
The end is near
u This week

l Finish RL
u Next week 

l Random other material
l Project presentations in pods

u Dec 12
l Review
l Projects due

u Dec 20: final 



Deep Q-Learning 
and RL game play

Lyle Ungar
with a couple slides from Eric EatonDQL/DQN

AlphaGo
AlphaZero, MuZero
Cicero



Remember Q-Learning
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 + 𝛾𝑄 𝑠′,µ 𝑠′ − 𝑄 𝑠, 𝑎

where
𝑄 𝑠′,µ 𝑠′ = maxa’ 𝑄 𝑠′, 𝑎′

Converges when this is zero



Aside: Reminder of off vs. on policy
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 + 𝛾𝑄 𝑠′,µ 𝑠′ − 𝑄 𝑠, 𝑎

SARSA - on policy (e-greedy for 𝑎 and future evaluation)
𝑄 𝑠′,µ 𝑠′ = 𝑄 𝑠′, 𝜋 𝑠′ = maxa’ 𝑄 𝑠′, 𝑎′ with prob 1-e

randoma’ 𝑄 𝑠′, 𝑎′ with prob e
Q-learning - off policy (e-greedy for 𝑎, greedy for future 
evaluation)

Greedy: 𝑄 𝑠′,µ 𝑠′ = maxa’ 𝑄 𝑠′, 𝑎′

Converges when this is zero



Deep Q-Learning (DQN)
Inspired by
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 + 𝛾max 𝑎′𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

Represent 𝑄 𝑠, 𝑎 by a neural net

Estimate using gradient descent with loss function:

𝑅 + 𝛾max 𝑎′𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 2

The policy, p(a), is then given by maximizing the predicted Q-value



Separate Q- and Target Networks
Issue: Instability (e.g., rapid changes) in the Q-function can cause it to diverge

Idea: use two networks to provide stability (”self-play”)
u The Q-network is updated regularly
u The target network is an older version of the Q-network, updated 

occasionally 

⇣⇣
R(s, a, s0) + �max

a0
Q(s0, a0)

⌘
�Q(s, a)

⌘2

computed via
target network

computed via
Q-network



Deep Q-Learning (DQN) Algorithm
Initialize replay memory D
Initialize Q-function weights ✓
for episode = 1 . . .M , do

Initialize state st
for t = 1 . . . T , do

at  
⇢

random action with probability ✏
maxa Q⇤(st, a; ✓) with probability 1� ✏

Execute action at, yielding reward rt and state st+1

Store hst, at, rt, st+1i in D
st  st+1

Sample random minibatch of transitions {hsj , aj , rj , sj+1i}Nj=1 from D

yj  
⇢

rj for terminal state sj+1

rj + �maxa0 Q (sj+1, a0; ✓) for non-terminal state sj+1

Perform a gradient descent step on (yj �Q(sj , aj ; ✓))2

end for
end for

Based on https://arxiv.org/pdf/1312.5602v1.pdf

e-greedy

https://arxiv.org/pdf/1312.5602v1.pdf


DQN on Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/


AlphaGo

https://medium.com/@jonathan_hui/alphago-how-it-works-technically-26ddcc085319 2016



AlphaGo - Complicated

1. Train a CNN to predict (supervised 
learning) moves of human experts

2. Use as starting point for policy 
gradient (self-play against older self)

Image from DeepMind’s ICML 2016 tutorial on AlphaGo: https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

3. Train value network with examples 
from policy network self-play

4. Use Monte Carlo tree search to 
explore possible games

https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf


Learn policy
u a = f(s)

u a = where to play (19*19)
u s = description of board

supervised = “behavioral cloning”



State  ~ 19*19*48



AlphaGo – lots of hacks
u Bootstrap

l Initialize with policy learned from human play
u Self-play
u Speed matters

l Rollout network (fast, less accurate game play)
l Monte Carlo search

u It still needed fast computers
l > 100 GPU weeks



AlphaZero
u Self-play with a single, continually updated neural net

l No annotated features - just the raw board position
u Uses Monte Carlo Tree Search

l Using Q(s,a)

u Does policy iteration
l Learns V(s) and p(s)

u Beat AlphaGo (100-0) after just 72 hours of training
l On 5,000 TPUs

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-
chess-shogi-and-go

2017

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go


Monte Carlo Tree Search (MCTS)
u In each state sroot, select a move, at ~ pt either 

proportionally (exploration) or greedily (exploitation)
u Pick a move at with 

l low visit count (not previously frequently explored) 
l high move probability (under the policy
l high value (averaged over the leaf states of MC plays that 

selected a from s) according to the current neural net
u The MCTS returns an estimate z of v(sroot) and a 

probability distribution over moves, p = p(a|sroot)



AlphaZero loss function
NNet:  (                      
u Minimizes the error between the value function v(s) and 

the actual game outcome z
u Maximizes the similarity of the policy vector p(s) to the 

MCTS probabilities p(s).
u L2 regularize the weights q



AlphaZero

https://web.stanford.edu/~surag/posts/alphazero.html



MuZero
u Slight generalization of AlphaZero

l Also uses Monte Carlo Tree Search (MCTC), self-play
u Learns Go, Chess, Atari …
u Learns 3 CNNs

l Representation model: observation history → statet

l Dynamics model: statet * actiont → statet+1

l Policy: statet → actiont



StarCraft
u StarCraft-playing AI model consists of 18 agents, 

each trained with 16 Google v3 TPUs for 14 days.
u Thus, at current prices ($8.00 / TPU hour), the 

company spent $774,000 on this model



Diplomacy
u Players negotiate
u Then all players secretly write 

down their moves
u Then all moves are revealed 

and put into effect 
simultaneously.

Social interaction and 
interpersonal skills make up an 
essential part of the play.

https://en.wikipedia.org/wiki/Diplomacy_%28game%29



Cicero: Human-level play in the game of Diplomacy by 
combining language models with strategic reasoning

u Dialog
l pre-trained language model, fine tuned on dialogue data from human 

games of Diplomacy.
l augmented with inferred intents

u Strategy
l Planning relies on a value and policy function trained via self-play RL which 

penalized the agent for deviating too far from human behavior (in order to 
maintain a human-compatible policy).

https://www.science.org/doi/10.1126/science.ade9097



Dialog in Cicero
We took R2C2 as our base model – a 2.7B parameter Transformer-based encoder-
decoder model pre-trained on text from the Internet using a BART de-noising 
objective. The base pre-trained model was then further trained on WebDiplomacy
via standard Maximum Likelihood Estimation. Specifically, with a 
dataset 𝒟={[𝐱(𝑖),𝐲(𝑖)]} the model was trained to predict a dialogue message y(i) from 
player 𝒜 to player ℬ at time t, given all of the following represented as text x(i): 

l dialogue history 
l game state and action history 
l player rating
l game and message metadata
l intents

https://www.science.org/doi/10.1126/science.ade9097



Strategy in Cicero
u [Strategy] requires predicting how humans will play. A popular approach in 

cooperative games is to model the other players' policies via supervised 
learning on human data, which is commonly referred to as behavioral cloning 
(BC). However, pure BC is brittle, especially since a supervised model may 
learn spurious correlations between dialogue and actions

u To address this problem, Cicero used variants of piKL to model the policies of 
players. piKL is an iterative algorithm that predicts policies by assuming each 
player 𝑖 seeks to both maximize the expected value of their policy πi and 
minimize the KL divergence between πi and the BC policy.

u we used piKL during self-play to keep the policies human-compatible.

https://www.science.org/doi/10.1126/science.ade9097



Cicero
Human-level play in the game of Diplomacy by combining language 
models with strategic reasoning

https://www.science.org/doi/10.1126/science.ade9097



Cicero conversation



Applied RL Summary
u Superhuman game playing using DQL

l But it does not generalize well to even slightly different 
games

u Why is DeepMind losing $500 million/year?


