Project Advice

& Start simple; get fancier (“anytime algorithm”)
¢ Pick a sensible evaluation metric (and test set?)

¢ Baselines
o Majority vote or mean
e Logistic or linear regression

¢ Sensible methods
e CNN, Random Forest ...

¢ Something clever
e Semi-supervised



Project Advice

¢ Build on other’s work
e Pretrained CNNs

e Hugging face embeddings for NLP



RL Recitation

Lyle Ungar



RL Types

¢ Model based
o Explicitly learn p(su4|s;, ay) , r(s;, a)
o Markov Decision Process (MDP) or POMDP
¢ Model free
o Learn expected value of each state, V(s;), given a policy
o Learn expected value of each state and action, Q(s; a;
o Learn an optimal policy, while learning V or Q
= Can learn on- and off-policy
State can be discrete or real, Vand Q can be neural nets



Which is model-based?

full
backups

sample
backups

Dynamic Exhaustri1ve
programming searc

A

Monte Carlo
Y  Temporal

difference
learning
- - -
shallow bOOtStrapplng, A deep E
backups backups

:

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html



RL - what to use when?

¢ Model-based / model-free

e Model-based is nice in theory, but model-free is more widely
used - why?

¢ Episodic / infinite (discount factor)
o Immediate updates vs. end of episode (est. by Monte Carlo)
& V-learning vs. Q-learning
# On-policy vs. Off-Policy
e Exploration vs. exploitation
¢ Imitation learning



Notation summary

® S state

& 7(a;|s) policy © and action a;

® V. (s) estimated value of s;

¢ Q (s,a) estimated value taking action a; in s,
® 1(s,a,) reward (usually simply r(s)=R,)

® G (S expected discounted reward (‘return’)
® discount factor

& P(S:4|S,a;) model



¢ What is the relationship between V(s,) and G; (s,)?
& V is an approximation to G



TD(0)

¢ One could learn V(s) by updating it at the end of
each game based on who won.

¢ Why update V(s) as soon as one makes a move
and sees the opponent’s response?

¢ What alternative is often used?



TD(0)

¢ One could learn V(s) by updating it at the end of
each game based on who won.

¢ Why update V(s) as soon as one makes a move
and sees the opponent’s response?

e you learn immediately, and avoid the “noise” of all the
moves between now and the end of the game

¢ What alternative is often used?
e Monte Carlo “roll-out’



Model based vs. Model free

¢ One can learn a model of the world p(s;.4|s;,a;)
and use that to find an optimal policy

e How would one learn such a model?

& Or one can learn the value V(s;) of each state -
or of the action in each state Q(s;,a;) - without a
world model

¢ When is each better?



A problem?

¢ V(s) depends on &
¢ But &t is a function of V/(s)

Food
1.00

Shock
-1.00

0.705 10.655 (0.611 {0.388

So how can we learn V(s) and 7*?



Policy lteration

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A0
For each s € &:
v« V(s)
V(s) < Xy, p(s',7|s,7(s)) [r + V(5]
A + max(A, |v—V(s)|)

until A < @ (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € §:
old-action + m(s)
m(s) « argmax, ) ., .p(s',7|s,a) [r + 7V (s)]
If old-action # m(s), then policy-stable < false
If policy-stable, then stop and return V =~ v, and 7 = m,; else go to 2

Assuming det erminist iC p01icy 7T ( S) From Sutton Reinforcement Learning: An Introduction (2016 draft)



Model based vs. Model free

¢ One can learn a model of the world p(s;.4|s;,a;)
and use that to find an optimal policy

e How would one learn such a model?

= Just count how often you end up in each state, given
the preceding state and action

¢ When to use V(s,) vs Q(s,a;)?

o People mostly use Q-learning, since it lets you easily
find and optimal policy for a given model

o And it lets you cleanly control exploration and
exploitation



Bellman Equation

Bellman’s Equation: Holds for all policies 7(als)

U (8) = Zﬂ(a\s) Zp(s’,r\s, a)[r +yv.(s")],Vs €S

The expected value of s

g (8,a) = Zp(s’, rls,a)[r + yvs(s')],Vs € S,Va € A(s)

The expected value of (s,a)



Bellman Equation (Optimality)

Bellman’s Optimality Equation: Holds for optimal policies 7*(s)

* — /7 ’ %k ! ,\V/ 68
u(s) = mane S7p(srls.a) [r+ ()] Vs

s',r

g« (s,a) = Zp(s’,r]s,a) [7“ + ’yrrza;xq*(s’)} Vs € S,Va € A(s)

s',r

Can be used model-based or model-free



Bellman Equation (Q version)

0.(s,0) = > p(s',7ls,a) |r + ymaxq.(s)| Vs € 8, ¥a € A(s)

s',r

Q(s,a) := r(s,a) + ymax Q(s", a)
a

We still need to figure out how to adjust
the policy - on policy or off policy



Look at each method for gridworld

¢ Q values in each state
o State=A, B, C,.

o Action=1r,u,d (left, right, up, down)

C
QlAn)= 8 Q(A )=.8 Q(B )=.75 |Q(C,])=.8
Q(A d=7 |QB,y)=.9 |r=95;d=0.7

8 XXXXXXXX  Q(E,u)= 8
7 XXXXXXXX  Q(E,d)= .65

J G H |
, D=7 QHN=65 Q(l)=.65
QJ,)= 65 QGr=6 r=6;u=0.75 Q(,u)=-5




Dynamic Programing, y=1

¢ Start in B, with ©*, assume
e p(C|B,r)=0.9 P(A|B,r=0.1 p(C|B,)=0.1 P(A|B,)=0.9
¢ What is the new estimate of Q(B,r)?

C
S5 | S
Q(A d)— Q(B,r)=.9 |r=.95;d=0.7

8 XXXXXXXX  Q(E,u)= 8
7 XXXXXXXX  Q(E,d)= .65

J G H |
, D=7 QHN=65 Q(l)=.65
QJ,)= 65 QGr=6 r=6;u=0.75 Q(,u)=-5



Bellman’s Equation

q«(s,a) = Zp(s’,r]s,a) {fr‘ + anz}xq*(s’)} Vs € §S,Va € A(s)

s',r

Q(B,r) = p(C|B,n[0+1*Q(C,n] + p(A B,r)%0+1* (A,1)]

|
09 [ 095 ]+ 0.1 0.8 ]
0.935



TD(0) - Q-learning, y=1, a=0.6

& Start in s=B, pick best action a=r
¢ Observe new state s=C
¢ What is the new estimate of Q(B,r)?

A

Q(A1)=8
Q(A,d)=.7

B
Q(B,))=.75
Q(B,r)= .9

KXXKXXXXX
XXXXXXX
XXXXXXXX

C
Q(C,l)=.8
r=.95; d=0.7

E Shock -1
Q(E,u)=.8
Q(E,d)= .65

H I
Q(H,l)= .65
r=.6; u=0.75




TD(0)

¢ Q(sp,ae) « Q(sp,ap) +a (Tt +
149 (St+1: 7T(St+1)) — Q(se, at))

¢ Q(B,r) « Q(B,r)+a(0+1Q(C,7) — Q(B,1))
¢ Q(B,1) « 0.75+ 0.6 * (0 4+ 0.95 — 0.75)
¢ Q(B,v) =0.87



MC Q-learning, y=1, =0.6

& Start in s=B, pick best action a=r
¢ Observe new state s=C
¢ What is the new estimate of Q(B,r)?

A

Q(A1)=8
Q(A,d)=.7

B
Q(B,))=.75
Q(B,r)= .9

KXXKXXXXX
XXXXXXX
XXXXXXXX

C
Q(C,l)=.8
r=.95; d=0.7

E Shock -1
Q(E,u)=.8
Q(E,d)= .65

H I
Q(H,l)= .65
r=.6; u=0.75




MC Q-learning

® Q(sg,ap) « Q(sg ar) “(Tt + YV (Se41) —
Q(st, at))
¢ Use MC roll-out to estimate V(s,1)



Monte Carlo Q-learning, y=1, a=0.6
# Do 3 rollouts from C, taking action r every time
1) C —Food 3) C — E — Shock
2) C — Food
¢ 3 rollouts give V(C) = (1+1-1)/3 = 2/3

B C Food 1
Q(B,l)=.75 Q(C,l)=.8 Q(F,-)=1
Q(B,r)=.9 r=.95; d=0.7

D XXXXXXXXX  E Shock
8 XXOXXX  QEU=8  QS-)=1
7 XXOXXXXX Q(Ed)= .65

J G H |
, =7 Q(H,l)= .65 Q(l,))
QU= 65 Q(Gr)=.6 r=6;u=0.75  Q(l,u) =-.



MC Q-learning

® Q(sg,ar) « Q(se, ar) “(Tt + YV (Se41) —
Q(s¢, at))
¢ Use roll-out to estimate V(s,.,=C) =2/3

QB < 0B, +a(0+1E) - BN

¢ Q(B,1) « 0.75 + 0.6 * (0 + 0.66 — 0.75)
¢ (Q(B,r)=0.7



Following not yet covered



DQN (TD(0)), =1, a:=0.6

¢ Now move to a real space.
¢ Represent every state / by its location x;
e A=(1,1),B=(1,2), D=(2,1),...
& Assume a linear Q(s;a) = w;'x; so every actionjhas a w,
¢ Initialize all w; = (1,1);
& Start in state A, take action r, end up on B.
& What is the updated value of Q(A,1)? K B c

QAN=8 |Q(B)=.75 |Q(C,)
QAd=7 | Q=9 r=.95; ¢

D XXXXXXXXX  E

Q(D,u)=.8

—~ - -—

XXX Q(Eu):

o~ s —



Deep Q-Learning

Argming O(s,a;,0) — (r(s, a) + y max O(s', a: 0))

Which Q() are we updating?
How do we update it?

(S



MC-DQN, y=1, a=0.6

+ Still in the real space.
o Again, represent every state / by its location x;

¢ Again, assume linear model
e (S, a)= w'x;
e Initialize all weights to (1,1);

& Start in state A, follow policy = 3 times,
e pickrevery time

A
e End up twice with Food, once with Shock gzz,:};i
o \What is the updated value of q(A r) ? o |

Q(D,u)=.8

o~ - -—

B C

Q(B,l)=.75 Q(C
Q(B,r)=.9 r=.9

XXXXXXXXX  E
XXXXXXX Q(E

o~ s —




AlphaZero-style, y=1, a=0.6

& Assume linear models
o T(S) = softmax(w,’x;), value V(s) =w'x, w,=w=(1,1);
& Start in state A, follow policy = 3 times,

o Pick r every time
e End up twice with Food, once with Shock

¢ What is the updated value of V(A)?
o Whatis V(A)?
o What is the formula for updating it?



AlphaZero loss function

NNet: (p.v) =fo(s)

¢ Minimizes the error between the predicted outcome
(value function) v(s) and the actual game outcome z

& Maximizes the similarity of the policy vector p(s) to
the MCTS probabilities t(s).

& L2 regularize the weights 6

[= (2 — v)2 —nt'log p + cll6]®.



Q-Learning

- - !
O(s,a) :==r(s,a) + ymax Q(s', a)
a
How might we pick the policy?

Pure greedy: argmax, Q(s,a)

e-greedy

Using an older network for Q

Using a policy network (maybe a fast one)
Preferring actions that have been taken less



Deep Q-Learning (DQL)

Argmin, |Q(s,a;6) — (r(s, a) + y max Q(s’,a;e))

Represent Q with a neural net

(S



