
CIS 520 Machine Learning
Summary

Lyle Ungar
What we covered
What’s hot in ML

Final: Tuesday 12/20 6:00 pm
Watch ed for location
Towne 100 / Wu & Chen
Two 2-sided pages cheatsheet

Course goals
u Be familiar with all major ML methods

l Regression (linear, logistic), regularization, feature selection
l K-NN, Decision trees, Random Forests, SVMs
l PCA, K-means, GMM, Autoencoders
l Naive Bayes, Bayes Nets, LDA, HMMs
l Boosting, perceptrons, LMS
l Deep learning (CNNs)
l Reinforcement Learning (MDP, Q-learning)

u Know their strengths and weaknesses
l know jargon, concepts, theory
l be able to modify and code algorithms
l be able to read current literature We did all of these!

Components of ML
u Representation

l Feature set
l Model form

u Loss function
l And regularization penalty

u Optimization method
l For parameter estimation
l For model selection and hyperparameter tuning

Representations
u Non-parametric

l Nearest-neighbor
l Decision Trees, Random forests, gradient tree boosting

u Linear models
l Hyperplane as a separator
l Kernel methods

u Neural nets
l CNN’s, Recurrent Nets/LSTMs

u Belief nets
l HMM, LDA

Representations
Linear (parametric) Nonlinear (semi-parametric)
OLS Neural Nets
Logistic regression
HMM
MDP

Nonlinear (nonparametric)
K-NN
Trees, Forests

MLE gives loss functions
Loss function Bayesian (MLE/MAP)
OLS OLS
K-means GMM
PCA

Gaussian noise gives L2 loss

Representations: Primal/Dual
Primal: feature space Dual: observation space
XTX XXT

Covariance Kernel matrix
OLS SVM

Invariances
Translational invariance

In space: CNN, data augmentation
In time: CNN, HMM, MDP, RNN

What loss functions have we used?
u L0, L1, L2
u Log-likelihood (MLE, MAP)
u Hinge
u Logistic
u Exponential
u Cross-Entropy; KL-divergence

9

Loss Functions
u L0

u Hinge
u Logistic
u Exponential (adaboost)

score
lo

ss

Regularization priors
Argminw ||y - w.x||22 + l ||w||pp

u L2 ||w||22

l Gaussian prior: p(w) ~ exp(-|w|22/s2)

u L1 ||w||1
l Laplace prior: roughly p(w) ~ exp(-|w|1/s2)

u L0 ||w||0
l Spike and slab prior

Bias-Variance Trade-off

Optimization methods
u Closed form (e.g. w = (XTX) -1XT y)
u Gradient descent: Stochastic, minibatch

l Streaming/Online: LMS, Perceptron
u Search: streamwise, stepwise, stagewise
u Power method (for eigenvectors, SVD)
u Lagrange Multipliers (constrained optimization)

l not covered

Alternating optimization methods
u EM (alternating gradient descent in likelihood)

l E: expected value of hidden values
l M: MLE or MAP estimate of parameters

u Other alternating methods
l X ~ SWT for ICA, NNMF (non-negative matrix factorization)
l RL: V or Q and policy

n Response surface: Model and optimal action

Hyperparameter Optimization
u Search

l e.g., L1, L2, penalties
l Neural network structure, regularization

u Auto-SKlearn
l Initialize hyperparameters from model predicting accuracy as

a function of problem description and hyperparameter values
u Auto-ML

l Use reinforcement learning to learn a ‘design policy’

Distance and similarity
u Distances from norms

l ||x1-x2||0 ||x1-x2||1 ||x1-x2||2 …
u Similarities from kernels

l k(x1,x2)
u Probability-based divergence

l DKL(p||q) = Sk pk log(pk/qk) - KL-divergence
l H(p,q) = H(p) + DKL(p||q) - cross-entropy

= - Sk pk log(qk)
n p is the true distribution, q is the approximation

Cross entropy and log-likelihood
u Cross-entropy

l H(p,q) = - Sk pk log(qk) summed over labels k

u - Si Sk dik log(p(yi=k|x=xi)) dik =1 iff yi=k
l - Sum of the estimated log probabilities of the true answers

u log Pi p(yi|xi) = Si log p(yi|xi) log-likelihood

KL-Divergence
u DKL(p||q) = Sk pk log(pk/qk)
u Mutual information – not really covered

l MI(X,Y) = DKL(P(X,Y) || P(X)P(Y))
u Information gain

l IG(Y|Xj) = DKL(P(Y|Xj) || P(Y)) = H(Y) - H(Y|Xj)

l Which feature Xj will maximize the information gain?
u Bayesian Experimental Design

l For which x will the label y (in expectation) most change p(w)
https://en.wikipedia.org/wiki/Kullback%E2%
80%93Leibler_divergence

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Types of Learning
u Supervised X, y

l Given an observation x, what is the best label y?
u Unsupervised X

l Given a set of x’s, cluster or summarize them
u Reinforcement

l Given a sequence of states x and possible actions a,
learn which actions maximize reward.

What kind of learning is missing here?

Unsupervised methods
u PCA, ICA, NNMF

l X ~ S VT

u K-means, GMM, LDA
u Auto-encoders

l Information bottleneck
l Denoising
l Variational

Many of these minimize reconstruction
error subject to some constraints

Bayesian Belief Nets
u Naïve Bayes

l Binary or real-valued X’s;
u Belief Net
u GMM

l Different model forms
u LDA
u HMM/MDP

Reinforcement learning
u Model-based

l MDP
u Model-free

l Shallow: TD(0) vs. Deep: Monte-Carlo Tree Search
l Value: V(s) vs. Q-learning Q(s,a)

u On-policy (e-greedy) vs. off-policy
l Trade-off exploration and exploitation

Summary

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Model-based

Model-free

One-step ahead Search to end

Response to
all possible
actions

Response to
one possible
actions

Q-learning

For any MDP, given infinite exploration time and a partly-random policy, Q-
learning will find an optimal policy: one that maximizes the expected value of
the total reward over all successive steps.

wikipedia

We put this
on the far
right hand
side

After we take an 𝜖-greedy action

Deep Q-Learning (DQL)

Argminq

Represent Q with a neural net

s, a can be one-hot or real valued

Update this To be closer to new
value estimate

What to use when?
SKLearn vs. NNets

u Deep learning is almost always better than
classic ML on large data sets
l Text, images, sound, videos

u Classic ML is often better than deep learning on
tabular data

Feature selection
u Regression (L0, L1, L2 penalties)

l Do you expect very few, a moderate number of, or most features?
u Random forests, gradient tree boosting

l Feature selection is ‘built in’
u Neural nets

l Generally, no built-in feature selection
l Screen features before you build the net

Note:
u The new material after this slide will not be on the final; it

is just for fun!

What’s hot
u Applied ML

l datascience
u Multimodal
u Human in the loop
u Generative models

l Stable diffusion
l ChatGPT This is a photograph of ancient Greek

philosopher Heraclitus in 500 BC.
https://arstechnica.com/information-technology/2022/09/with-stable-diffusion-
you-may-never-believe-what-you-see-online-again/

What’s hot: generative models
u Given a set of observations, x, generate new x’s

from the same distribution
u Diffusion Models

l p(image’ | words , image)
u Large Language Models

l p(word t+1 | word t , word t-1 , word t-2 , …)

Diffusion Models

https://www.marktechpost.com/2022/11/14/how-do-dall%C2%B7e-2-stable-
diffusion-and-midjourney-work/

Lensa

https://news.artnet.com/art-world/lensa-ai-avatar-results-2225393

https://prisma-ai.com/lensa

Diffusion Models
u Dall-E 2, Stable Diffusion, Midjourny

Diffusion Models

https://medium.com/@monadsblog/diffusion-models-
4dbe58489a2f

Add noise

predict

Markov Chain!

https://medium.com/@monadsblog/diffusion-models-4dbe58489a2f

Large Language Models
u GPT-3, ChatGPT - OpenAI
u Blenderbot - Facebook
u PaLM, Lambda - Google

https://towardsdatascience.com/gpt-4-will-have-100-trillion-parameters-500x-the-size-of-gpt-3-582b98d82253
https://towardsdatascience.com/gpt-4-will-have-100-trillion-parameters-500x-the-size-of-gpt-3-582b98d82253
https://towardsdatascience.com/gpt-4-will-have-100-trillion-parameters-500x-the-size-of-gpt-3-582b98d82253

GPT-3 Generative Pretrained Transformer
u Trained to predict next word

l on ~ 45TB of text
u ~ 175B parameters.
u 2048 token context

l About 1,500 words
u 96 transformer layers

u GPT-4 will have 100 Trillion parameters

https://jalammar.github.io/illustrated-transformer/
https://towardsdatascience.com/gpt-4-will-have-100-trillion-parameters-500x-the-size-of-gpt-3-582b98d82253

Transformers
u Encoder-decoder architecture

l With self-attention: learns how
much weight to put on each token

u Byte Pair Encoding (BPE)
tokenization

Encoder decoder

Embed

96x

Self-attention

https://jalammar.github.io/illustrated-transformer/

it
was

it
was

The animal

it
was

Embed every token in the sentence
Project them down to Q, K, V
Reweight them with softmax(Q K T)
Do this many times (different “heads’)

Self-attention

https://jalammar.github.io/illustrated-transformer/

Embed every token in the sentence
Project them down to Q, K, V
Reweight them with softmax(Q K T)
Do this many times (different “heads’)

ChatGPT

https://chat.openai.com/chat

Thank you!!!

u See all of you for the final, Tuesday 6:00
u Stay in touch & let me know how you use ML …

