Overview

- ◆ Ordinary Least Squares (OLS) Regression: Finds the projection direction of x's that are maximally correlated with the y's
- ◆ PCA: Finds projection directions of the x's with maximal covariance
- ◆ Principal Component Regression (PCR): Does PCA for dimensionality reduction on X, and then OLS using PC features.
- ◆ Canonical Covariance Analysis: Finds the projection directions of X and Y that maximize their mutual covariance.
- ◆ Canonical Correlation Analysis (CCA): Finds the projection directions of X and Y that maximize their mutual *correlation*.
- All use SVD to minimize reconstruction error or maximize variance/covariance

PCA

- **♦** XV = Z
- \bullet X = ZV⁺ = ZV^T

$$X = ZV^{T}$$

$$Z = XV$$

$$X$$

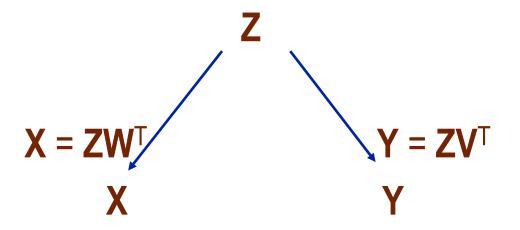
If Y is high-dimensional, we might want to do dimension reduction for both Y and X.

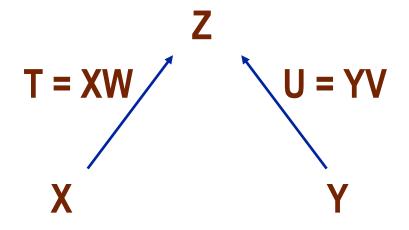
Canonical covariance analysis finds the projection directions for both X and Y to maximize their covariance.

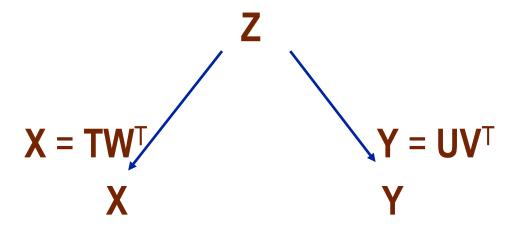
or to best reconstruct X from Y and to reconstruct Y from X

(Comparison: PCA finds the projection directions of maximum covariance for X with itself.)

This is one type of Partial Least Squares (PLS), which find projections of x that explain all the y's.







Find reduced-dimension representations T (of X_c) and U (of Y_c) such that each pair of corresponding columns t_i , u_i are optimal in the following sense:

Let
$$w_i^*$$
, $v_i^* = \underset{w_i \in \mathbb{R}^p, v_i \in \mathbb{R}^m}{argmax} (X_c w_i)^T (Y_c v_i)$
 $w_i^T w_i = v_i^T v_i = 1$

Subject to: $(X_c w_i^*)^T (X_c w_i^*) = 0$ for all j < i.

Then:
$$t_i := X_c w_i^*$$
 and $u_i := Y_c v_i^*$

What are the scores? The loadings?

$$argmax (X_c w_i)^T (Y_c v_i)$$

- $(Xw)^{T}(Yv)$
- \bullet $\mathbf{w}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{Y})\mathbf{v}$

Finds the left and right singular vectors of X^TY

Canonical Correlation Analysis (CCA)

Uses the singular vectors of: $(X^TX)^{-1/2}X^TY(Y^TY)^{-1/2}$

Correlation: re-scales the data, no units. Range -1 to 1.

Analog to auto-scaling: if X^TX is diagonal, then this divides each row of X^T by the corresponding diagonal element of $(X^TX)^{1/2}$.

In the general case where X^TX is not diagonal: this normalizes X^T by "removing" covariance.

"Whitens" the data.

CCA advantages

- **◆ CCA** is scale invariant
 - Since X and Y are whitened,
- **◆ CCA** is symmetric in X and Y

Recap

- ◆ OLS: Finds the projection direction of x maximally correlated with y
- ◆ PCA: Finds projection directions of the X with maximal covariance
 - SVD of X'X
- ◆ Canonical Covariance Analysis: Finds the projection directions of X and Y that maximize their covariance
 - SVD of Y'X
- ◆ Canonical Correlation Analysis (CCA): Finds the projection directions of X and Y that maximize their correlation
 - SVD of (X'X)-1/2X'Y(Y'Y)-1/2
 - The whitening makes it scale invariant

All minimize reconstruction error and maximize variance/covariance