The end is near

& This week
e Finish RL

¢ Next week
e Random other material
e Project presentations in pods

¢ Dec 12

e Review
e Projects due

¢ Dec 20: final



Deep Q-Learning
and RL game play

Lyle Ungar

DQL/DQN with a couple slides from Eric Eaton

AlphaGo
AlphaZero, MuZero

Cicero



Remember Q-Learning

Q(s,a) « Q(s,a) +a (R +yQ(s', u(s)) — Q(s, a))

el
Converges when this is zero

where

Q (S’, y(s’)) =max, Q(s',a’)



Aside: Reminder of off vs. on policy

Q(s,a) « Q(s,a) +a (R +yQ(s', u(s)) — Q(s, a))

el
Converges when this is zero

SARSA - on policy (s—greedy for a and future evaluation)
Q(s’, y(s’)) = Q(s’, n(s’)) = max, Q(s’,a’) with prob 1-¢
random,. Q(s', a’) with prob &

Q-learning - off policy (s—greedy for a, greedy for future
evaluation)

Greedv: O(s’, u(s")) =max..0(s'.a")




Deep Q-Learning (DQN)

Inspired by
Q(s,a) < Q(s,a) + a(R +ymax,Q(s'’,a") — Q(s,a))
Represent Q (s, a ) by a neural net

Estimate using gradient descent with loss function:

(R + Yy max Q(S,) a,) T Q(S' a))Z

The policy, 7#{a), is then given by maximizing the predicted Q-value



Separate Q- and Target Networks

Issue: Instability (e.g., rapid changes) in the Q-function can cause it to diverge

Idea: use two networks to provide stability ("self-play”)
¢ The Q-network is updated regularly

¢ The target network is an older version of the Q-network, updated
occasionally

<<R(S, a,s’) + Y max Q(s', a’)) — Q(s, a))2

computed via computed via
target network Q-network



Deep Q-Learning (DQN) Algorithm

Initialize replay memory D
Initialize Q-function weights 6
for episode = 1... M, do
Initialize state s
fort=1...T, do
0 { random action WTth probale}ty € 8_greedy
max, Q*(s¢, a;60)  with probability 1 — e
Execute action ay, yielding reward r; and state s;41
Store (¢, ag, T4, Ser1) in D
St < St+1
Sample random minibatch of transitions {(s;,a;,7;,s;41)};—; from D

o { T for terminal state s;11
v T +ymaxg Q) (Sj_|_1, a’;0)  for non-terminal state Sit1
Perform a gradient descent step on (y; — Q(s;,a;;0))?
end for
end for

Based on https://arxiv.org/pdf/1312.5602v1.pdf



https://arxiv.org/pdf/1312.5602v1.pdf

DQN on Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-g-learning-with-dueling-network-architectures-4c1b3fb 7756
ps:/[deepmind.com/blog/going-beyond-average-reinforcement-learning/
ps:/laromiru.com/2016/11/07/lets-make-a-dan-double-learning-and-prioritized-experience-replay/



https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

AlphaGo

- - LEE SEDOL
00:10:29 ¥ . 00:01:00

https://medium.com/@jonathan_hui/alphago-how-it-works-technically-26ddcc085319 2016



AlphaGo - Complicated

Human expert
positions policy network

0 b}
\» 4 \ ’

1. Train a CNN to predict (supervised
learning) moves of human experts

2. Use as starting point for policy
gradient (self-play against older self)

Supervised Learning Reinforcement Learning
policy network

Self-play data

Value network
\ ’ \ ,_/’/

3. Train value network with examples
from policy network self-play

4. Use Monte Carlo tree search to
explore possible games

Image from DeepMind’s ICML 2016 tutorial on AlphaGo: https://licml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf


https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

Learn policy

¢ a-= f( s) » Gistiuton
& a = where to play (19*19) ﬁ
¢ s = description of board

supervised = “behavioral cloning”



State ~19*19%48

Feature # of planes  Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1  Whether a move at this point is a successful ladder capture
Ladder escape 1  Whether a move at this point is a successful ladder escape
Sensibleness 1  Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color

—

Whether current player is black




AlphaGo - lots of hacks

¢ Bootstrap
e Initialize with policy learned from human play

¢ Self-play

¢ Speed matters
o Rollout network (fast, less accurate game play)
e Monte Carlo search

¢ It still needed fast computers
e > 100 GPU weeks



AlphaZero

¢ Self-play with a single, continually updated neural net
e No annotated features - just the raw board position

¢ Uses Monte Carlo Tree Search
e Using Q(s,a)

¢ Does policy iteration
e Learns V(s)and 7(s)

¢ Beat AlphaGo (100-0) after just 72 hours of training
e On 5,000 TPUs

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games- 2017
chess-shoai-and-ao



https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

Monte Carlo Tree Search (MCTS)

¢ In each state s, , select a move, a, ~ m, either
proportionally (exploration) or greedily (exploitation)

¢ Pick a move a, with
e low visit count (not previously frequently explored)
¢ high move probability (under the policy

e high value (averaged over the leaf states of MC plays that
selected a from s) according to the current neural net

¢ The MCTS returns an estimate z of v(s,,,,) and a
probability distribution over moves, ©t = p(als,.,;)




AlphaZero loss function

NNet: (P,v) =/fs(s)
¢ Minimizes the error between the value function v(s) and
the actual game outcome z

¢ Maximizes the similarity of the policy vector p(s) to the
MCTS probabilities 7t(s).

¢ L, regularize the weights 6

|=(z—v)° —n'log p+clol?.




AlphaZero

Believe it or not, we now have all elements required to train our unsupervised game playing agent! Learning
through self-play is essentially a policy iteration algorithm- we play games and compute Q-values using our
current policy (the neural network in this case), and then update our policy using the computed statistics.

Here is the complete training algorithm. We initialise our neural network with random weights, thus starting with
a random policy and value network. In each iteration of our algorithm, we play a number of games of self-play. In
each turn of a game, we perform a fixed number of MCTS simulations starting from the current state s;. We pick
a move by sampling from the improved policy 7;. This gives us a training example (s;, 7, _). The reward _ is
filled in at the end of the game: +1 if the current player eventually wins the game, else -1. The search tree is
preserved during a game.

At the end of the iteration, the neural network is trained with the obtained training examples. The old and the
new networks are pit against each other. If the new network wins more than a set threshold fraction of games
(55% in the DeepMind paper), the network is updated to the new network. Otherwise, we conduct another
iteration to augment the training examples.

And that's it! Somewhat magically, the network improves almost every iteration and learns to play the game
better. The high-level code for the complete training algorithm is provided below.

https://web.stanford.edu/~surag/posts/alphazero.html



MuZero

¢ Slight generalization of AlphaZero
o Also uses Monte Carlo Tree Search (MCTC), self-play

¢ Learns Go, Chess, Atari ...

¢ Learns 3 CNNs
e Representation model: observation history — state,
o Dynamics model: state, * action, — state,
e Policy: state, — action,



StarCraft

¢ StarCraft-playing Al model consists of 18 agents,
each trained with 16 Google v3 TPUs for 14 days.

& Thus, at current prices ($8.00 / TPU hour), the
company spent $774,000 on this model

NTARURAFT




Diplomacy

¢ Players negotiate

¢ Then all players secretly write
down their moves

& Then all moves are revealed
and put into effect
simultaneously.

Social interaction and
Interpersonal skills make up an

essential part of the play.

https://en.wikipedia.org/wiki/Diplomacy_%28game%29



Cicero: Human-level play in the game of Diplomacy by
combining language models with strategic reasoning

¢ Dialog

e pre-trained language model, fine tuned on dialogue data from human
games of Diplomacy.

e augmented with inferred intents

¢ Strategy

e Planning relies on a value and policy function trained via self-play RL which
penalized the agent for deviating too far from human behavior (in order to
maintain a human-compatible policy).

https://www.science.org/doi/10.1126/science.ade9097



Dialog in Cicero

We took R2C2 as our base model — a 2.7B parameter Transformer-based encoder-
decoder model pre-trained on text from the Internet using a BART de-noising
objective. The base pre-trained model was then further trained on WebDiplomacy
via standard Maximum Likelihood Estimation. Specifically, with a

dataset D={[x(i),y(i)]} the model was trained to predict a dialogue message y! from
player A to player B at time t, given all of the following represented as text x{:

dialogue history

game state and action history
player rating

game and message metadata
intents

https://www.science.org/doi/10.1126/science.ade9097



Strategy in Cicero

¢ [Strategy] requires predicting how humans will play. A popular approach in
cooperative games is to model the other players' policies via supervised
learning on human data, which is commonly referred to as behavioral cloning
(BC). However, pure BC is brittle, especially since a supervised model may
learn spurious correlations between dialogue and actions

¢ To address this problem, Cicero used variants of piKL to model the policies of
players. piKL is an iterative algorithm that predicts policies by assuming each
player i seeks to both maximize the expected value of their policy m; and
minimize the KL divergence between 1;and the BC policy.

¢ we used piKL during self-play to keep the policies human-compatible.

https://www.science.org/doi/10.1126/science.ade9097



Board state & history

Dialogue

AUSTRIA: Hi ltaly! Care to work
together on this one? If you
support me into BOH | think we'd
both be able to grow quickly.

ITALY: Could you support me
into BUL in return?

AUSTRIA: ...

\_

Dialogue history

Planning

Joint action

Policies o Simulator
(all players)

State value Future state

Dialogue-free vaIue model (from RL)

Anchor policies
(all players)

@, Dialogue-conditional
action model

Output action

Intents

AUSTRIA:VIE+ BOH, ...
ITALY: TYRSVIE® BOH, ...

AUSTRIA: Hi Italy! Care to work
together on this one? If you

Message candidates

e

e (nonsense,

grounding, value)

Message generation

support me into BOH | think we'd
both be able to grow quickly.

ITALY: Could you support me
into BUL in return?

AUSTRIA: Sure thing! | have
ordered SER to support GRE
to BUL.

\

Output message




Cicero conversation

Example of coordination - CICERO is AUSTRIA

Example of negotiation - CICERO is FRANCE

a2 )

[

\

ITALY: What are you thinking long term?
Should | go for Turkey or head west

AUSTRIA: Yeah, he went to Armenia which is really
great. You can go either way, but if Turkey is
committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong,

especially since he committed so hard against Russia

ITALY:I'm down to go for it. Would
definitely need your help in 02 though

AUSTRIA: Of course, happy to do that!

ITALY: Fantastic!

FRANCE: I'll work with you but | need Tunis for now.
TURKEY:Nope, you gotta let me have it

FRANCE: No, | need it.

FRANCE: You have Serbia and Rome to take.
TURKEY:they're impossible targets
FRANCE: Greece - lonian lonian - Tyrr

TURKEY: hm, you're right

TURKEY: good ideas

FRANCE:Then in fall you take Rome and Austria collapses.




Applied RL Summary

¢ Superhuman game playing using DQL

e But it does not generalize well to even slightly different
games

¢ Why is DeepMind losing $500 million/year?



