Active Learning & Experimental Design

by Barbara Engelhardt and Alex Shyr Modified by Daniel Ting Heavily modified, of course, by Lyle Ungar

Strategies for choosing which points to label Active learning: sequential, *ad hoc* Experimental design: simultaneous, principled

Motivation

◆ Labeling data is often expensive

- Unlabeled data is often cheap
- Not all labels are equally useful
- We want to collect the "best" data at minimal cost

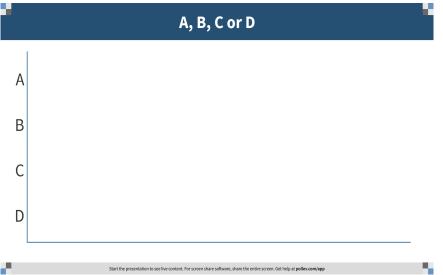
What observations should one label?

Toy examples

Assume you are learning *y* = *ax*+*b* for *x* on [-1,1]. You can pick two *x*'s to get *y*'s for.

What two values would you pick? A) -1/3, 1/3 B) -1, 1

- C) 0, 1
- D) Something else



Toy examples

- **Assume you are learning** y = f(x) **for** x **a scalar**
- You are learning an SVM classifier on [-1.1].
- You can pick 4 *x*'s to get *y*'s for.
- What strategy would you use to pick x's?
- A) Pick -1, -1/3, 1/3, 1
- B) Pick -1, 1, see what the answer is, then pick next x
- C) Pick -1/3, 1/3, see what the answer is, then pick next x
- D) Something else

	A, B, C or D	
А		
в		
С		
D		
	Mart the presentation to see live content. For screen thire software, share the entire screen, det help at pollex.com/bags	

Toy Example: 1D classifier

Unlabeled data: labels are all 0 then all 1 (left to right)

Classifier (threshold function): $h_w(x) = 1$ if x > w (0 otherwise)

Goal: find transition between 0 and 1 labels in minimum steps

Naïve method: choose points to label at random on line

Requires O(n) training data to find underlying classifier

Better method: binary search for transition between 0 and 1

- Requires O(log n) training data to find underlying classifier
- Exponential reduction in training data size!

Example: collaborative filtering

- Users usually rate only a few movies
 - ratings are "expensive"
- Which movies do you show users to best extrapolate movie preferences?

[Yu et al. 2006]

Example: collaborative filtering

♦ Baseline algorithms:

- Random: *m* movies randomly
- Most Popular Movies: *m* most frequently rated movies
- Most popular movies is not better than random!
- Popular movies rated highly by all users; do not discriminate tastes

[Yu et al. 2006]

Active Learning

Active learning

- Uncertainty sampling
- Information-based loss functions
- Optimal experimental design
- Response surface modeling

Active Learning

• Given existing data (*X*, *y*), choose where to collect more labels

- Assume access to cheap unlabeled points
- Make a query to obtain expensive label
- Want to find labels that are "informative"
- Output: Classifier / predictor
- Similar to "active learning" in classrooms
 - Students ask questions, receive a response, and ask more questions
 - Contrast: passive learning: student just listens to lecturer

Active Learning Setup

- ♦ Active learner picks which data point x to query
- Receive label ("response") y from an oracle
- Update parameters w of the model
- Repeat

Query selected to minimize some loss function ("risk")

Active Learning

Heuristic methods for reducing risk:

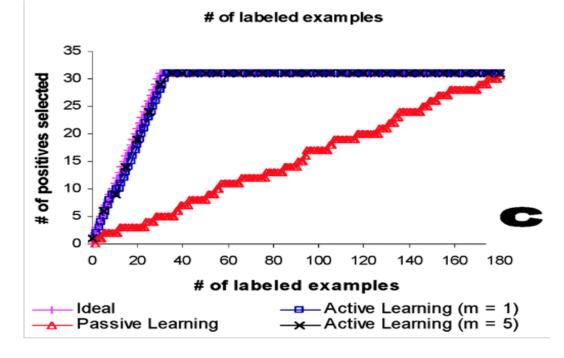
- Select "most uncertain" data point
- Select "most informative" data point

Uncertainty Sampling

- Query the item (x) that the current classifier is most uncertain about
- Needs measure of uncertainty
- Examples:
 - Entropy
 - Least confident predicted label
 - Euclidean distance (e.g. point closest to margin in SVM)

When might this fail?

Example: Gene expression and Cancer classification Active learning takes 31 points to achieve same accuracy as passive learning with 174



Liu 2004

Information-based Loss Function

- Above methods looked at uncertainty at a single point
 - Does not look at expected effect of adding the point on the model
- Better: quantify the information gained
 - Maximize KL divergence between posterior and prior

 $KL(P||\pi) = \#$ of bits gained about model

- Maximize reduction in **model entropy** between posterior and prior (reduce number of bits required to describe distribution)
- Where have we seen something similar?

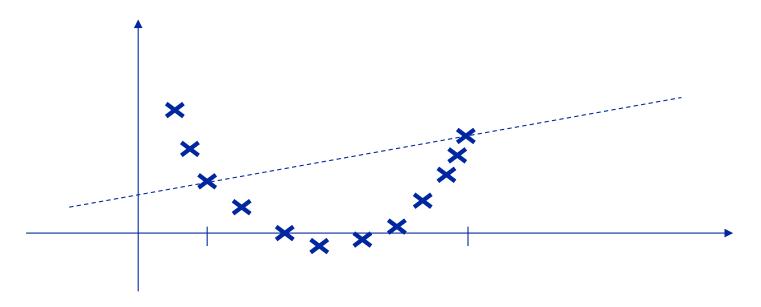
[MacKay, 1992]

KL divergence as info gain

- The KL divergence measures the information gain expected from query (x'):
 KL(p(θ | x, x') || p(θ | x))
- Goal: choose a query that *maximizes* the KL divergence between the updated posterior probability and the current posterior probability
 - This represents the largest expected information gain

Active learning warning

- Choice of data is only as good as the model itself
- Assume a linear model, then two data points are sufficient
- What happens when data are not linear?



Active Learning = Sequential Experimental Design

- ♦ Active learning
 - Uncertainty sampling
 - Information-based loss functions

Optimal experimental design

Response surface modeling

Optimal Experimental Design

Active learning heuristics mostly perform well

• but sometimes fail

Optimal experimental design gives

- theoretical criteria for choosing which points to label
- given specific assumptions and objectives

It fails, too, if the assumptions aren't met.

Optimal Experimental Design

- Given a model with parameters w,
 - What queries are maximally informative
- "Best" minimizes variance of estimate of w
- Linear models
 - Optimal design does not depend on w !
- Non-linear models
 - Depends on w; often use Taylor expansion to linear model

Goal: Minimize variance of *w*

If $y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ then $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

 $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\beta}, \, \boldsymbol{\sigma}^2(\mathbf{X}^T \mathbf{X})^{-1}) \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \, \boldsymbol{\sigma}^2)$

We want to minimize the variance of our parameter estimate \mathbf{w} , so pick training data \mathbf{X} to minimize $(\mathbf{X}^T \mathbf{X})^{-1}$

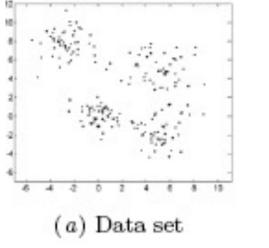
But that is a matrix, so we need to reduce it to a scalar
A-optimal (average) design minimizestrace(X^TX)⁻¹D-optimal (determinant) design minimizeslog det(X^TX)⁻¹E-optimal (extreme) design minimizesmax eigenvalue of (X^TX)⁻¹

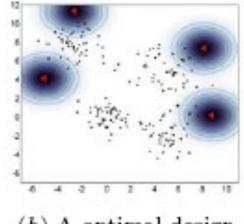
Alphabet soup of other criteria (C-, G-, L-, V-, etc.)

A-Optimal Design

- ◆ A-optimal design minimizes the trace of (X^TX)⁻¹
 - Equivalent to minimizing the Frobeneous norm
 - Chooses points near the border of the dataset
 - Trace of a matrix is the sum of its eigenvalues

Example: mixture of four Gaussians





(b) A-optimal design

Practicalities

- Sometimes you can generate an *x* arbitrarily
- More often you need to select from a set of given x's
 - This can be an expensive search!

Experimental Design

- ♦ Active learning
 - Uncertainty sampling
 - Information-based loss functions
- Optimal experimental design

Response surface modeling

• Fit curve only near optimum

Response Surface Methods

• Goal: find an x to minimize y (for an unknown function y = f(x))

- Using gradient descent
- E.g., find optimal conditions for growing cell cultures

Procedure

- Initialize: Given a set of datapoints, (X,y), fit y = f(x;w)
 - This is the "response surface"
- Repeat
 - Pick the next x_i by doing gradient descent on f(x)
 - Measure the corresponding y_i (e.g. by taking action x_i)
 - Use (x_i, y_i) to update the response surface f(x)
- We only care about fitting close to the optimum

Response Surface Modeling

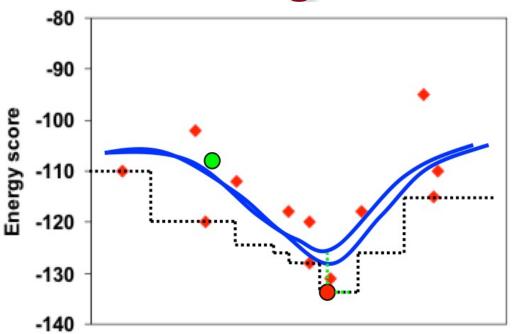
Goal: find the minimum of unknown function y = f(x)

Initialize: Given a set of datapoints, (X,y), fit y = f(x;w)

Repeat

- Pick the next x_i using gradient descent on f(x)
- Measure the corresponding y_i
- Use (x_i, y_i) to update the response surface f(x;w)

Taking action \mathbf{x} lets you observe the corresponding reward y. This new point (\mathbf{x}, y) is added to the training data to better estimate \mathbf{w}



[Blum, unpublished]

What you should know

Active learning

- Uncertainty sampling
- Query by committee-
- Information-based loss functions

Optimal experimental design

- A-optimal design
- D-optimal design -
- E-optimal design

Minimize trace= $\sum \lambda_i$ of $(X^T X)^{-1}$

Minimize det= $\Pi \lambda_i$ of $(X^T X)^{-1}$

Minimize largest eigenvalue $max \lambda_i$ of $(X^T X)^{-1}$

Sample where models is uncertain

Sample where model disagree

Maximize information gain

- All minimize the variance in estimate of w
- Response surface methods Sequential experiments for optimization