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Gradient Descent

¢ We almost always want to minimize some loss function
¢ Example: Sum of Squared Error (SSE):
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Mean Squared Error
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Getting Closer
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What if we use the
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Getting Closer
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SSE(0) = Z r.(0)>
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We can compute the gradient
numerically

... But sometimes better to
use analytics (calculus)!
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Getting Closer
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Getting Closer

n
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. i=1
We can compute the gradient
| numerically
... But sometimes better to
Currentvalue® / use analytics (calculus)!
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Key questions

¢ How big a step n to take?
e Toosmalland ittakes along time ., | ~1
e To0 big and it will be unstable 6:= 0 —n VSSE(6)
¢ “Optimal.” scale n ~ 1/sqrt(iteration)
o Or maybe n ~ 1/iteration 777
¢ Adaptive (a simple version)
e E.g. each time, increase step size by 10%
= If error ever increases, cut set size in half




Stochastic Gradient Descent

+ If we have a very large data set, update the model
after observing each single observation

e “online” or “streaming” learning
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Mini-batch

¢ Update the model every k observations
e Batch size k (e.g. 50)

¢ More efficient than pure stochastic gradient

or full gradient descent
n j+k
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Adagrad

. Define a per-feature learning rate for feature j as:
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. Gy;is the sum of squares of gradients of feature j over time ¢

. Frequently occurring features in the gradients get small learning
rates; rare features get higher ones

. Key idea: “learn slowly” from frequent features but “pay attention”
to rare but informative feature



Adagrad

In practice, add
a small constant
¢ >0 to prevent
dividing by zero




For [[w||; or [|y-h|l, use
coordlnate descent

flz,y) =

Repeat:
Forj=1:p
9j:= OJ - ndErr/dOJ

https://en.wikipedia.org/wi
ki/Coordinate descent



https://en.wikipedia.org/wiki/Coordinate_descent

Elastic net parameter search

Size of
coefficients

Standardized Coefficients

bt /maxbt| Zou and

Regularlzatufh penalty (inverse) Hastie



Recap: Gradient Descent

¢ “Follow the slope” towards a minimum
e Analytical or numerical derivative
o Need to pick step size
= larger = faster convergence but instability
¢ Lots of variations
o Coordinate descent
o Stochastic gradient descent or mini-batch
¢ Can get caught in local minima
o Alternative, simulated annealing, uses randomness



