Feedback

Please complete the surveys!!!

- Pods should be place to get your questions answered
- People who answered are spending 10-15 hour/week
 - I'll try to dial back the HW
 - If you're over 15 hours/week try office hours

Individual comments

- Disconnect between the lectures and HW
- Would like more ML algorithms (not just theory)

Regression: Penalties & Priors

Learning objectives

Know names and properties of L_0 , L_1 and L_2 penalties

Lyle Ungar

Know streamwise, stepwise and stagewise search in regression

Supervised learning

Given a set of observations with labels, y

- Web pages with "Paris" labeled "Paris, France" or "Paris Hilton"
- Proteins labeled "apoptosis" or "signaling"
- Patients labeled with "Alzheimer's" or "frontotemporal dementia"
- ♦ Generate features, x, for each observation
- Learn a regression model to predict y
 - $y = f(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 \dots$
 - Most of the w_i are zero.

Two interpretations of regression

- Minimize (penalized) squared error
- Maximize likelihood
 - Ordinary least squares (OLS): MLE
 - Minimizes
 - A) bias
 - B) variance
 - C) bias + variance

Two interpretations of regression

Minimize (penalized) squared error

Maximize likelihood

- Ridge regression: MAP
 - Minimizes
 - A) bias
 - B) variance
 - C) bias + variance

Ridge regression – Bias/Variance

• Minimize penalized Error $||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_2^2$

• Minimizing the first term, representing the training error, reduces

A) biasB) varianceC) neither

Ridge regression – Bias/Variance

• Minimize penalized Error $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$

 Minimizing the second term, which can be viewed as the amount that the test error is expected to be bigger than the training error reduces

A) biasB) varianceC) neither

Different norms, different errors

- $y \sim N(w^T x, \sigma^2) \sim exp(-||y w^T x||_2^2/2\sigma^2)$

• $\operatorname{argmax}_{w} p(\mathbf{D}|\mathbf{w})$ here: $\operatorname{argmax}_{w} p(\mathbf{y}|\mathbf{w},\mathbf{X})$

- Err = $||\mathbf{y} \mathbf{X}\mathbf{w}||_2^2$ OLS = L₂ regression
- $y \sim \exp(-||y w^T x||_1 / 2\sigma^2)$
- $\operatorname{argmax}_{\mathbf{w}} p(\mathbf{D}|\mathbf{w})$
- Err = $||y Xw||_1$

here: $\operatorname{argmax}_{\mathbf{w}} p(\mathbf{y}|\mathbf{w}, \mathbf{X})$ L_1 regression

Different norms, different penalties

• Minimize penalized Error $||y - Xw||_2^2 + \lambda f(w)$

- $||w||_2^2 = \sum_j |w_j|^2$ L_2
- $||w||_1 = \sum_j |w_j|^2$ L_1
- $||\mathbf{w}||_0 = \Sigma_j |w_j|^0$
 - Where $|w_j|^0 = 0$ if $w_j = 0$ else $|w_j|^0 = 1$
- Note that all of these encourage w_j to be smaller; i.e., they *shrink* w.

Lo

Feature selection for regression

- Goal: minimize error on a test set
- Approximation: minimize a penalized training set error
 - Argmin_w (Err + $\lambda ||\mathbf{w}||_p^p$) where Err = $\sum_i (y_i \sum_j w_j x_{ij})^2 = ||\mathbf{y} \mathbf{X}\mathbf{w}||^2$
 - Different norms
 - p = 2 "ridge regression"
 - Makes all the *w*'s a little smaller
 - p = 1 "LASSO" or "LARS" (least angle regression)
 - Still convex, but drives some w's to zero
 - p = 0 "stepwise regression"
 - Requires search

Note the confusion in the names of the of optimization method with the objective function

Different regularization priors

Argmin_w $||\mathbf{y} - \mathbf{Xw}||_2^2 + \lambda ||\mathbf{w}||_p^p$ • \mathbf{L}_2 $||\mathbf{w}||_2^2$ • Gaussian prior: $p(w) \sim exp(-||\mathbf{w}||_2^2/\sigma^2)$ • \mathbf{L}_1 $||\mathbf{w}||_1$ • Laplace prior: roughly $p(w) \sim exp(-||\mathbf{w}||_1/\sigma^2)$ • \mathbf{L}_0 $||\mathbf{w}||_0$ • Spike and slab

0.0

-2

-4

ò

Ż

4

L₀, L₁ and L₂ Penalties

 If the x's have been standardized (mean zero, variance 1) then we can visualize the shinkage:

Different regularization penalties a) L_2 Argmin_w $||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_2^2$ b) L_1 Argmin_w $||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_1$ c) L_0 Argmin_w $||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_0$

Which norm most heavily shrinks large weights?

Different regularization penalties a) L₂ Argmin_w $||y - Xw||_2^2 + \lambda ||w||_2^2$ b) L₁ Argmin_w $||y - Xw||_2^2 + \lambda ||w||_1$ c) L₀ Argmin_w $||y - Xw||_2^2 + \lambda ||w||_0$

Which norm most strongly encourages weights to be set to zero?

Different regularization penalties a) L_2 Argmin_w $||y - Xw||_2^2 + \lambda ||w||_2^2$ A, B, or C? **b**) L₁ Argmin_w $||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_1$ c) L_0 Argmin_w $||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_0$ Which norm is scale invariant?

Different regularization penalties

Argmin_w $||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 + \lambda ||\mathbf{w}||_p^p$

L₂ - Ridge regression

Which lead to convex optimization problems?

- ♦ L₁- LASSO or LARS
- ◆ L₀ "stepwise regression"

Warning: for p = 0, the above formula is not really right (here and below); it is really $||y - w x||_2^2 + \lambda ||w||_0$

Solving with regularization penalties

 $\text{Argmin}_{w} \| \| \mathbf{y} - \mathbf{X} \mathbf{w} \|_{2}^{2} + \lambda \| \| \mathbf{w} \|_{p}^{p}$

- ◆ L₂
 - $(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}'\mathbf{y}$
- ◆ L₁
 - Gradient descent
- ◆ L₀
 - Search (stepwise or streamwise)

 L_1 and L_0 can handle exponentially more features than observations; L_2 cannot

Streamwise regression

Initialize:

- model = {},
- $\operatorname{Err}_0 = \Sigma_i (y_i 0)^2 + 0$

• For each feature x_j j=1:p:

- Try adding the feature x_i to the model
- *If*
 - Err = $\Sigma_i (y_i \Sigma_{j \text{ in model }} w_j x_{ij})^2 + \lambda ||model||_0 < Err_{j-1}$
 - Accept new model and set Err_j = Err
- Else
 - Keep old model and set Err_j = Err_{j-1}

||*model*||₀ = # of features in the model

Stepwise regression

Initialize:

- model = {},
- $\operatorname{Err}_{\operatorname{old}} = \Sigma_i (y_i 0)^2 + 0$
- Repeat (up to p times)
 - Try adding each feature x_k to the model
 - Pick the feature that gives the lowest error
 - Err = $min_k \Sigma_i (y_i \Sigma_{j in model_k} w_j x_{ij})^2 + \lambda |model_k|$
 - *If*Err < Err_{old}
 - Add the feature to the model
 - Err_{old}= Err
 - *Else* Halt

Stagewise regression

• Like stepwise, but at each iteration, keep all of the coefficients w_j from the old model, and just regress the residual $r_i = y_i - \sum_{j \text{ in model}} w_j x_{ij}$ on the new candidate feature k.

Later: boosting

How to pick regularization λ ?

- Search over λ to minimize the (non-penalized) error on a test set (or cross validation error)
- Or use information theory for L₀.
 - MDL: bits to code model + bits to code residual

What you should know

◆ L₂, L₁, L₀ penalties

- Names. How they are solved
- Training vs. Testing
 - Penalized error approximates test error

♦ Streamwise, stepwise, stagewise regression

L₂ + L₁ penalty = "Elastic net"

 $\operatorname{argmin}_{\mathbf{w}} \|\|\mathbf{y} - \mathbf{X}\mathbf{w}\|\|_{2}^{2} + \lambda_{2} \|\|\mathbf{w}\|\|_{2}^{2} + \lambda_{1} \|\|\mathbf{w}\|\|_{1}$

