Overfitting, Regularization Bias-Variance Decomposition

Lyle Ungar

Computer and information Science

Learning Objectives

Understand training and testing error vs. complexity Use cross validation Bias-variance decomposition and trade-off

Overfitting and model complexity

Test error = Training error + model complexity

Estimating test error

- Training set ("in sample) vs.
 Testing set ("out of sample")
- Leave one out cross validation (LOOCV)
 - With and without replacement
- 10-fold CV
- Two uses of CV
 - Picking hyperparameters
 - Estimating true error

Bias and Variance

Bias

- Are the estimates in expectation over training sets high or low?
- Can be of model parameters or of predictions

Variance

• How much do the estimates change is you change the training set. $Bias(\hat{\theta}) = E[\hat{\theta} - \theta] = E[\hat{\theta}] - E[\theta]$ $Var(\hat{\theta}) = E[(\hat{\theta} - E[\hat{\theta}])^2]$

See: https://alliance.seas.upenn.edu/~cis520/dynamic/2022/wiki/index.php?n=Lectures.BiasVariance

Bias and Variance

Bias and Variance are in expectation over training sets

- What does that look like?
- How does that relate to model complexity?

$$Bias(\hat{ heta}) = E[\hat{ heta} - heta] = E[\hat{ heta}] - E[heta]
onumber Var(\hat{ heta}) = E[(\hat{ heta} - E[\hat{ heta}])^2]$$

Bias Variance Tradeoff

♦ Test Error = Variance + Bias² + Noise

$$\mathbf{E}_{x,y,D}[(h(x;D) - y)^2] = \underbrace{\mathbf{E}_{x,D}[(h(x;D) - \overline{h}(x))^2]}_{\text{Variance}} + \underbrace{\mathbf{E}_x[(\overline{h}(x) - \overline{y}(x))^2]}_{\text{Bias}^2} + \underbrace{\mathbf{E}_{x,y}[(\overline{y}(x) - y)^2]}_{\text{Noise}}$$

D=training data, x,y = (infinite) test data y(x) is the label; h(x) is the model prediction See the <u>wiki page</u> for the derivation

Bias Variance Tradeoff - OLS

- What is the bias of the estimate of w?
- What is the bias of the estimate of y?
- What is the variance of y?
- What is the variance of the estimate of y?

Bias Variance Tradeoff - OLS

♦ Test Error = Variance + Bias² + Noise

Т

$$\mathbf{E}_{x,y,D}[(h(x;D)-y)^2] = \underbrace{\mathbf{E}_{x,D}[(h(x;D)-\bar{h}(x))^2]}_{\text{Variance}} + \underbrace{\mathbf{E}_x[(\bar{h}(x)-\bar{y}(x))^2]}_{\text{Bias}^2} + \underbrace{\mathbf{E}_{x,y}[(\bar{y}(x)-y)^2]}_{\text{Noise}}$$

 \checkmark

$$\operatorname{Error} = E[(y - \hat{y})^2] = Bias(\hat{y})^2 + Var(\hat{y}) + \sigma^2$$

What you should know

- Overfitting and model complexity
- Cross validation
 - LOOCV, 10-fold CV
 - sampling with and without replacement
 - uses of CV: setting hyper-parameters, estimating test error
- Learning curves
- Bias-variance trade-off
- Unbiased estimator