
Project Advice
u Start simple; get fancier (“anytime algorithm”)
u Pick a sensible evaluation metric (and test set?)
u Baselines

l Majority vote or mean
l Logistic or linear regression

u Sensible methods
l CNN, Random Forest …

u Something clever
l Semi-supervised



Project Advice
u Build on other’s work

l Pretrained CNNs
l Hugging face embeddings for NLP
l …



RL Recitation 
Lyle Ungar



RL Types
u Model based

l Explicitly learn p(st+1|st, at) , r(st, at)

l Markov Decision Process (MDP) or POMDP
u Model free

l Learn expected value of each state, V(st), given a policy

l Learn expected value of each state and action, Q(st, at)

l Learn an optimal policy, while learning V or Q
n Can learn on- and off-policy

State can be discrete or real, V and Q can be neural nets



Which is model-based?

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html



RL – what to use when?
u Model-based / model-free

l Model-based is nice in theory, but model-free is more widely 
used - why?

u Episodic / infinite (discount factor)
l Immediate updates vs. end of episode (est. by Monte Carlo)

u V-learning vs. Q-learning
u On-policy vs. Off-Policy

l Exploration vs. exploitation
u Imitation learning



Notation summary
u st state
u p(at | st) policy p and action at

u Vp(st) estimated value of st

u Qp(st,at) estimated value taking action at in st

u r(st,at) reward (usually simply r(st)=Rt)
u Gt (st) expected discounted reward (‘return’)
u g discount factor
u p(st+1|st,at) model



u What is the relationship between V(st) and Gt (st)?
u V is an approximation to G



TD(0) 
u One could learn V(s) by updating it at the end of 

each game based on who won.
u Why update V(s) as soon as one makes a move 

and sees the opponent’s response?
u What alternative is often used?



TD(0) 
u One could learn V(s) by updating it at the end of 

each game based on who won.
u Why update V(s) as soon as one makes a move 

and sees the opponent’s response?
l you learn immediately, and avoid the “noise” of all the 

moves between now and the end of the game 
u What alternative is often used?

l Monte Carlo “roll-out”



Model based vs. Model free
u One can learn a model of the world p(st+1|st,at) 

and use that to find an optimal policy
l How would one learn such a model?

u Or one can learn the value V(st) of each state -
or of the action in each state Q(st,at) - without a 
world model

u When is each better?



A problem?
u V(s) depends on p
u But p is a function of V(s) 

So how can we learn V(s) and p*?



Policy Iteration

From Sutton Reinforcement Learning: An Introduction  (2016 draft)



Model based vs. Model free
u One can learn a model of the world p(st+1|st,at) 

and use that to find an optimal policy
l How would one learn such a model?

n Just count how often you end up in each state, given 
the preceding state and action

u When to use V(st) vs Q(st,at)?
l People mostly use Q-learning, since it lets you easily 

find and optimal policy for a given model
l And it lets you cleanly control exploration and 

exploitation



Bellman Equation

The expected value of s

The expected value of (s,a)



Bellman Equation (Optimality)

Can be used model-based or model-free



Bellman Equation (Q version)

We still need to figure out how to adjust 
the policy  - on policy or off policy



Look at each method for gridworld

A  
Q(A,r)=.8  
Q(A,d)=.7

B 
Q(B,l)= .75 
Q(B,r)= .9

C 
Q(C,l)= .8 
r=.95; d=0.7

Food   1

D 
Q(D,u)= .8  
Q(D,d)=  .7

XXXXXXXX
XXXXXXXX
XXXXXXXX

E  
Q(E,u)= .8  
Q(E,d)=  .65

Shock    -1

J 
Q(J,u)=  .7 
Q(J,r)=  .65

G 
Q(G,l)=  .7 
Q(G,r)= .6

H 
Q(H,l)= .65 
r=.6; u=0.75

I 
Q(I,l) = .65
Q(I,u) = -.5

u Q values in each state
l State = A, B, C, ..
l Action = l, r, u, d     (left, right, up, down)

e.g.
Q(A,r) = .8



Dynamic Programing, g=1
u Start in B, with p*, assume 

l p(C|B,r)=0.9 P(A|B,r)=0.1 p(C|B,l)=0.1 P(A|B,l)=0.9
u What is the new estimate of Q(B,r)?

A  
Q(A,r)=.8  
Q(A,d)=.7

B 
Q(B,l)= .75 
Q(B,r)= .9

C 
Q(C,l)= .8 
r=.95; d=0.7

Food   1

D 
Q(D,u)= .8  
Q(D,d)=  .7

XXXXXXXX
XXXXXXXX
XXXXXXXX

E  
Q(E,u)= .8  
Q(E,d)=  .65

Shock    -1

J 
Q(J,u)=  .7 
Q(J,r)=  .65

G 
Q(G,l)=  .7 
Q(G,r)= .6

H 
Q(H,l)= .65 
r=.6; u=0.75

I 
Q(I,l) = .65
Q(I,u) = -.5



Bellman’s Equation

Q(B,r) = p(C|B,r)[0+1*Q(C,r)] + p(A|B,r)[0+1*Q(A,r)]
=  0.9      [        0.95   ] +   0.1     [       0.8     ]
=  0.935



TD(0) - Q-learning, g=1, a=0.6 
u Start in s=B, pick best action a=r
u Observe new state s=C
u What is the new estimate of Q(B,r)?

A  
Q(A,r)=.8  
Q(A,d)=.7

B 
Q(B,l)= .75 
Q(B,r)= .9

C 
Q(C,l)= .8 
r=.95; d=0.7

Food   1

D 
Q(D,u)= .8  
Q(D,d)=  .7

XXXXXXXXX
XXXXXXX
XXXXXXXX

E  
Q(E,u)= .8  
Q(E,d)=  .65

Shock    -1

J 
Q(J,u)=  .7 
Q(J,r)=  .65

G 
Q(G,l)=  .7 
Q(G,r)= .6

H 
Q(H,l)= .65 
r=.6; u=0.75

I 
Q(I,l) = .65
Q(I,u) = -.5



TD(0)
u 𝑄 𝑠!, 𝑎! ← 𝑄 𝑠!, 𝑎! + 𝛼 (

)

𝑟! +

𝛾𝑄 𝑠!"#, 𝜋 𝑠!"# −𝑄 𝑠!, 𝑎!
u 𝑄 𝐵, 𝑟 ← 𝑄 𝐵, 𝑟 + 𝛼 0 + 1𝑄 𝐶, 𝑟 − 𝑄 𝐵, 𝑟
u 𝑄 𝐵, 𝑟 ← 0.75 + 0.6 ∗ 0 + 0.95 − 0.75
u 𝑄 𝐵, 𝑟 = 0.87



MC Q-learning, g=1, a=0.6 
u Start in s=B, pick best action a=r
u Observe new state s=C
u What is the new estimate of Q(B,r)?

A  
Q(A,r)=.8  
Q(A,d)=.7

B 
Q(B,l)= .75 
Q(B,r)= .9

C 
Q(C,l)= .8 
r=.95; d=0.7

Food   1

D 
Q(D,u)= .8  
Q(D,d)=  .7

XXXXXXXXX
XXXXXXX
XXXXXXXX

E  
Q(E,u)= .8  
Q(E,d)=  .65

Shock    -1

J 
Q(J,u)=  .7 
Q(J,r)=  .65

G 
Q(G,l)=  .7 
Q(G,r)= .6

H 
Q(H,l)= .65 
r=.6; u=0.75

I 
Q(I,l) = .65
Q(I,u) = -.5



MC Q-learning
u 𝑄 𝑠!, 𝑎! ← 𝑄 𝑠!, 𝑎! + 𝛼:

;
𝑟! + 𝛾𝑉$ 𝑠!"# −

𝑄 𝑠!, 𝑎!
u Use	MC	roll-out	to	estimate	V(st+1)



Monte Carlo Q-learning, g=1, a=0.6 
u Do 3 rollouts from C, taking action r every time
1) C →Food 3) C → E → Shock
2) C → Food 
u 3 rollouts give V(C) = (1+1-1)/3 = 2/3

A  
Q(A,r)=.8  
Q(A,d)=.7

B 
Q(B,l)= .75 
Q(B,r)= .9

C 
Q(C,l)= .8 
r=.95; d=0.7

Food   1
Q(F,-)=1

D 
Q(D,u)= .8  
Q(D,d)=  .7

XXXXXXXXX
XXXXXXX
XXXXXXXX

E  
Q(E,u)= .8  
Q(E,d)=  .65

Shock    
Q(S,-)=-1

J 
Q(J,u)=  .7 
Q(J,r)=  .65

G 
Q(G,l)=  .7 
Q(G,r)= .6

H 
Q(H,l)= .65 
r=.6; u=0.75

I 
Q(I,l) = .65
Q(I,u) = -.5



MC Q-learning
u 𝑄 𝑠!, 𝑎! ← 𝑄 𝑠!, 𝑎! + 𝛼:

;
𝑟! + 𝛾𝑉$ 𝑠!"# −

𝑄 𝑠!, 𝑎!
u Use	roll-out	to	estimate	V(st+1=C)	=	2/3

u 𝑄 𝐵, 𝑟 ← 𝑄 𝐵, 𝑟 + 𝛼 0 + 1 (%
&
) − 𝑄 𝐵, 𝑟

u 𝑄 𝐵, 𝑟 ← 0.75 + 0.6 ∗ 0 + 0.66 − 0.75
u 𝑄 𝐵, 𝑟 = 0.7



Following not yet covered



DQN   (TD(0)), g=1 , a=0.6 
u Now move to a real space.
u Represent every state i by its location xi

l A = (1,1), B=(1,2), D= (2,1),…
u Assume a linear Q(si,aj) =  wj

Txi so every action j has a wj

u Initialize all wj = (1,1); 
u Start in state A, take action r, end up on B. 
u What is the updated value of Q(A,r)? A  

Q(A,r)=.8  
Q(A,d)=.7

B 
Q(B,l)= .75 
Q(B,r)= .9

C 
Q(C,l)= .8 
r=.95; d=0.7

D 
Q(D,u)= .8  
Q(D,d)=  .7

XXXXXXXXX
XXXXXXX
XXXXXXXX

E  
Q(E,u)= .8  
Q(E,d)=  .65

J 
Q(J,u)=  .7 
Q(J,r)=  .65

G 
Q(G,l)=  .7 
Q(G,r)= .6

H 
Q(H,l)= .65 
r=.6; u=0.75



Deep Q-Learning

Argminq

Which Q() are we updating?
How do we update it?



MC-DQN, g=1 , a=0.6 
u Still in the real space.

l Again, represent every state i by its location xi

u Again, assume linear model
l q(si, aj) =  wj

Txi
l Initialize all weights to (1,1); 

u Start in state A, follow policy p 3 times, 
l pick r every time
l End up twice with Food, once with Shock

u What is the updated value of q(A, r) ?

A  
Q(A,r)=.8  
Q(A,d)=.7

B 
Q(B,l)= .75 
Q(B,r)= .9

C 
Q(C,l)= .8 
r=.95; d=0.7

D 
Q(D,u)= .8  
Q(D,d)=  .7

XXXXXXXXX
XXXXXXX
XXXXXXXX

E  
Q(E,u)= .8  
Q(E,d)=  .65

J 
Q(J,u)=  .7 
Q(J,r)=  .65

G 
Q(G,l)=  .7 
Q(G,r)= .6

H 
Q(H,l)= .65 
r=.6; u=0.75



AlphaZero-style, g=1 , a=0.6 
u Assume linear models

l p(si) = softmax(wa
Txi ), value V(si) = wTxi wa = w = (1,1); 

u Start in state A, follow policy p 3 times, 
l Pick r every time
l End up twice with Food, once with Shock

u What is the updated value of V(A)?
l What is V(A)?
l What is the formula for updating it?



AlphaZero loss function
NNet:                       
u Minimizes the error between the predicted outcome 

(value function) v(s) and the actual game outcome z
u Maximizes the similarity of the policy vector p(s) to 

the MCTS probabilities p(s).
u L2 regularize the weights q



Q-Learning

How might we pick the policy?

Pure greedy:  argmaxa Q(s,a)
e-greedy
Using an older network for Q
Using a policy network (maybe a fast one)
Preferring actions that have been taken less 



Deep Q-Learning (DQL)

Argminq

Represent Q with a neural net


