDA generation - example
u For each document, d

l Pick a topic distribution, qd using α 
l For each word in the document

n pick a topic, z
n given that topic, pick a word using β

α = (0.8,0.2)
β =                

sports    politics
football 0.30     0.01
baseball 0.25      0.01
TV 0.10      0.15
win 0.30       0.25
president 0.01      0.20
OOV 0.04      0.38


