Generative Models

Lyle Ungar

Generative models + EM estimation GMM Naïve Bayes LDA HMM

GMM - generation

- **◆** To generate each point:
 - Select a cluster k with probability π
 - Generate a point from the Gaussian distribution $N(\mu_k, \Sigma_k)$

GMM - estimation

- **♦** E: estimate cluster assignments
- M: estimate μ , Σ

Naïve Bayes: To generate a document, d

- Choose a topic z_d with $p(topic_i) = \theta$
- Choose N words w_n by drawing each one independently from a multinomial conditioned on z_d with $p(w_n=word_i|topic_i=z) = \beta_z$

Naïve Bayes: Estimation

- ◆ Usually, the topic is observed, so just count
 - $p(topic_i) = \theta$
 - $p(w_n = word_j | topic_i = z) = \beta_z$
- ◆ Or use MAP

Naïve Bayes: Estimation

- ◆ If the topic is not observed, use MLE
 - $E: \theta = p(topic_i)$
 - $M: = \beta_z = p(w_n = word_i | topic_i = z)$

LDA: To generate a document, d

- ◆ Choose a multinomial distribution θ_d ~ Dirichlet(α) over topics for that document
- lacktriangle For each of the *N* words w_n in the document
 - Choose a topic z_n ~ Multinomial(θ_d)
 - Choose a word w_n ~ Multinomial(β_z) from that topic z_n
 - $\beta_{z} = p(w = w_n | topic = z_n)$

LDA: Estimation

◆ E-step:

- Compute $p(\theta, \mathbf{z} | \mathbf{w}, \alpha, \beta)$, the posterior of the hidden variables (θ, \mathbf{z}) given each document \mathbf{w} , and parameters α and β .
 - θ_{dk} = p(topic k in document d)
 - z_{dn} = topic of word n in document d

◆ M-step

- Estimate parameters α and β given the current hidden variable distribution estimates

HMM - generation

- **◆** To generate each observation:
 - Select an initial hidden state s_0 with probability π
 - Repeat
 - Generate an emission with probability $p(x_i|s_i)$
 - Transition to the next state with probability $p(s_{i+1}|s_i)$

HMM - estimation

- **◆** E: estimate hidden state
- **◆ M:** estimate emission and transition probabilities

Bayes Net Generation

- ◆ Select values for the top level features with probability...
- ◆ Repeat
 - Select values for the next layer down, given the probability tables

Bayes Net Generation

- Write the network structure
- Estimate the probabilities by counting