Logistic Regression

Lyle Ungar

Learning objectives
Logistic model & loss
Decision boundaries as hyperplanes
Multi-class regression

What do you do with a binary y?

- ◆ Can you use linear regression?
 - $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$
- How about a different link function?
 - $y = f(\mathbf{w}^T \mathbf{x})$
- Or a different probability distribution
 - $P(y=1|x) = f(w^Tx)$

Logistic function

Logistic Regression

$$P(Y = 1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp\{-\sum_{i} w_{i} x_{i}\}} = \frac{1}{1 + \exp\{-\mathbf{w}^{\mathsf{T}} \mathbf{x}\}} = \frac{1}{1 + \exp\{-y \mathbf{w}^{\mathsf{T}} \mathbf{x}\}}$$

$$P(Y = -1 | \mathbf{x}, \mathbf{w}) = 1 - P(Y = 1 | \mathbf{x}, \mathbf{w}) = \frac{\exp\{-\mathbf{w}^{\mathsf{T}} \mathbf{x}\}}{1 + \exp\{-\mathbf{w}^{\mathsf{T}} \mathbf{x}\}} = \frac{1}{1 + \exp\{-y\mathbf{w}^{\mathsf{T}} \mathbf{x}\}}$$

$$log(\frac{P(Y=1|\mathbf{x},\mathbf{w})}{P(Y=-1|\mathbf{x},\mathbf{w})}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$
 Log odds

Let
$$Y = \{-1, 1\}$$

Log likelihood of data

$$\log(P(D_Y|D_X, \mathbf{w})) = \log\left(\prod_i \frac{1}{1 + \exp\{-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i\}}\right)$$
$$= -\sum_i \log(1 + \exp\{-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i\})$$

$$y = 1 \text{ or } -1$$

Decision Boundary

$$P(Y = 1 | \mathbf{x}, \mathbf{w}) = P(Y = -1 | \mathbf{x}, \mathbf{w})$$

$$\frac{1}{1 + \exp\{-\mathbf{w}^{\mathsf{T}}\mathbf{x}\}} = \frac{\exp\{-\mathbf{w}^{\mathsf{T}}\mathbf{x}\}}{1 + \exp\{-\mathbf{w}^{\mathsf{T}}\mathbf{x}\}}$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$$

Representing Hyperplanes

How do we represent a line?

$$egin{aligned} y &= x \ 0 &= x - y \ 0 &= [1, -1] \left[egin{array}{c} x \ y \end{array}
ight] \end{aligned}$$

In general, a hyperplane is defined by

$$0 = w^T x$$

The red vector (w) defines the green hyper plane that is orthogonal to it.

Why bother with this weird representation?

Projections

 $(\vec{w} \cdot \vec{x})\vec{w}$ is the projection of \vec{x} onto \vec{w}

Now classification is easy!

$$h(\mathbf{x}) = sgn(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Computing MLE

Use gradient ascent

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta_t \nabla_{\mathbf{w}} \mathcal{E}(\mathbf{w})$$
Loss function = log-likelihood

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{\delta \log(P(D_Y|D_X,\mathbf{w}))}{\delta \mathbf{w}} = \sum_{i} \frac{y_i \mathbf{x}_i \exp\{-y_i \mathbf{w}^\top \mathbf{x}_i\}}{1 + \exp\{-y_i \mathbf{w}^\top \mathbf{x}_i\}} = \sum_{i} y_i \mathbf{x}_i (1 - P(y_i|\mathbf{x}_i,\mathbf{w}))$$

Computing MAP

Prior

$$w_j \sim \mathcal{N}(0, \gamma^2)$$
 so $P(\mathbf{w}) = \prod_j \frac{1}{\gamma \sqrt{2\pi}} \exp \left\{ \frac{-w_j^2}{2\gamma^2} \right\}$

So solve

$$\arg \max_{\mathbf{w}} \log P(\mathbf{w} \mid D, \gamma) = \arg \max_{\mathbf{w}} (\ell(\mathbf{w}) + \log P(\mathbf{w} \mid \gamma))$$

$$\operatorname{arg\,max}_{\mathbf{w}} \left(\mathscr{E}(\mathbf{w}) - \frac{1}{2\gamma^2} \mathbf{w}^{\mathsf{T}} \mathbf{w} \right)$$

◆ Again use gradient descent

Questions?

Top

Multi-Class Classification

Disease diagnosis:

healthy / cold / flu / pneumonia

Object classification:

desk / chair / monitor / bookcase

Multi-Class Logistic Regression

♦ For 2 classes:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})}$$

We can make this symmetric

◆ For K classes:

$$p(y = k \mid \mathbf{x}; \theta_1, \dots, \theta_k) = \frac{\exp(\theta_k^\top \mathbf{x})}{\sum_{k=1}^K \exp(\theta_k^\top \mathbf{x})}$$

- Called the softmax function
 - maps a vector to a probability distribution

Multi-Class Logistic Regression

Split into One vs. Rest:

◆ Train a logistic regression classifier for each class k to predict the probability that y = k with

$$h_k(\mathbf{x}) = \frac{\exp(\theta_{\mathbf{k}}^{\top} \mathbf{x})}{\sum_{\mathbf{k}=1}^{\mathbf{k}} \exp(\theta_{\mathbf{k}}^{\top} \mathbf{x})}$$

Implementing Multi-Class Logistic Regression

- ullet P(y=k|x) estimated by: $h_k(\mathbf{x}) = \frac{\exp(\theta_k^{\top} \mathbf{x})}{\sum_{k=1}^k \exp(\theta_k^{\top} \mathbf{x})}$
- Gradient descent simultaneously updates all parameters for all models
 - Same derivative as before, just with the above $h_k(\mathbf{x})$
- Predict class label as the most probable label

You should know

- ◆ Logistic model & loss
 - Linear in log-odds
- Decision boundaries
 - hyperplane
- **♦** Softmax
 - Maps vector to probability distribution

Questions?

Top