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HMMs – models in the style of Kalman filters, linear 
dynamical systems, and LSTMs

Markov matrix
Hidden Markov Model



HMMs are dynamic latent variable 
models

u Given a sequence of sounds, find the sequence of 
words most likely to have produced them

u Given a sequence of images find the sequence of 
locations most likely to have produced them.

u Given a sequence of words, find the sequence of 
“meanings” most likely to have generated them
l Or parts of speech: Noun, verb, adverb, …
l Or entity type: Person, place, company, date, movie

w E.g. river bank vs. money bank

s1 è s3 ès3 ès4ès5
|        |        |         |       |  
o1 o2 o3 o4      o5
|        |       |          |      |

Bob went  to     the  bank 



Conditional Independence
u If we want the joint probability of an entire sequence, the

Markov assumption lets us treat it as a product of “bigram” 
conditional probabilities:

p(w1,w2,w3,w4) = 

p(w1) p(w2|w1) p(w3|w2,w1) p(w4|w3,w2,w1) ~

p(w1) p(w2|w1) p(w3|w2)       p(w4|w3)



A Markovian weather model:
u Tomorrow is like today, except when it isn’t.

u Markov matrix gives
p(tomorrow’s weather | today’s weather) 

If you start from any prior distribution over states 
(weathers) and run long enough you converge to a 
stationary distribution.



The same model shown as a graph



Imperfect Knowledge
But sometimes we can only observe a process “as through a 
glass darkly.” We don’t get to see what is really happening, but 
only some clues that are more or less strongly indicative of 
what might be happening.

So you’re bucking for partner in a windowless law office and you 
don’t see the weather for days at a time … But you do see 
whether your office mate  (who has an actual life) brings in an 
umbrella or not:



How to make predictions?
Now you’re bored with researching briefs,
and you want to guess the weather
from a sequence of umbrella (non)sightings:

P(w1, w2, …wn | u1, …, un)

How to do it?

You observe u, but not w.

w is the “hidden” part of the 
“Hidden Markov Model”

In speech recognition, we observe the sounds, 
but not the intended words



Bayes rule rules!

Bayes’ Rule!



A Rainy-Day Example
u You go into the office Sunday morning and it’s sunny.

l w1 = Sunny
u You work through the night on Sunday, and on Monday 

morning, your officemate comes in with an umbrella.
l u2 = T

u What’s the probability that Monday is rainy?
l P(w2=Rainy | w1=Sunny, u2=T) =

P(u2=T|w2=Rainy)/P(u2=T| w1=Sunny) x P(w2=Rainy| w1=Sunny) 
(likelihood of umbrella)/normalization  x   prior



Bayes rule for speech 
u To find the most likely word 

l Start with a prior of how likely each word is
l And the likelihood of each set of sounds given the word

u The most likely word is the one most likely to 
have generated the sounds heard

The “fundamental equation of speech recognition”:
argmaxw P(w|u) = argmaxw P(u|w) P(w) / P(u)

w = word,  u = sound (“utterance”)



Speech Recognition
u Markov model for words in a sentence

P(I like cabbages) = P(I|START)P(like|I)P(cabbages|like)
u Markov model for sounds in a word

l Model the relation of words to sounds by breaking words 
down into pieces



HMMs: Midpoint Summary
u Language can be modeled by HMMs

l Predict words from sounds
l Captures priors on words
l Hierarchical

n Phonemes to morphemes to words to phrases to sentences

l Was used in all commercial speech recognition software
n Now replaced by deep networks 

u Markov assumption, HMM definition
l “Fundamental equation of speech recognition”



Hidden Markov Models (HMMs)
Part of Speech tagging was often done using HMMs
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HMM: The Model
u Starts in some initial state si
u Moves to a new state sj with probability p(sj |si) = aij

l The matrix A with elements aij is the Markov transition matrix
u Emits an observation ov (e.g. a word, w) with 

probability p(ov |si) = biv
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HMMs are dynamic Bayesian Networks
There is a node for the hidden state and for the emission 
(observed state) at each time step, but the probability tables are 
the same at all times.

A
B

A: Markov transition matrix
B: Emission probabilities

A AA
B B B



Parameters of an HMM
u States: S = s1,…,sk

u Markov transition probabilities:  Markov 
transition matrix Ak,k Each ai,j = p(sj | si) represents 
the probability of transitioning from state si to sj.

u Emission probabilities: functions bi(ot) = p(o|si) 
giving the probability of observation ot being 
emitted by si

u Initial state distribution:  the probability that si is a 
start state π i



The Three Basic HMM Problems
u Problem 1 (Evaluation): Given the observation sequence 

O=o1,…,oT and an HMM model                           , compute the probability 
of O given the model.

u Problem 2 (Decoding): Given the observation sequence O=o1,…,oT

and an HMM model 
find the state sequence that best explains the observations
Problem 3 (Learning): Pick the model parameters                       
to maximize                   
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What you should know
u HMMs

l Markov assumption
l Markov transition matrix, Emission probabilities
l Solved by EM

u Many other models generalize HMM
l Emission can be a real-valued (e.g. Gaussian) function of the 

hidden state
l The hidden state can be a real-valued vector instead of a “one 

hot” discrete state
n Kalman filter

l Nonlinear: dynamical (“recurrent”) neural nets (e.g. LSTM)


