AutoML

Automating the hyperparameter search Lyle Ungar

Auto-SKlearn Ensemble selection

Auto-ML

- Learn best hyperparameters in an ensemble of sk-learn models
- Automate the search for hyperparameters and network architectures in a neural net

Auto-Sklearn

- ♦ 15 Classifiers
- ♦ 14 feature preprocessing methods
- ♦ 4 data preprocessing methods
- \rightarrow 110 hyperparameters

Combined Algorithm Selection and Hyperparameter (CASH) Optimization

Preprocessing & Methods

extreml. rand. trees p	repr. feature selection
fast ICA	
feature agglomeration	ı
kernel PCA	
rand. kitchen sinks	(random projection)
linear SVM prepr.	L1 feature selection
no preprocessing	
nystroem sampler	(random projection)
PCA	
polynomial	
random trees embed.	
select percentile	
select rates	
one-hot encoding	
imputation	
balancing	

rescaling

AdaBoost (AB) Bernoulli naïve Bayes decision tree (DT) extreml. rand. trees Gaussian naïve Bayes gradient boosting (GB) **kNN** LDA Linear Discriminant analysis linear SVM kernel SVM multinomial naïve Bayes passive aggressive QDA Quadratic Discriminant analysis random forest (RF) Linear Class. (SGD)

Auto-Sklearn

- Warmstart/Metalearning: Start from hyperparameters that worked in the past for similar datasets.
 - Based on 38 metafeatures of 140 datasets

Uses Bayesian optimization

- Fit a random forest model predicting performance from hyperparameters and use it to find the optimum
 - speed up by discarding values that look bad on the first fold of 10-fold CV

• Use **Ensemble** of the 50 best classifiers considered

Ensemble selection

- Greedy (stagewise)
- Start from an empty ensemble
- Iteratively add the model that minimizes ensemble validation loss
 - with uniform weight, but allowing for repetitions
- Why not optimize the weights on each model?

Metafeatures

Number of features & observations

- With transformations
- Number and percentage missing
- Fraction real or categorical

Class probability stats

• Min, max, entropy...

Auto-Sklearn is solid

 Performance (with limited CPU) was third among a large set of human competitors

AutoML using Metadata: Language Embeddings

 Use text description of problems to pick hyperparameters

- Use vector embeddings of dataset title, description and keywords
- For each new dataset, find most similar prior dataset and use its hyperparameters
- The similarity metric is learned (supervised)

Drori et al 2019

Auto-ML for Deep Learning

Using Machine Learning to Explore Neural Network Architecture

AutoML learns network structure

https://research.googleblog.com/2017/05/using-machine-learning-to-explore.html

Conclusions

AutoML is close to the best humans

- And less likely to overfit
- Different ensembles for different problem types

To really avoid overfitting, do nested CV

- For each of ten folds, on the 90%
 - Do 10-fold CV to find the best method
- Observe performance on the held-out 10%
- ♦ All the 'big players' now offer AutoML