Reinforcement Learning

Lyle Ungar

With images by Sutton & Barto and slides by
Heejin Jeong and Steven Chen

RL Definition Thanksgiving week
state, action, reward, policy... no pods

RL algorithms no class Wed/Fri
model-based, model free no OH Thurs-Sat

Deep RL: AlphaGo/AlphaZero

Mastering Chess and Shogi by Self-
Play with a General Reinforcement
Learning Algorithm

Starting from random play, and given no domain
knowledge except the game rules, AlphaZero achieved
within 24 hours a superhuman level of play in the
games of chess and shogi (Japanese chess) as well as
Go, and convincingly defeated a world-champion

program in each case.
2017: https://arxiv.org/pdf/1712.01815.pdf

Outline, which won't make sense yet

¢ What is Reinforcement Learning?

¢ Model-based RL

o Markov Decision Process (MDP)
e Dynamic Programming

¢ Model-free RL
o 1D methods; Q-Learning
o Exploration-Exploitation Trade-off
e On-and off-policy learning
o Monte Carlo Methods

¢ Deep RL
o AlphaGo, AlphaZero

Reinforcement Learning Idea

Learn a function (policy)
that maximizes an
agent's long-term reward
In an environment

state
Si

reward

’_l Agent J
R, (

S.. | Environment]<

From Sutton Reinforcement Learning: An Introduction (2016 draft)

action
A,

Ti
0
X

G
0
X
X

opponent’'s move {

our move {

opponent's move {

I a
-7 ,’ '
our move AR
""’ I”’
- P '
*

opponent's move {

our move {

Sutton & Barto, Reinforcement Learning

-Tac-Toe Example

¢ State s
& Current board position

¢ Action a

e Move

e Possible actions depend on state
¢ Policy p(a|s)

e Given state, what action to take
¢ Reward r(s,a)

e -1/0/1 for loseltie/win

o 0 for all intermediate states

e Exploration policy

e Search to find out what happens and how
good each state is.

o Exploitation policy
e Use what was learned to do well.

Examples of RL

¢ Games
¢ Robotics

L 2 Blddlng Stanford Autonomous Helicopter
https://www.youtube.com/watch?v=M-QUkgk3HyE

¢ Showing ads
& Optimizing chemical reactions
¢ Chatbot conversation

https://towardsdatascience.com/applications-of-
reinforcement-learning-in-real-world-1a94955bcd1?2

https://www.youtube.com/watch?v=M-QUkgk3HyE
https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12

RL Challenges

¢ Never see the result of actions not taken
¢ Never told what the best action was

+ Often a long sequence of actions hefore you
discover consequences of the actions

o E.g., winorlose game only after moves are complete

Contextual Bandits

— >
L } Contextual Bandit

ﬁ a » Fu" RL PrObIem

Source: https:/medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-qg-
learning-with-tables-and-neural-networks-d195264329d0

RL Types

¢ Model based
o Explicitly learn p(si4|S;, @), 1(s;, a)
o Markov Decision Process (MDP)
o Then figure out policy

¢ Model free
o Learn expected value of each state, V(s,), given a policy
o Learn expected value of each state and action, Q(s;, a;)
e Learn an optimal policy, while learning V or Q
o State can be discrete or real, V and Q can be neural nets

Overview of RL Strategies

Dynamic Exhaustive
programming search
Response to |, w1y i = A& Model-based
backups
all possible L0,
actions
SnpNe Monte Carlo
Response to backups ! Temporal
one FZlction jrerilig 1 Model-free

- - >
shallow bootstrapping, A geep :
backups backups

]
One-step ahead Search to end

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Temporal Differences: TD(0)

o Learn the value V)(s) of each state under a policy p(s)
o This will allow us to iterate
o Find a better policy p’given a value function V(s)
o Find a more accurate value function V,,(s) for the new policy

TD(0): Mouse in Maze Example

A mouse (or robot) is placed in a maze

e On each trial, starts on a lettered square

o Can move to any adjacent square, except for the maroon one.
o Ifland in a lettered square, nothing happens.

fland in Food get fruit loops (+1) and leave maze.

fland in Shock get a mild shock (-1) and leave maze.

nitially no knowledge.

A B C Food

Shock

Simplest model-free RL méthbd: “Temporal Difference”

Mouse in Maze (‘gridworld’) Example

Goal: learn optimal policy e.g. by learning value of every square
e Initial values all set to 0

e On each trial, move through maze until exit.

o Update values of squares as you leave them.

o Do many trials to learn values of every square.

TD(0) is model free:

update immediately
rather than at the end of
the 'episode’.

Food

o w

Shock

o« [N w) o >

| ox| oml oo
(a»)

= S

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S) < V(S)+ a[R + 4V (S') — V(S)]
S+ S

until S is terminal

Source: Reinforcement Learning: An Introduction (Sutton, R., Barto A.)

Mouse in Maze Example

+ Update rule for value V/(s) of square s you just left, when entering
square s’
o AV=c(V(s)-V(s)+R(s))
e V(s) and V/(s’) are the values of the two squares before the update.
o After update V(s) = V(s) + AV.
o R(s)is the reward you get when leaving square s.
o The constant ¢ is the learning rate.

Food

Shock

T o] oml oo

Mouse in Maze Example

Trial 1: A=>» B =» C = Food =» Get reward 1 and exit

o Define V(exit) = 0, always.

e AV=0.5(V(s)-V(s)+R(s))

o New value of A: V(A) + 0.5 (V
New value of B: V(B) + 0.5 (V

New value of C: V(C) + 0.5 (

New value of Food: V(Food) +

(B)- V(A)+R(A))
(C)-V(B) +R(B))
Food
0.

0
)- 0
V(Food) - V(C) + (C))

5 (V(Exit)-V(Food) + (Food))

B Food
Food 0 0.5

B
0 0

Shock
0

Shock

0 ->

I
0

I
0

(e [N w) o >
o« [oNw) o >

G

G
0 0

l o o m o0

| o] oml oo

Values before trial Values after trial

Mouse in Maze Example

Trial 2: A=>» B =» C = Food =» Get reward 1 and
o New value of A: V(A) + 0.5 (V(B) - V(A) + R(A)) =
o New value of B: V(B) +0.5(V(C)-V(B) +R(B)) =
o New value of C: V(C) + 0.5 (V(Food) - V(C) + R(C
o New value of Food: V(Food) +

0.5 (V(Exit)-V (Food;

exit

0

0
)=
+

Food

B B
0 0.5 0

Shock
0 ->

o« (o w) o >
(e (N w) o >

G I
0

G
0 0

T oz oml oo
| oz oml oo

Values before trial Values after trial

(Food»

Mouse in Maze Example

After many trials learn values

Food
1.00

Shock
-1.00

0.705 0.655 |0.611 {0.388

Values after convergence

What is implicit in these values?

A policy

Mouse in Maze Example

¢ \What would the value of A be under an optimal policy with
no discounting and deterministic motion?

Food

Shock

o« ([N w) o >

| ox| oml oo

—= S

Using TD(0)

& We showed how to learn the values of states under
a policy using a recurrence relationship

V(S) + V(S) + a[R+V(S") = V(S)]

& We'll later also iterate
o Learn the values of states under a policy
o |Improve the policy given those values

Markov Decision Process (MDP)

Model-based RL

MDPs generalize Markov Models

M = Markov
transition matrix
B = emission
matrix

M@ Different
transition matrix for
each action, a

Emission, x;,
includes reward, R;

POMDPs generalize HMMs

¢ HMM
M = Markov
transition matrix
B = emission
matrix
¢ POMDP
M@ Different

transition matrix for
each action, a

Emission, x;,
includes reward, R;

MDP Example {raon)

state reward action

- State: agent position Ty 4
) g p . ll EnvironmentJ<—
- Action: up, down, left, right
. excluding actions that cause collisions
- Transition: where you actually

From Sutton Reinforcement Learning: An Introduction (2016 draft)

. A B C Food
move (depends on state and action) 0o o o
D E Shock
- Reward: 0 0 o
. 0 - have not reached exit ! o
. 1 -reached good exit |

- -1 -reached bad exit Reward given after exiting

MDP Specification

Joint distribution p(s’,r|s,a) = Pr{Si+1 = s', Rgx1 = r|St = s, Ay = a} can be
used to specify MDP

Traditional specification of MDP is 5-tuple (S,.A(:),p(-|,),7(-,-,-),7y) where
e § is a finite set of states
e A(s) is a finite set of actions
o p(s'|s,a) = Pr(s;11 =5Si =s,Ar=a) = ZreRp(s’,r\s, a)

® T(Saaa S/) —]E [Rt—l-l’St = S)At = a, St—l—l = S/] = ZTG"/;(:%](:;;H’CL)

e v € [0, 1] is the discount factor

Goal: Find policy a; = 7(s;) that maximizes long term return

0

Gy = Ry + 7R + ’72Rt—|—3 + ’73Rt—|—4 + = Z ’YkRk—}—t—l—l
k=0

Notation summary

® S state

* V(s value

¢ a, = 7n(s;) action (and policy)

L 2 discount factor

& 1(S,a,,8.1) reward (usually simply r(s:1)=R:)

* G expected discounted reward (‘return’)

& D(Si+1/S,a;) model

MDP generalize to NNets

¢ S state — a vector
® action — a vector
& V(s;) value — a nonlinear function of s,

& D(Si+4]s1,a;) model — a nonlinear function of s;and a;
o Often deterministic: s, = f(s,,a;)

Policy, Value, and Q Values

Policy Specific Optimal

e Policy (could be stochastic): w(a|s) e Policy (deterministic):

e Value:
7 (s) = argmax g« (s, a)
Vr(8) = Ex [G¢| St = $] a
—E. Z’VkRHkH\St:S e Value:
k=0
V4 (8) = max v, (s)
e Q value: T

= max ¢ (s, a)
qﬂ(s,a) :Ew [Gt‘StIS,At :a] a

Z'Yth+k+1|St =sAr=a * Q value:

k=0

~E,

g« (s,a) = max ¢, (s, a)

Questions

¢ What is V(A)?
¢ What is R(A)?
¢ What is q(A, move to D)?
¢ What is 7%(A)?

¢ What are possible reasons
that V(A) < 1?

Food
1.00

Shock
-1.00

0.705 10.655 |0.611

0.388

Bellman’s Equation

Ur(8) = Exn [_Gt|St = 3]

=K, Z’YthJrkH\St = S]
| k=0

=K | Ry + WZWth+k+2|St =S
| k=0

= Z m(als) Zp(s’, r|s,a)

a s',r

r+ K,

> Y RiypialSipr = 3/]]

k=0

— Zw(a|s) Zp(s’, rls,a) [r +~yv.(s")],Vs €S

a s',r

Recurrence relation for Value

Bellman’s Equation

Bellman’s Equation: Holds for all policies 7(als)

— Zw(a|s) Zp(s’,'r|8, a)[r+yv.(s')],Vs e S

=3 " p(s' 7]s,a) [r +ve(s))] Vs € S, Va € Als)

Bellman’s Optimality Equation: Holds for optimal policies 7*(s)

= max s',r|s,a) [r +yve(s")],Vs €S
i Sl 90 (5)

q«(s,a) = Zp(s’,fr\s,a) [T + vrrze}xq*(s’)] Vs € S,Va € A(s)

s',r

Bellman’s Equation

vr(8) = Zw(a|3) Zp(s’,r]s,a) [r + yv:(s')],Vs €S

TD(0)

V(S) + V(S) + a[R+V(S") — V(S)]

Model-based RL.:
“Dynamic Programming”

Interleave:
Policy Evaluation: Estimate v, using Bellman’s equation
Policy Improvement: Improve T using v,

Policy Evaluation

Compute v, for an arbitrary policy
Turn Bellman’s Equation into an update rule to find a fixed point

Randomly initialize initial approximation vg

Vp11(8) = Zw(a\s) Zp(s’, rls,a) [r + yvg(s)]

Bellman’s Equation shows that v, = v, is a fixed point for this update rule

Sequence {vi} — v, as k — oo.

Policy Improvement

Greedily update policy w(s) — 7'(s)
Initialize a random policy mg

7' (s) = argznapr(s’, rls,a) [r+ yvg(s")]

s',r

Policy gives a strictly better policy except when original policy is already optimal

Policy lteration

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A0
For each s € §:
v+ V(s)
V(s) < 2o, (8, 7|5, 7(5)) [r +V(s)]
A + max(A, |v — V(s)|)
until A < @ (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action +— m(s)
m(s) ¢ argmax,) . . p(s’,7[s,a) [r + 'yV(s')]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7 = m,; else go to 2

Assuming det erminist iC p Olicy 7-‘- (S) From Sutton Reinforcement Learning: An Introduction (2016 draft)

End of part |

Overview of RL Strategies

Dynamic Exhaustive
programming search

Response to , uy 4 SN -Q- Model-based
all possible L0,
actions

SnpNe Monte Carlo
Response to backips " Temporal
one FE)ossible jrerilig 1 Model-free
actions

- - >
shallow bootstrapping, A geep :
backups backups

]
One-step ahead Search to end

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Model-free RL

o SARSA (State-Action-Reward-State-Action)
Off policy
o Q-learning

Exploration-Exploitation Trade-off

Should | select the best arm based
on my current knowledge?
Or should | explore other arms?

On- or off- policy control

¢ Target policy, . policy that we want to update
Action (behavior) policy, u: policy for choosing an action

¢ On-policy Control
e Learn policy it using experience sampled from target policy
o (u=m)
& Off-policy Control
o Learn policy i using experience sampled from different policy u
o (u#m)
o Sometimes: safe exploration or learn by observing others

e-greedy Exploration

¢ Continual exploration
o With probability €, perform a randomly selected action
o With probability 1 — €, perform a greedy action
¢ Use e-greedy policy u with respect to Q,, to improve it
¢ Annealing: time-varying € = ¢;

no

€Er — .
t no+visits(sy)

An annealing schedule

SARSA (State-Action-Reward-State-Action)

Sarsa (on-policy TD control) for estimating () =~ ¢.

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A) « Q(S,A) + a [R +vQ(S’, A" — Q(S, A)]
S8 A« A

until S is terminal

Source: Introduction to Reinforcement learning by Sutton and Barto —Chapter 6

On-policy, model-free

Q-LEARNING

Temporal Difference (TD) Learning
Off-policy, model-free

Temporal Difference (TD) Prediction

1D learns from current predictions rather than waiting until
termination

¢ TD(0): One-step look ahead
o V(st) «V(st)+a(r +yV(ses1) —V(st))

el
TD target

Q-learning: Off-policy TD(0)
¢ On experience < s;, a;, 1¢, S¢+1 > With greedy target policy
Q(se,as) « Q(spar) +a (Tt +yQ (5t+1» 7T(5t+1)) — Q(se, at))
a : Learning rate - = max Q(s;11, @) = V(S¢41)

TD target
o Convergence is guaranteed for discrete S, A if:

s Yy =0, Yaf <oo(a € (0,1))

= All (s,a) pairs are visited infinitely often

*Proof in [Watkins & Dayan 1992]

Q-learning : Off-policy TD(0)

Q-learning (off-policy TD control) for estimating m ~ ,

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from (@ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a [R + ymax, Q(S’,a) — Q(S, A)]
S« 5
until S is terminal

Source: Introduction to Reinforcement learning by Sutton and Barto — Chapter 6

*When your subsequent state s,.; = S’ is a terminal state, your "expected
future total reward” is just the immediate reward, r, + yry4q + -

MONTE CARLO RL

Monte Carlo (MC) Methods in RL

¢ Estimate expected reward by sampllng

7r Z’Yth+k-|—1|St = S]

k=0

e avoids full search
e defined for episodic tasks

b

MC

terminal state

Monte Carlo (MC) Prediction

4 Return, Gt = Tt4+1 + YTt + oo+)/T_lT't_l_T

In MC, use empirical mean return starting from
Sy Or (s¢, ag) instead of expected return for

VT(s:)orQ™(s,a)

¢ V™ (s) = average of the returns following all the
visits to s in a set of episodes

e Q™(s,a) = average of the returns following all
the visits to (s, a) in a set of episodes

Monte Carlo Updates

Sample an episode following
/ the current action policy

(obtain a return, G;, of the episode)
evaluation

m
™ Q
improvement
Update the action value with /
the average of [G{, G5, -, Gy]

*Image from Sutton Reinforcement Learning: An Introduction (2016 draft)

Monte Carlo vs. Q-learning

¢ MC: High Variance, Low Bias
e Less sensitive to initial Q values

¢ Q-learning (TD): Low Variance, High Bias
e Online learning is possible. We wait only one time step!

e For applications with long episodes: delaying all learning
until an episode’s end is too slow

o Needed for non-episodic (continuing) tasks

e Inpractice, TD methods converge faster than constant a
MC methods on stochastic tasks

Summary

Dynamic Exhaustive
programming search

Response to .y /5, 4 | -Q— Model-based
all possible A0
actions

SnpNe Monte Carlo
Response to backips " Temporal
one FE)ossible oarming. 1 Model-free
actions

- - L
shallow Dbootstrapping, A deep :
backups backups

]
One-step ahead Search to end

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

What you should know

¢S,AV,QR,y,G

¢ MDP, POMDP

¢ Exploration/exploitation

¢ Model based vs. model free RL
¢ On policy / off policy

¢ Q-learning (TD)

& Search (e.g. for games)
o Shallow vs deep; Complete vs. Monte Carlo

