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Administrivia
u Always look at the wiki lectures page 

l Readings, worksheets, quiz, survey
l Remember the resources page on the course wiki

u Ed – you should be receiving announcements!!!
u Waitlist - done
u HW0, HW1, worksheets…
u Office hours: wiki: “people/office hours”
u Pods – sign up!!!

https://alliance.seas.upenn.edu/~cis520/dynamic/2022/wiki/index.php?n=Lectures.Lectures
https://alliance.seas.upenn.edu/~cis520/dynamic/2022/wiki/index.php?n=Lectures.Lectures


Course Cadence
u MW: new material in lectures
u F: review material DRLB A2
u WTh Pods – in person

l Meet people; think about material
u Th-T Worksheets, HW, quizzes

l Do everything by midnight Tuesday



Overview of ML

Rashidi, Betts & Green 2019



Nonparametric Learning
Lyle Ungar

K-NN 
Norms, Distance
Overfitting and Model Complexity

Decision Trees
Entropy, Information gain



k-Nearest Neighbors (kNN)
u To predict y at a point x

l Find the k nearest neighbors
l ŷ(x) = the majority label or 

the average of the y’s of those points

https://www.youtube.com/watch?v=PB4qATziTlQ

https://www.youtube.com/watch?v=PB4qATziTlQ


Norms and Distances



Norms
For all a ∈ R and all u, v ∈ V,

l Lp(av) = |a| Lp (v)
l Lp(u + v) ≤ Lp (u) + Lp (v) 

n triangle inequality or subadditivity
l If Lp (v) = 0  then v is the zero vector

n implies ||v|| = 0 iff v is the zero vector

Lp norm, ||x||p:   (Sj |xj|p)1/p 



What is
||(1,2,3)||1 ?

A) 1 
B) 3
C) sqrt(14)
D) sqrt(14/3)
E) none of the above



What is
||(1,2,3)||2 ?

A) 1 
B) 3
C) sqrt(14)
D) sqrt(14/3)
E) none of the above



What is
||(1,2,3)||1/2 ?

A) 1 
B) 3
C) sqrt(14)
D) sqrt(14/3)
E) none of the above



L0 pseudo-norm 

||x||0 = number of elements xj ≠ 0

How is this not a real norm?



What is
||(1,2,3)||0 ?

A) 1 
B) 3
C) sqrt(14)
D) sqrt(14/3)
E) none of the above



Distance
u Every norm generates a distance

dp(x,y) = ||x-y||p



Distance function (metric)

https://en.wikipedia.org/wiki/Metric_(mathematics)



Lines of equal distance from (0,0)



Convexity
Is ||x||1/2 convex?

Image credit: https://writingexplained.org/concave-vs-convex-difference

A figure is convex if any line 
segment connecting two 
points on the surface of the 
figure lies entirely inside the 
figure; otherwise it is concave

https://writingexplained.org/concave-vs-convex-difference


Different norms give different 
decision boundaries

L2 L1 Linf



Components of ML - kNN
u Representation: nonparametric 

l ŷ = f(x; w) = wTx

u Loss function (with L2 distance)
l L(y, ŷ) = ||y - ŷ||2

u Optimization method: not required
l argminw L(y, ŷ(w))

l gradient descent 



How to pick k?
u What loss function are we trying to minimize?

||y - ŷ(x)||p



Linear regression on 3 data sets



1-NN on 3 data sets (L1)



9-NN on 3 data sets (L1)



In high dimensions most points 
are equally close to each other.
u Consider a 100-dimensional cube.

l A vertex represented is a “one hot encoding” or “indicator” 
function, a vector with 99 zeros and one 1.

u What is the distance between any two vertices?
l 0,1,2, more, it varies   

u Generate points at random with half 0’s and half 1’s. 
l How far away (on average) are two such points?

Half the coordinates will be the same, so sqrt(50)



Decision Trees
and Information Theory

Lyle  Ungar
University of Pennsylvania



Decision Trees
Recursive partition trees, ID3, C4.5, CART, CHAID 

u Example

https://www.nytimes.com/interactive/2019/08/08/op
inion/sunday/party-polarization-quiz.html

https://www.nytimes.com/interactive/2019/08/08/opinion/sunday/party-polarization-quiz.html


What symptom tells you most about 
the disease?
S1   S2     S3      D
y       n       n       y
n       y       y       y
n       y       n       n
n       n       n       n
y       y       n       y

A) S1
B) S2
C) S3

Why?



What symptom tells you most about 
the disease?
S1/D                    S2/D s3/D

y     n                  y     n                    y     n
y 2     0             y 2     1 y 1     0
n 1     2             n 1     1 n 2     2 A) S1

B) S2
C) S3

Why?



If you know S1=n, what symptom tells 
you most about the disease?
S1   S2     S3      D
y       n       n       y
n       y       y       y
n       y       n       n
n       n       n       n
y       y       n       y

A) S1
B) S2
C) S3

Why?



Resulting decision tree
S1

y/   \n
D     S3

y/    \n
D     ~ D

The key question: what criterion to use do 
decide which question to ask?
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Bits
You observe a set of independent random samples of X

You see that X has four possible values

So you might see: BAACBADCDADDDA…
You transmit data over a binary serial link. You can encode each reading 
with two bits (e.g. A = 00, B = 01, C = 10, D = 11)
0100001001001110110011111100…

P(X=A) = 1/4 P(X=B) = 1/4 P(X=C) = 1/4 P(X=D) = 1/4
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Fewer Bits
Someone tells you that the probabilities are not equal

It is possible to invent a coding for your transmission that only 
uses 1.75 bits on average per symbol. How?

(This is just one of several ways)

P(X=A) = 1/2 P(X=B) = 1/4 P(X=C) = 1/8 P(X=D) = 1/8

A 0
B 10
C 110
D 111
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Fewer Bits
Suppose there are three equally likely values…

Here’s a naïve coding, costing 2 bits per symbol

Can you think of a coding that only needs 1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.

P(X=A) = 1/3 P(X=B) = 1/3 P(X=C) = 1/3

A 00
B 01
C 10
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Suppose X can have one of m values… V1, V2,  … Vm

What’s the smallest possible number of bits, on average, per symbol, 
needed to transmit a stream of symbols drawn from X’s distribution? 

It is

H(X) = The entropy of X
u “High Entropy”means X is from a uniform (boring) distribution
u “Low Entropy”means X is from varied (peaks and valleys) distribution

General Case: Entropy

mm ppppppXH 2222121 logloglog)( ----= !

P(X=V1) = p1 P(X=V2) = p2 …. P(X=Vm) = pm

å
=

-=
m

j
jj pp

1
2log
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Suppose X can have one of m values… V1, V2,  … Vm

What’s the smallest possible number of bits, on average, per symbol, 
needed to transmit a stream of symbols drawn from X’s distribution? 
It’s

H(X) = The entropy of X
u “High Entropy”means X is from a uniform (boring) distribution
u “Low Entropy”means X is from varied (peaks and valleys) distribution

General Case

mm ppppppXH 2222121 logloglog)( ----= !

P(X=V1) = p1 P(X=V2) = p2 …. P(X=Vm) = pm

å
=

-=
m

j
jj pp

1
2log

A histogram of the 
frequency distribution of 
values of X would be flat

A histogram of the 
frequency distribution of 
values of X would have 
many lows and one or 
two highs

..and so the values 
sampled from it would 
be all over the place

..and so the values 
sampled from it would be 
more predictable
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Entropy in a nut-shell

Low Entropy High Entropy
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Entropy in a nut-shell

Low Entropy High Entropy ..the values (locations of soup) 
unpredictable... almost uniformly 
sampled throughout our dining 
room

..the values (locations of 
soup) sampled entirely from 
within the soup bowl



Why does entropy have this form?

å
=

-=
m

j
jj pp

1
2log

mm ppppppXH 2222121 logloglog)( ----= !

If an event is certain, the entropy is
A) 0
B) between 0 and ½
C) ½
D) between ½ and 1
E) 1

Entropy is the expected value of the information content 
(surprise) of the message log2pj



Why does entropy have this form?

å
=

-=
m

j
jj pp

1
2log

mm ppppppXH 2222121 logloglog)( ----= !

If two events are equally likely, the entropy is
A) 0
B) between 0 and ½
C) ½
D) between ½ and 1
E) 1
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Specific Conditional Entropy H(Y|X=v)
Suppose I’m trying to predict output Y and I have input X

Assume this reflects the true probabilities
e.g. From this data we estimate

• P(LikeG = Yes) = 0.5
• P(Major = Math & LikeG = No) = 0.25
• P(Major = Math) = 0.5
• P(LikeG = Yes | Major = History) = 0

Note:
• H(X) = 1.5
•H(Y) = 1

X = College Major
Y = Likes “Gladiator”

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes
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Definition of Specific Conditional Entropy:

H(Y |X=v) = The entropy of Y among only those 
records in which X has value v
Example:

• H(Y|X=Math) = 1
• H(Y|X=History) = 0
• H(Y|X=CS) = 0

X = College Major
Y = Likes “Gladiator”

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes

Specific Conditional Entropy H(Y|X=v)
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Conditional Entropy H(Y|X)
Definition of Conditional Entropy:

H(Y |X) = The average specific conditional entropy 
of Y
If you choose a record at random what will be the 
conditional entropy of Y, conditioned on that row’s 
value of X
= Expected number of bits to transmit Y if both 
sides will know the value of X

= Σj Prob(X=vj) H(Y | X = vj)

X = College Major
Y = Likes “Gladiator”

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes
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Conditional Entropy
Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y
= ΣjProb(X=vj) H(Y | X = vj)

X = College Major
Y = Likes “Gladiator”

Example:
vj Prob(X=vj) H(Y | X = vj)

Math 0.5 1
History 0.25 0
CS 0.25 0

H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes
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Information Gain
Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits 
on average would it save me if both ends of 
the line knew X?
IG(Y|X) = H(Y) - H(Y |X)

X = College Major
Y = Likes “Gladiator”

Example:
• H(Y) = 1
• H(Y|X) = 0.5
• Thus IG(Y|X) = 1 – 0.5 = 0.5

X Y
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes
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Information Gain Example



Copyright © 2001, 2003, Andrew W. Moore

Another example



What is Information Gain used for?
If you are going to collect information from someone (e.g.
asking questions sequentially in a decision tree), the “best” 
question is the one with the highest information gain.

Information gain is useful for model selection



What question did we not ask (or 
answer) about decision trees?



What you should know
u K-NN

l hyperparameter k controls model complexity
u Norm, distance
u Convexity
u Entropy, information gain
u The standard decision tree algorithm

l Recursive partition to maximize information gain






