Gradient Descent

Learning objectives
Know standard,
coordinate, stochastic
gradient, and
minibatch gradient
descent

Lyle UngarUniversity of Pennsylvania

Adagrad: core idea

In part from slides written jointly with Zack Ives

Gradient Descent

- ◆ We almost always want to minimize some loss function
- **◆** Example: Sum of Squared Error (SSE):

$$SSE(\theta) = \sum_{i=1}^{n} r_i(\theta)^2$$

$$r_i(\theta) = h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)}$$

Mean Squared Error

$$SSE(\theta) = \sum_{i=1}^{\infty} r_i(\theta)^2$$

In one dimension, looks like a parabola centered around the optimal value θ^*

(Generalizes to *d* dimensions)

http://www.math.uah.edu/stat/expect/Variance.html

$$SSE(\theta) = \sum_{i=1}^{n} r_i(\theta)^2$$

What if we use the slope of the tangent to decide where to "go next"?

$$\theta := \theta - \eta \, \nabla SSE(\theta)$$
the gradient

$$\nabla SSE(\theta) = \lim_{d \to 0} \frac{\left(\left(h_{\theta} (\theta + d) - h_{\theta}(\theta) \right)}{d}$$

http://www.math.uah.edu/stat/expect/Variance.html

$$SSE(\theta) = \sum_{i=1}^{n} r_i(\theta)^2$$

We can compute the gradient numerically

... But sometimes better to use analytics (calculus)!

$$\nabla SSE(\theta) =$$

$$\sum_{i=1}^{n} \frac{d}{d\theta} r_i(\theta)^2$$

$$SSE(\theta) = \sum_{i=1}^{n} r_i(\theta)^2$$

We can compute the gradient numerically

... But sometimes better to use analytics (calculus)!

$$\sum_{i=1}^{n} 2 \cdot \left(r_i(\theta) \cdot \frac{\partial r_i(\theta)}{\partial \theta} \right)$$
$$\frac{\partial r_i}{\partial \theta} = x_i^{(i)}$$

http://www.math.uah.edu/stat/expect/Variance.html

$$\theta := \theta - \eta \, \nabla SSE(\theta)$$

$$SSE(\theta) = \sum_{i=1}^{n} r_i(\theta)^2$$

We can compute the gradient numerically

... But sometimes better to use analytics (calculus)!

$$\sum_{i=1}^{n} \nabla SSE(\theta) = \sum_{i=1}^{n} 2 \cdot \left(r_i(\theta) \cdot x_j^{(i)} \right)$$
$$\frac{\partial r_i}{\partial \theta_i} = x_j^{(i)}$$

Key questions

- lacktriangle How big a step η to take?
 - Too small and it takes a long time
 - Too big and it will be unstable

- "Optimal:" scale η ~ 1/sqrt(iteration)
 - Or maybe η ~ 1/iteration ???
- ◆ Adaptive (a simple version)
 - E.g. each time, increase step size by 10%
 - If error ever increases, cut set size in half

Stochastic Gradient Descent

- ◆ If we have a very large data set, update the model after observing each single observation
 - "online" or "streaming" learning

$$SSE(\theta) = \sum_{i=1}^{n} r_i(\theta)^2 \qquad VSSE_i(\theta) = \frac{d}{d\theta} r_i(\theta)^2$$

$$\theta := \theta - \eta \, \nabla SSE_i(\theta)$$

Mini-batch

- Update the model every k observations
 - Batch size k (e.g. 50)
- More efficient than pure stochastic gradient or full gradient descent

$$MSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i(\theta)^2 \qquad \nabla MSE_k(\theta) = \frac{1}{k} \sum_{i=j}^{j+k} \frac{d}{d\theta} r_i(\theta)^2$$

$$\theta := \theta - \eta \, \nabla SSE_k(\theta)$$

Adagrad

Define a per-feature learning rate for feature j as:

$$\eta_{t,j} = \frac{\eta}{\sqrt{G_{t,j}}}$$

$$G_{t,j} = \sum_{k=1}^{t} g_{k,j}^2 \frac{\partial}{\partial \theta_j} \operatorname{cost}_{\boldsymbol{\theta}(\mathbf{x}_k, y_k)}$$

- $G_{t,j}$ is the sum of squares of gradients of feature j over time t
- Frequently occurring features in the gradients get small learning rates; rare features get higher ones
- Key idea: "learn slowly" from frequent features but "pay attention" to rare but informative feature

Adagrad

$$\eta_{t,j} = \frac{\eta}{\sqrt{G_{t,j}}}$$
 $G_{t,j} = \sum_{k=1}^{t} g_{k,j}^2$

$$\theta_j \leftarrow \theta_j - \frac{\eta}{\sqrt{G_{t,j}} + \zeta} g_{t,j}$$

In practice, add a small constant $\zeta > 0$ to prevent dividing by zero

For $||\mathbf{w}||_1$ or $||\mathbf{y}-\mathbf{h}_{\theta}||_1$ use coordinate descent

Repeat:

For j=1:p

$$\theta_j$$
:= θ_j - η dErr/d θ_j

https://en.wikipedia.org/wiki/Coordinate_descent

Elastic net parameter search

Size of coefficients

Regularization penalty (inverse)

Zou and Hastie

Recap: Gradient Descent

- "Follow the slope" towards a minimum
 - Analytical or numerical derivative
 - Need to pick step size
 - larger = faster convergence but instability
- **◆ Lots of variations**
 - Coordinate descent
 - Stochastic gradient descent or mini-batch
- ◆ Can get caught in local minima
 - Alternative, simulated annealing, uses randomness