CIS520: Machine Learning Lyle Ungar

Poll Everywhere Poll Everywhere, Inc. Communication

E Everyone

This app is compatible with all of your devices.

Install *Poll Everywhere* from app store or go to https://pollev.com/lyleungar251 What's your favorite word?

happy

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Administrivia

♦ Always look at the wiki lectures page

- Readings, worksheets, quiz, survey
- Remember the resources page on the course wiki
- ◆ Ed you should be receiving announcements!!!
- Waitlist done
- ♦ HW0, HW1, worksheets...
- ◆ Office hours: wiki: "people/office hours"
- Pods sign up!!!

Course Cadence

- ♦ MW: new material in lectures
- ◆ F: review material DRLB A2
- ♦ WTh Pods in person
 - Meet people; think about material
- Th-T Worksheets, HW, quizzes
 - Do everything by midnight Tuesday

Overview of ML

Rashidi, Betts & Green 2019

Nonparametric Learning Lyle Ungar

K-NN Norms, Distance Overfitting and Model Complexity **Decision Trees** Entropy, Information gain

k-Nearest Neighbors (kNN)

• To predict y at a point x

- Find the k nearest neighbors
- $\hat{y}(\mathbf{x})$ = the majority label or

the average of the y's of those points

https://www.youtube.com/watch?v=PB4qATziTlQ

Norms and Distances

Norms

For all $a \in R$ and all $u, v \in V$,

- $L_p(av) = |a| L_p(v)$
- $L_{\rho}(\boldsymbol{u} + \boldsymbol{v}) \leq L_{\rho}(\boldsymbol{u}) + L_{\rho}(\boldsymbol{v})$
 - triangle inequality or subadditivity
- If $L_{\rho}(\mathbf{v}) = 0$ then \mathbf{v} is the zero vector
 - implies //v// = 0 iff v is the zero vector

L_p **norm**, $||\mathbf{x}||_{p}$: $(\Sigma_{j} |\mathbf{x}_{j}|^{p})^{1/p}$

What is

||(1,2,3)||₁ ? A) 1 B) 3 C) sqrt(14) D) sqrt(14/3) E) none of the above

What is

||(1,2,3)||₂ ? A) 1 B) 3 C) sqrt(14) D) sqrt(14/3) E) none of the above

What is

||(1,2,3)||_{1/2} ? A) 1 B) 3 C) sqrt(14) D) sqrt(14/3) E) none of the above

L₀ pseudo-norm

 $||\mathbf{x}||_0$ = number of elements $x_j \neq 0$

How is this not a real norm?

What is $||(1,2,3)||_0$?

A) 1 B) 3

C) sqrt(14)

- D) sqrt(14/3)
- E) none of the above

Distance

• Every norm generates a distance

$$d_{p}(\mathbf{x},\mathbf{y}) = ||\mathbf{x}-\mathbf{y}||_{p}$$

Distance function (metric)

- 1. $d(x, y) \ge 0$ (*non-negativity*, or separation axiom)
- 2. d(x, y) = 0 if and only if x = y (coincidence axiom)
- 3. d(x, y) = d(y, x) (*symmetry*)
- 4. $d(x, z) \le d(x, y) + d(y, z)$ (subadditivity / triangle inequality).

https://en.wikipedia.org/wiki/Metric_(mathematics)

Lines of equal distance from (0,0)

*L*₁*norm*

*L*_{inf}*norm*

Convexity Is $||\mathbf{x}||_{1/2}$ convex? Concave Convex

Image credit: https://writingexplained.org/concave-vs-convex-difference

A figure is convex if any line segment connecting two points on the surface of the figure lies entirely inside the figure; otherwise it is concave

Different norms give different decision boundaries

L₂

L

Components of ML - kNN

Representation: nonparametric

• $\hat{y} = f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{T} \mathbf{x}$

Loss function (with L2 distance)

• $L(\mathbf{y}, \, \hat{\mathbf{y}}) = ||\mathbf{y} - \hat{\mathbf{y}}||_2$

Optimization method: not required

- $\operatorname{argmin}_{w} L(y, \hat{y}(w))$
- gradient descent

How to pick k?

• What loss function are we trying to minimize? $\|y - \hat{y}(x)\|_{p}$

Linear regression on 3 data sets

1-NN on 3 data sets (L₁)

9-NN on 3 data sets (L_1)

In high dimensions most points are equally close to each other.

Consider a 100-dimensional cube.

• A vertex represented is a "one hot encoding" or "indicator" function, a vector with 99 zeros and one 1.

• What is the distance between any two vertices?

• 0,1,2, more, it varies

• Generate points at random with half 0's and half 1's.

• How far away (on average) are two such points?

Half the coordinates will be the same, so sqrt(50)

Decision Trees and Information Theory

Lyle Ungar University of Pennsylvania

Decision Trees Recursive partition trees, ID3, C4.5, CART, CHAID

https://www.nytimes.com/interactive/2019/08/08/op inion/sunday/party-polarization-quiz.html

What symptom tells you most about the disease? S1 S2 S3 D A) S1

- y n n y n y y y
- n y n n
- n n n n
- y y n y

A) S1 B) S2 C) S3

Why?

What symptom tells you most about the disease? **S2/D S1/D** s3/D У n y y n n **y** 2 1 **y** 1 2 0 0 У A) S1 B) S2 **n** 2 2 **n** 1 **n** 1 2 1 **S**3

Why?

If you know S1=n, what symptom tells you most about the disease? S1 S2 **S**3 D **A) S1** B) S2 C) S3 n n y y У У У n Why? n У n n A, B, or C? n n n n AA

BB

c **c**

tion to see live content. Still on live content? Install the app or get bein at Polic

y y n y

Resulting decision tree

S1 y/ \n D S3 y/ \n D ~ D

The key question: what criterion to use do decide which question to ask?

Entropy and Information Gain

Andrew W. Moore Carnegie Mellon University

www.cs.cmu.edu/~awm awm@cs.cmu.edu

412-268-7599

modified by Lyle Ungar

Bits

You observe a set of independent random samples of X

You see that X has four possible values

P(X=A) = 1/4	P(X=B) = 1/4	P(X=C) = 1/4	P(X=D) = 1/4

So you might see: BAACBADCDADDDA...

You transmit data over a binary serial link. You can encode each reading with two bits (e.g. A = 00, B = 01, C = 10, D = 11) 010000100100111011001111100...

Fewer Bits

Someone tells you that the probabilities are not equal

P(X=A) = 1/2P(X=B) = 1/4P(X=C) = 1/8P(X=D) = 1/8It is possible to invent a coding for your transmission that only
uses 1.75 bits on average per symbol. How?

А	0
В	10
С	110
D	111

(This is just one of several ways)

Fewer Bits

Suppose there are three equally likely values...

P(X=A) = 1/3 P(X=B) = 1/3 P(X=C) = 1/3

Here's a naïve coding, costing 2 bits per symbol

Can you think of a coding that only needs 1.6 bits per symbol on average?

In theory, it can in fact be done with 1.58496 bits per symbol.

General Case: EntropySuppose X can have one of m values... $V_1 V_2 V_m$ $P(X=V_1) = p_1$ $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution?

It is

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$
$$= -\sum_{j=1}^m p_j \log_2 p_j$$

H(X) = The entropy of X

• "High Entropy" means X is from a uniform (boring) distribution

• "Low Entropy" means X is from varied (peaks and valleys) distribution Copyright © 2001, 2003, Andrew W. Moore

Entropy in a nut-shell

Low Entropy

High Entropy

Entropy in a nut-shell

Why does entropy have this form?

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$
$$= -\sum_{j=1}^m p_j \log_2 p_j$$

Entropy is the expected value of the information content (surprise) of the message log_2p_i

If an event is certain, the entropy is A) 0 B) between 0 and $\frac{1}{2}$ C) $\frac{1}{2}$ D) between $\frac{1}{2}$ and 1 E) 1

Why does entropy have this form?

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$
$$= -\sum_{j=1}^m p_j \log_2 p_j$$

If two events are equally likely, the entropy is

A) 0 B) between 0 and $\frac{1}{2}$ C) $\frac{1}{2}$ D) between $\frac{1}{2}$ and 1 E) 1

•		A, B, C, D or E	
A	A		
В	В		
С	с		
D	D		
E	E		
e.		Start the presentation to see live content. Still no live content! Install the app or get help at PollEv.com/app	

Specific Conditional Entropy H(Y|X=v)

Suppose I'm trying to predict output Y and I have input X

- X = College Major
- Y = Likes "Gladiator"

X	Y
Math	Yes
History	Νο
CS	Yes
Math	Νο
Math	Νο
CS	Yes
History	Νο
စ)၊ ဆုံးဂြ င်္ 2001, 20(3, YARS rew W. Moore

Assume this reflects the true probabilities

e.g. From this data we estimate

- *P*(*LikeG* = Yes) = 0.5
- *P*(*Major* = *Math* & *LikeG* = *No*) = 0.25
- *P*(*Major* = *Math*) = 0.5
- P(LikeG = Yes | Major = History) = 0

Note:

• *H*(X) = 1.5 •*H*(Y) = 1

Specific Conditional Entropy H(Y|X=v)

X = College Major Y = Likes "Gladiator"

X	Y
Math	Yes
History	Νο
CS	Yes
Math	Νο
Math	No
CS	Yes
History	Νο
Math	Yes

Definition of Specific Conditional Entropy: H(Y | X = v) = The entropy of Y among only those records in which X has value v

Example:

- *H*(*Y*|*X*=*Math*) = 1
- H(Y|X=History) = 0
- H(Y|X=CS) = 0

Conditional Entropy H(Y|X)

X = College Major Y = Likes "Gladiator"

X	Y
Math	Yes
History	Νο
CS	Yes
Math	Νο
Math	No
CS	Yes
History	Νο
Math	Yes

Copyright © 2001, 2003, Andrew W. Moore

Definition of Conditional Entropy:

H(Y|X) = The average specific conditional entropy of Y

If you choose a record at random what will be the conditional entropy of *Y*, conditioned on that row's value of *X*

= Expected number of bits to transmit Y if both sides will know the value of X

$$= \Sigma_j \operatorname{Prob}(X=v_j) H(Y \mid X=v_j)$$

Conditional EntropyX = College MajorY = Likes "Gladiator"

Definition of Conditional Entropy:

X Y Math Yes **History** No CS Yes Math No Math No CS Yes **History** No Math Yes

Copyright © 2001, 2003, Andrew W. Moore

H(Y|X) = The average conditional entropy of Y = $\Sigma_i Prob(X=v_i) H(Y | X = v_i)$

Example:

v_j	Prob(X=v _j)	$H(Y \mid X = v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5

Information Gain C = College Major Definition of Information Gain:

X = College Major Y = Likes "Gladiator"

Y X Math Yes **History** No CS Yes Math No Math No CS Yes **History** No Math Yes

Copyright © 2001, 2003, Andrew W. Moore

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

IG(Y|X) = H(Y) - H(Y|X)

Example:

- H(Y) = 1
- H(Y|X) = 0.5
- Thus IG(Y|X) = 1 0.5 = 0.5

Information Gain Example

Another example

What is Information Gain used for?

If you are going to collect information from someone (e.g. asking questions sequentially in a decision tree), the "best" question is the one with the highest information gain.

Information gain is useful for model selection

What question did we not ask (or answer) about decision trees?

What you should know

- ♦ K-NN
 - hyperparameter k controls model complexity
- Norm, distance
- Convexity
- Entropy, information gain
- The standard decision tree algorithm
 - Recursive partition to maximize information gain

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

What questions do you have on today's class?

Тор

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app