CIS 520 Machine Learning Summary

What we covered What's hot in ML Lyle Ungar

Final: Tuesday 12/20 6:00 pm *Watch ed for location* Towne 100 / Wu & Chen Two 2-sided pages cheatsheet

Course goals

• Be familiar with all major ML methods

- Regression (linear, logistic), regularization, feature selection
- K-NN, Decision trees, Random Forests, SVMs
- PCA, K-means, GMM, Autoencoders
- Naive Bayes, Bayes Nets, LDA, HMMs
- Boosting, perceptrons, LMS
- Deep learning (CNNs)
- Reinforcement Learning (MDP, Q-learning)

Know their strengths and weaknesses

- know jargon, concepts, theory
- be able to modify and code algorithms
- be able to read current literature

We did all of these!

Components of ML

Representation

- Feature set
- Model form

Loss function

- And regularization penalty
- Optimization method
 - For parameter estimation
 - For model selection and hyperparameter tuning

Representations

Non-parametric

- Nearest-neighbor
- Decision Trees, Random forests, gradient tree boosting

Linear models

- Hyperplane as a separator
- Kernel methods

Neural nets

• CNN's, Recurrent Nets/LSTMs

Belief nets

• HMM. LDA

Representations

Linear (parametric) OLS

Logistic regression

HMM

MDP

Nonlinear (semi-parametric) Neural Nets Nonlinear (nonparametric) K-NN Trees, Forests

MLE gives loss functions		
Loss function	Bayesian (MLE/MAP)	
OLS	OLS	
K-means	GMM	
PCA		

Gaussian noise gives L2 loss

Representations: Primal/Dual

Primal: feature space

$\mathbf{X}^{\mathsf{T}}\mathbf{X}$

Covariance

OLS

Dual: observation space **XX**^T Kernel matrix SVM

Translational invariance

In space: CNN, data augmentation In time: CNN, HMM, MDP, RNN

What loss functions have we used?

- ♦ L0, L1, L2
- Log-likelihood (MLE, MAP)
- ♦ Hinge
- ♦ Logistic
- Exponential
- Cross-Entropy; KL-divergence

Boosting: $\exp(-y_i f_\alpha(\mathbf{x}_i))$ **Logistic**: $\log(1 + \exp(-y_i f_\mathbf{w}(\mathbf{x}_i)))$

Loss Functions

- L₀Hinge
- ♦ Logistic
- Exponential (adaboost)

Regularization priors

Argmin_w $||\mathbf{y} - \mathbf{w} \cdot \mathbf{x}||_2^2 + \lambda ||\mathbf{w}||_p^p$

- L_2 ||w||₂²
 - Gaussian prior: $p(w) \sim exp(-|w|_2^2/\sigma^2)$
- $\bullet \mathbf{L}_1 \quad ||\mathbf{w}||_1$
 - Laplace prior: roughly $p(w) \sim exp(-|w|_{1}/\sigma^{2})$
- $\bullet \mathbf{L}_{\mathbf{0}} ||\mathbf{w}||_{\mathbf{0}}$
 - Spike and slab prior

 $\log P(\mathcal{D}_X, \mathcal{D}_Y, \theta) = \log P(\mathcal{D}_X, \mathcal{D}_Y \mid \theta) + \log P(\theta) = -loss(\theta) + regularizer(\theta)$

Bias-Variance Trade-off

$$\mathbf{E}_{x,y,D}[(h(x;D)-y)^2] =$$

$$:\underbrace{\mathbf{E}_{x,D}[(h(x;D) - \overline{h}(x))^2]}_{\text{Variance}} + \underbrace{\mathbf{E}_x[(\overline{h}(x) - \overline{y}(x))^2]}_{\text{Bias}^2} + \underbrace{\mathbf{E}_{x,y}[(\overline{y}(x) - y)^2]}_{\text{Noise}}$$

Optimization methods

- Closed form (e.g. $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$)
- Gradient descent: Stochastic, minibatch
 - Streaming/Online: LMS, Perceptron
- ◆ Search: streamwise, stepwise, stagewise
- Power method (for eigenvectors, SVD)
- Lagrange Multipliers (constrained optimization)
 - not covered

Alternating optimization methods

- **EM** (alternating gradient descent in likelihood)
 - E: expected value of hidden values
 - M: MLE or MAP estimate of parameters
- Other alternating methods
 - X ~ SW^T for ICA, NNMF (non-negative matrix factorization)
 - RL: V or Q and policy
 - Response surface: Model and optimal action

Hyperparameter Optimization

Search

- e.g., L₁, L₂, penalties
- Neural network structure, regularization

Auto-SKlearn

• Initialize hyperparameters from model predicting accuracy as a function of problem description and hyperparameter values

♦ Auto-ML

• Use reinforcement learning to learn a 'design policy'

Distance and similarity

Distances from norms

- $\|\mathbf{x}_1 \mathbf{x}_2\|_0$ $\|\mathbf{x}_1 \mathbf{x}_2\|_1$ $\|\mathbf{x}_1 \mathbf{x}_2\|_2$...
- Similarities from kernels
 - $k(x_1, x_2)$

Probability-based divergence

- $D_{KL}(p||q) = \sum_{k} p_{k} \log(p_{k}/q_{k})$ KL-divergence
- $H(p,q) = H(p) + D_{KL}(p||q)$ cross-entropy
 - = $\Sigma_k p_k \log(q_k)$
 - *p* is the true distribution, *q* is the approximation

Cross entropy and log-likelihood

Cross-entropy

• $H(p,q) = -\sum_{k} p_{k} \log(q_{k})$

summed over labels k

- $\sum_{i} \sum_{k} \delta_{ik} \log(p(y_i = k | x = x_i))$ $\delta_{ik} = 1 \text{ iff } y_i = k$
 - - Sum of the estimated log probabilities of the true answers

• $\log \prod_i p(y_i|x_i) = \sum_i \log p(y_i|x_i)$ log-likelihood

KL-Divergence

- $D_{KL}(p||q) = \Sigma_k p_k \log(p_k/q_k)$
- Mutual information not really covered
 - $MI(X,Y) = D_{KL}(P(X,Y) || P(X)P(Y))$
- Information gain
 - $IG(Y|X_j) = D_{KL}(P(Y|X_j) || P(Y)) = H(Y) H(Y|X_j)$
 - Which feature X_j will maximize the information gain?
- Bayesian Experimental Design
 - For which x will the label y (in expectation) most change p(w)

https://en.wikipedia.org/wiki/Kullback%E2% 80%93Leibler_divergence

Types of Learning

Supervised

- Given an observation **x**, what is the best label *y*?
- Unsupervised
 X
 - Given a set of **x**'s, cluster or summarize them
- Reinforcement
 - Given a sequence of states **x** and possible actions **a**, learn which actions maximize reward.

What kind of learning is missing here?

Unsupervised methods

♦ PCA, ICA, NNMF

- X ~ S V^T
- ♦ K-means, GMM, LDA

Auto-encoders

- Information bottleneck
- Denoising
- Variational

Many of these minimize reconstruction error subject to some constraints

Bayesian Belief Nets

Naïve Bayes

- Binary or real-valued X's;
- ♦ Belief Net
- ♦ GMM
 - Different model forms
- ◆ LDA

Reinforcement learning

Model-based

• MDP

Model-free

- Shallow: TD(0) vs. Deep: Monte-Carlo Tree Search
- Value: V(s) vs. Q-learning Q(s,a)
- On-policy (ϵ -greedy) vs. off-policy
 - Trade-off exploration and exploitation

Summary

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

For any MDP, given infinite exploration time and a partly-random policy, *Q*-learning will find an optimal policy: one that maximizes the expected value of the total reward over all successive steps.

wikipedia

Deep Q-Learning (DQL)

$$\operatorname{Argmin}_{\theta} \left[Q(s, a; \theta) - \left(r(s, a) + \gamma \max_{a} Q(s', a; \theta) \right) \right]^{2}$$
Update this
$$\operatorname{To \ be \ closer \ to \ new}_{value \ estimate}$$

Represent Q with a neural net

s, a can be one-hot or real valued

What to use when? SKLearn vs. NNets

 Deep learning is almost always better than classic ML on large data sets

• Text, images, sound, videos

 Classic ML is often better than deep learning on tabular data

Feature selection

Regression (L0, L1, L2 penalties)

• Do you expect very few, a moderate number of, or most features?

Random forests, gradient tree boosting

• Feature selection is 'built in'

Neural nets

- Generally, no built-in feature selection
- Screen features before you build the net

Note:

The new material after this slide will not be on the final; it is just for fun!

What's hot

Applied ML

- datascience
- Multimodal
- Human in the loop
- Generative models
 - Stable diffusion
 - ChatGPT

This is a photograph of ancient Greek philosopher Heraclitus in 500 BC.

https://arstechnica.com/information-technology/2022/09/with-stable-diffusionyou-may-never-believe-what-you-see-online-again/

What's hot: generative models

- Given a set of observations, x, generate new x's from the same distribution
- Diffusion Models
 - p(image' | words, image)
- Large Language Models
 - $p(word_{t+1} | word_t, word_{t-1}, word_{t-2}, ...)$

Diffusion Models

Cloud Castle at night, cinematic - created by Midjourney

https://www.marktechpost.com/2022/11/14/how-do-dall%C2%B7e-2-stablediffusion-and-midjourney-work/

https://news.artnet.com/art-world/lensa-ai-avatar-results-2225393

Diffusion Models

◆ Dall-E 2, Stable Diffusion, Midjourny

Source: https://www.youtube.com/watch?v=F1X4fHzF4mQ

Diffusion Models

Large Language Models

- ◆ GPT-3, ChatGPT OpenAl
- Blenderbot Facebook
- PaLM, Lambda Google

QUESTION ANSWERING SEMANTIC PARSING PROVERBS ARITHMETIC CODE COMPLETION GENERAL KNOWLEDGE RADING COMPREHENSION SUMMARIZATION

LOGICAL INFERENCE CHAINS COMMON-SENSE REASONING PATTERN RECOGNITION TRANSLATION DIALOGUE JOKE EXPLANATIONS PHYSICS QA LANGUAGE UNDERSTANDING

GPT-3 Generative Pretrained Transformer

- Trained to predict next word
 - on ~ 45TB of text
- ♦ ~ 175B parameters.
- 2048 token context
 - About 1,500 words
- ♦ 96 <u>transformer</u> layers

◆ GPT-4 will have 100 Trillion parameters

Transformers

Encoder-decoder architecture

• With self-attention: learns how much weight to put on each token

Byte Pair Encoding (BPE) tokenization

Self-attention

https://jalammar.github.io/illustrated-transformer/

\$

The_

didn_

cross_

street_

because_

the_

it_

was

too_

tire

d_

<u>ا</u>

t_

animal

Self-attention

Embed every token in the sentence Project them down to Q, K, V Reweight them with softmax(Q K ^T) Do this many times (different "heads")

https://jalammar.github.io/illustrated-transformer/

ChatGPT		
-;ó;-	4	\triangle
Examples	Capabilities	Limitations
"Explain quantum computing in simple terms" →	Remembers what user said earlier in the conversation	May occasionally generate incorrect information
"Got any creative ideas for a 10 year old's birthday?" →	Allows user to provide follow- up corrections	May occasionally produce harmful instructions or biased content
"How do I make an HTTP Traine request in Javascript?" →	Trained to decline inappropriate	
	requests	Limited knowledge of world and events after 2021

See all of you for the final, Tuesday 6:00 Stay in touch & let me know how you use ML ...

Thank you!!!