### **Project Advice**

- Start simple; get fancier ("anytime algorithm")
- Pick a sensible evaluation metric (and test set?)

#### Baselines

- Majority vote or mean
- Logistic or linear regression
- Sensible methods
  - CNN, Random Forest ...
- Something clever
  - Semi-supervised

### **Project Advice**

#### Build on other's work

- Pretrained CNNs
- Hugging face embeddings for NLP
- ...

# **RL Recitation**

Lyle Ungar

# **RL Types**

#### Model based

- Explicitly learn  $p(s_{t+1}|s_t, a_t)$ ,  $r(s_t, a_t)$
- Markov Decision Process (MDP) or POMDP

#### Model free

- Learn expected value of each state,  $V(s_t)$ , given a policy
- Learn expected value of each state and action,  $Q(s_t, a_t)$
- Learn an optimal policy, while learning V or Q
  - Can learn on- and off-policy

State can be discrete or real, V and Q can be neural nets

#### Which is model-based?



From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

### RL – what to use when?

#### Model-based / model-free

 Model-based is nice in theory, but model-free is more widely used - why?

#### Episodic / infinite (discount factor)

- Immediate updates vs. end of episode (est. by Monte Carlo)
- V-learning vs. Q-learning
- On-policy vs. Off-Policy
  - Exploration vs. exploitation
- Imitation learning

# **Notation summary**

state  $\bullet S_t$  $\bullet \pi(a_t | s_t)$ policy  $\pi$  and action  $a_t$  $\bullet V_{\pi}(S_t)$ estimated value of S<sub>t</sub> •  $Q_{\pi}(s_t, a_t)$  estimated value taking action  $a_t$  in  $s_t$  $\bullet$  r(s<sub>t</sub>, a<sub>t</sub>) **reward** (usually simply  $r(s_t) = R_t$ )  $\bullet G_t(S_t)$ expected discounted reward ('return') discount factor  $\diamond \gamma$  $\bullet p(s_{t+1}|s_t,a_t)$  model

# What is the relationship between V(s<sub>t</sub>) and G<sub>t</sub> (s<sub>t</sub>)? V is an approximation to G

# TD(0)

- One could learn V(s) by updating it at the end of each game based on who won.
- Why update V(s) as soon as one makes a move and sees the opponent's response?
- What alternative is often used?

# TD(0)

- One could learn V(s) by updating it at the end of each game based on who won.
- Why update V(s) as soon as one makes a move and sees the opponent's response?
  - you learn immediately, and avoid the "noise" of all the moves between now and the end of the game
- What alternative is often used?
  - Monte Carlo "roll-out"

#### Model based vs. Model free

- One can learn a model of the world p(s<sub>t+1</sub>|s<sub>t</sub>,a<sub>t</sub>) and use that to find an optimal policy
  - How would one learn such a model?
- Or one can learn the value V(s<sub>t</sub>) of each state or of the action in each state Q(s<sub>t</sub>,a<sub>t</sub>) - without a world model
- When is each better?

### A problem?

- V(s) depends on  $\pi$
- But  $\pi$  is a function of V(s)

| A<br>0.812 | B<br>0.868 | C<br>0.918 | Food<br>1.00   |  |
|------------|------------|------------|----------------|--|
| D<br>0.762 |            | E<br>0.660 | Shock<br>-1.00 |  |
| J<br>0.705 | G<br>0.655 | H<br>0.611 | l<br>0.388     |  |

So how can we learn V(s) and  $\pi^*$ ?

# **Policy Iteration**

Policy iteration (using iterative policy evaluation) 1. Initialization  $V(s) \in \mathbb{R}$  and  $\pi(s) \in \mathcal{A}(s)$  arbitrarily for all  $s \in S$ 2. Policy Evaluation Repeat  $\Delta \leftarrow 0$ For each  $s \in S$ :  $v \leftarrow V(s)$  $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) \left[r + \gamma V(s')\right]$  $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until  $\Delta < \theta$  (a small positive number) 3. Policy Improvement policy-stable  $\leftarrow true$ For each  $s \in S$ : old-action  $\leftarrow \pi(s)$  $\pi(s) \leftarrow \operatorname{argmax}_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If old-action  $\neq \pi(s)$ , then policy-stable  $\leftarrow$  false If *policy-stable*, then stop and return  $V \approx v_*$  and  $\pi \approx \pi_*$ ; else go to 2

Assuming deterministic policy  $\pi(s)$ 

From Sutton Reinforcement Learning: An Introduction (2016 draft)

#### Model based vs. Model free

- One can learn a model of the world p(s<sub>t+1</sub>|s<sub>t</sub>,a<sub>t</sub>) and use that to find an optimal policy
  - How would one learn such a model?
    - Just count how often you end up in each state, given the preceding state and action

• When to use  $V(s_t)$  vs  $Q(s_t,a_t)$ ?

- People mostly use Q-learning, since it lets you easily find and optimal policy for a given model
- And it lets you cleanly control exploration and exploitation

### **Bellman Equation**

**Bellman's Equation**: Holds for all policies  $\pi(a|s)$ 

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right], \forall s \in S$$
  
The expected value of s

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r | s, a) \left[ r + \gamma v_{\pi}(s') \right], \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)$$
  
The expected value of (s,a)

### **Bellman Equation (Optimality)**

**Bellman's Optimality Equation**: Holds for optimal policies  $\pi^*(s)$ 

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r | s, a) \left[ r + \gamma v_*(s') \right], \forall s \in \mathcal{S}$$

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[ r + \gamma \max_{a'} q_*(s') \right], \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)$$

Can be used model-based or model-free

### **Bellman Equation (Q version)**

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[ r + \gamma \max_{a'} q_*(s') \right], \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)$$

$$Q(s,a) := r(s,a) + \gamma \max_{a} Q(s',a)$$

We still need to figure out how to adjust the policy - on policy or off policy

# Look at each method for gridworld

#### Q values in each state

- State = A, B, C, ..
- Action = I, r, u, d (left, right, up, down)



# **Dynamic Programing**, $\gamma$ =1

#### • Start in B, with $\pi^*$ , assume

• p(C|B,r)=0.9 P(A|B,r)=0.1 p(C|B,I)=0.1 P(A|B,I)=0.9

♦ What is the new estimate of Q(B,r)?

| A           | B           | C            | Food 1       |
|-------------|-------------|--------------|--------------|
| Q(A,r)=.8   | Q(B,I)= .75 | Q(C,I)= .8   |              |
| Q(A,d)=.7   | Q(B,r)= .9  | r=.95; d=0.7 |              |
| D           | XXXXXXXXX   | E            | Shock -1     |
| Q(D,u)= .8  | XXXXXXXXX   | Q(E,u)= .8   |              |
| Q(D,d)= .7  | XXXXXXXXX   | Q(E,d)= .65  |              |
| J           | G           | H            | l            |
| Q(J,u)= .7  | Q(G,I)= .7  | Q(H,I)= .65  | Q(I,I) = .65 |
| Q(J,r)= .65 | Q(G,r)= .6  | r=.6; u=0.75 | Q(I,u) =5    |

# **Bellman's Equation**

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[ r + \gamma \max_{a'} q_*(s') \right], \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)$$

$$Q(B,r) = p(C|B,r)[0+1*Q(C,r)] + p(A|B,r)[0+1*Q(A,r)]$$
  
= 0.9 [ 0.95 ] + 0.1 [ 0.8 ]  
= 0.935

# TD(0) - Q-learning, $\gamma$ =1, $\alpha$ =0.6

- Start in s=B, pick best action a=r
- Observe new state s=C
- ♦ What is the new estimate of Q(B,r)?

| A           | B           | C            | Food 1       |
|-------------|-------------|--------------|--------------|
| Q(A,r)=.8   | Q(B,I)= .75 | Q(C,I)= .8   |              |
| Q(A,d)=.7   | Q(B,r)= .9  | r=.95; d=0.7 |              |
| D           | XXXXXXXXXX  | E            | Shock -1     |
| Q(D,u)= .8  | XXXXXXXX    | Q(E,u)= .8   |              |
| Q(D,d)= .7  | XXXXXXXX    | Q(E,d)= .65  |              |
| J           | G           | H            | l            |
| Q(J,u)= .7  | Q(G,I)= .7  | Q(H,I)= .65  | Q(I,I) = .65 |
| Q(J,r)= .65 | Q(G,r)= .6  | r=.6; u=0.75 | Q(I,u) =5    |

# TD(0)

Q(s<sub>t</sub>, a<sub>t</sub>) ← Q(s<sub>t</sub>, a<sub>t</sub>) + α (r<sub>t</sub> + γQ(s<sub>t+1</sub>, π(s<sub>t+1</sub>)) - Q(s<sub>t</sub>, a<sub>t</sub>))
Q(B,r) ← Q(B,r) + α(0 + 1Q(C,r) - Q(B,r))
Q(B,r) ← 0.75 + 0.6 \* (0 + 0.95 - 0.75)
Q(B,r) = 0.87

# MC Q-learning, $\gamma$ =1, $\alpha$ =0.6

- Start in s=B, pick best action a=r
- Observe new state s=C
- ♦ What is the new estimate of Q(B,r)?

| A           | B           | C            | Food 1       |
|-------------|-------------|--------------|--------------|
| Q(A,r)=.8   | Q(B,I)= .75 | Q(C,I)= .8   |              |
| Q(A,d)=.7   | Q(B,r)= .9  | r=.95; d=0.7 |              |
| D           | XXXXXXXXXX  | E            | Shock -1     |
| Q(D,u)= .8  | XXXXXXXX    | Q(E,u)= .8   |              |
| Q(D,d)= .7  | XXXXXXXX    | Q(E,d)= .65  |              |
| J           | G           | H            | l            |
| Q(J,u)= .7  | Q(G,I)= .7  | Q(H,I)= .65  | Q(I,I) = .65 |
| Q(J,r)= .65 | Q(G,r)= .6  | r=.6; u=0.75 | Q(I,u) =5    |

# **MC Q-learning**

- $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma V^{\pi}(s_{t+1}) Q(s_t, a_t))$
- Use MC roll-out to estimate  $V(s_{t+1})$

# Monte Carlo Q-learning, $\gamma$ =1, $\alpha$ =0.6

- ◆ Do 3 rollouts from *C*, taking action *r* every time
- 1) C  $\rightarrow$  Food 3) C  $\rightarrow$  E  $\rightarrow$  Shock
- 2) C  $\rightarrow$  Food
- ◆ 3 rollouts give V(C) = (1+1-1)/3 = 2/3

| A<br>Q(A,r)=.8<br>Q(A,d)=.7    | B<br>Q(B,I)= .75<br>Q(B,r)= .9     | C<br>Q(C,I)= .8<br>r=.95; d=0.7  | Food 1<br>Q(F,-)=1             |
|--------------------------------|------------------------------------|----------------------------------|--------------------------------|
| D<br>Q(D,u)= .8<br>Q(D,d)= .7  | XXXXXXXXXX<br>XXXXXXXX<br>XXXXXXXX | E<br>Q(E,u)= .8<br>Q(E,d)= .65   | Shock<br>Q(S,-)=-1             |
| J<br>Q(J,u)= .7<br>Q(J,r)= .65 | G<br>Q(G,I)= .7<br>Q(G,r)= .6      | H<br>Q(H,I)= .65<br>r=.6; u=0.75 | l<br>Q(I,I) = .65<br>Q(I,u) =5 |

### **MC Q-learning**

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma V^{\pi}(s_{t+1}) - Q(s_t, a_t))$ 

• Use roll-out to estimate  $V(s_{t+1}=C) = 2/3$ 

- $Q(B,r) \leftarrow Q(B,r) + \alpha \left(0 + 1\left(\frac{2}{3}\right) Q(B,r)\right)$
- ♦  $Q(B,r) \leftarrow 0.75 + 0.6 * (0 + 0.66 0.75)$
- $\bullet Q(B,r) = 0.7$

# Following not yet covered

# **DQN** (TD(0)), $\gamma$ =1, $\alpha$ =0.6

- Now move to a real space.
- Represent every state *i* by its location *x<sub>i</sub>*
  - A = (1,1), B=(1,2), D= (2,1),...
- Assume a linear  $Q(s_i, a_j) = \mathbf{w}_j^T \mathbf{x}_i$  so every action *j* has a  $\mathbf{w}_j$
- Initialize all  $\mathbf{w}_j = (1,1);$
- Start in state A, take action r, end up on B.
- What is the updated value of Q(A,r)?

| A          | B           | C        |
|------------|-------------|----------|
| Q(A,r)=.8  | Q(B,I)= .75 | Q(C,I)=  |
| Q(A,d)=.7  | Q(B,r)= .9  | r=.95; c |
| D          | XXXXXXXXXX  | E        |
| Q(D,u)= .8 | XXXXXXXX    | Q(E,u)=  |

$$\operatorname{Argmin}_{\theta} \left[ Q(s,a;\theta) - \left( r(s,a) + \gamma \max_{a} Q(s',a;\theta) \right) \right]^{2}$$

Which Q() are we updating? How do we update it?

# MC-DQN, $\gamma$ =1 , $\alpha$ =0.6

- Still in the real space.
  - Again, represent every state *i* by its location *x<sub>i</sub>*
- Again, assume linear model
  - $q(s_{i,} a_{j}) = \mathbf{w}_{j}^{T} \mathbf{x}_{i}$
  - Initialize all weights to (1,1);
- Start in state A, follow policy  $\pi$  3 times,
  - pick r every time
  - End up twice with Food, once with Shock
- What is the updated value of q(A, r) ?

| B<br>Q(B,I)= .75<br>Q(B,r)= .9 | C<br>Q(C<br>r=.9                                        |
|--------------------------------|---------------------------------------------------------|
| XXXXXXXXX                      | Е                                                       |
| XXXXXXX                        | Q(E                                                     |
|                                | B<br>Q(B,I)= .75<br>Q(B,r)= .9<br>XXXXXXXXX<br>XXXXXXXX |

# AlphaZero-style, $\gamma$ =1 , $\alpha$ =0.6

#### Assume linear models

- $\pi(s_i) = softmax(w_a^T x_i)$ , value  $V(s_i) = w^T x_i$   $w_a = w = (1,1)$ ;
- Start in state A, follow policy  $\pi$  3 times,
  - Pick r every time
  - End up twice with Food, once with Shock
- What is the updated value of V(A)?
  - What is V(A)?
  - What is the formula for updating it?

# **AlphaZero loss function**

**NNet:**  $(\mathbf{p}, v) = f_{\theta}(s)$ 

- Minimizes the error between the predicted outcome (value function) v(s) and the actual game outcome z
- Maximizes the similarity of the policy vector **p**(s) to the MCTS probabilities π(s).
- $\blacklozenge$  L2 regularize the weights  $\theta$

$$l = (z - v)^2 - \pi^{\mathrm{T}} \log \mathbf{p} + c \|\boldsymbol{\theta}\|^2$$

# **Q-Learning**

$$Q(s,a) := r(s,a) + \gamma \max_{a} Q(s',a)$$

How might we pick the policy?

Pure greedy:argmax<sub>a</sub> Q(s,a)ε-greedyUsing an older network for QUsing a policy network (maybe a fast one)Preferring actions that have been taken less

$$\operatorname{Argmin}_{\theta} \left[ Q(s,a;\theta) - \left( r(s,a) + \gamma \max_{a} Q(s',a;\theta) \right) \right]^{2}$$

**Represent Q with a neural net**