Recitation

Lyle Ungar

Computer and information Science

Learning Objectives PSD Kernel and kernel matrix Scale invariance

A kernel k(x,y)

- Measures the *similarity* between a pair of points x and y
- Symmetric and positive semi-definite
- Often tested using a Kernel Matrix,
 - a PSD matrix K with elements K_{ij} = k(x_i,x_j) from all pairs of rows of a matrix X of predictors
 - A *PSD matrix* has only non-negative eigenvalues

Positive Semi-Definite (PSD)?

- 12 is positive semi-definite?
 21
- ♦ A'A is guaranteed positive semi-definite?
- A positive semi-definite matrix can have negative entries in it?
- The covariance matrix is PSD?

True or False?

•	True or False?	
True		
False		
С., с., с.,	Start the presentation to see live content. Soil no live content? Install the app or get help at Public commapp	

Example kernels

Linear kernel

• $k(x,y) = x^{T}y$

Gaussian kernel

- $k(x,y) = \exp(-||x y||^2/\sigma^2)$
- Quadratic kernel
 - $k(x,y) = (x^Ty)^2$ or $(x^Ty + 1)^2$

Combinations and transformations of kernels

Kernel matrix example

- Pick a matrix X
 - 1 2 3 4 5 6

What is K for X using the linear kernel?

- Compute $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$
- Test the eigenvalues

True or false

- Kernels in effect transform observations x to a higher dimension space φ(x)
- Since kernels measure similarity,
 - ⋆ k(x,y) < k(x,x) for x != y</p>
- If there exists a pair of points x and y such that
 k(x,y) < 0, then k() is not a kernel

	True or False?	
True		
False		
6	Start the presentation to see live content. Soil no live content install the app or gst help at PollEx.com/app	5

Kernels: True or false

- A quadratic kernel (x^Ty)², when used in linear regression, gives results very similar to including quadratic interaction terms in the regression
- Any distance metric d(x,y) can be used to generate a kernel using k(x,y) = exp(-d(x,y))

Where are kernels used?

Nearest neighbors

• Measure similarity in the kernel space

Linear and logistic regression

• Map points to new, transformed feature space

SVMs and Perceptrons

- PCA
 - SVD[X^TX]

What is the most common kernel method for linear regression?

What are we seeking to accomplish with kernels for classification?

What is the main benefit for PCA?

Is it Scale invariant?

- KNN
- Decision Trees
- Linear regression (OLS)
- Ridge regression
- Elastic net
- Logistic regression
- Kernel regression

What questions do you have on today's class?

Тор

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

True or false

- Kernels in effect transform observations **x** to a higher dimension space $\phi(\mathbf{x})$
 - False: It can be either higher or lower dimension
- Since kernels measure similarity,

 - **False.** If the kernel is derived from a distance metric (e.g. a Gaussian kernel), then that's true, but it is not true for e.g. the linear kernel
- ♦ If there exists a pair of points x and y such that k(x,y) < 0, then k() is not a kernel</p>
 - **False**: kernels need to yield a positive semi-definite matrix, but individual entries in the matrix can be negative

True or false

- A quadratic kernel, when used in linear regression, gives results very similar to including quadratic interaction terms in the regression
 - False: when one includes quadratic interaction terms, that adds around p²/2 new weights; the quadratic kernel does not introduce any new parameters.
- Any function φ(x) can be used to generate a kernel using k(x,y) = φ(x)
 ^Tφ (y)
 - True
- Any distance metric d(x,y) can be used to generate a kernel using k(x,y) = exp(-d(x,y))
 - True

Kernels form a dual representation

- Start with an *n*p* matrix *X* of predictors
- Generate an *n*n* kernel matrix K
 - with elements $K_{ij} = k(x_i, x_j)$

We will cover and use this later!

Why is it not bad to generate a potentially much larger feature space?

The "kernel trick" avoids computing $\phi(x)$

- $k(x,y) = \phi(x)^{T}\phi(y)$
- So we can compute k(x,y) and never compute the expanded features φ(x)

We will cover and use this later!

Gather.town

https://gather.town/aQMGI0I1R8DP0Ovv/penncis