

PCA, PCR, CCA and friends

Barry Slaff modified by Lyle Ungar

Based on: CIS 520 Wiki Slides by Jia Li (PSU) Works cited throughout

Overview

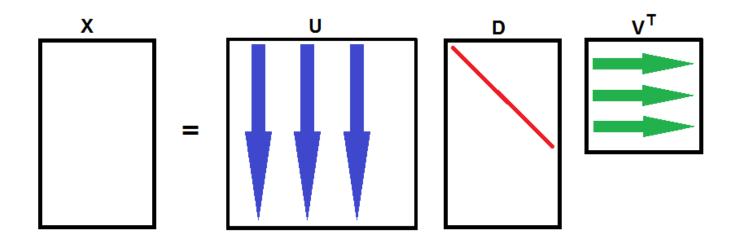
- Ordinary Least Squares (OLS) Regression: Finds the projection direction for which the x's are maximally correlated with the y's
- PCA: Finds projection directions of the x's with maximal covariance
- ◆ Principal Component Regression (PCR): Does PCA for dimensionality reduction on X, and then OLS using PC features.
 - Regularization with Ridge Regression vs. PCR.
- ◆ Canonical Covariance Analysis: Finds the projection directions of X and Y that maximize their covariance.
 - Related to Partial Least Squares (PLS)
- ◆ Canonical Correlation Analysis (CCA): Finds the projection directions of X and Y that maximize their *correlation*.
- All use SVD to minimize reconstruction error or maximize variance/covariance

Singular Value Decomposition

- Singular value decomposition of matrix X (n x p)
 - X = UDV^T
- ◆ U: orthogonal, U^TU=I (n x n)
 - Columns of U are the *left singular vectors of X*.
- D: diagonal (n x p)
 - Diagonal elements of D are the singular values of X.
 - All non-negative; in decreasing order of magnitude down the diagonal.
- → V: orthogonal, V^TV=I (p x p)
 - Columns of V are the right singular vectors of X.

Thin SVD

Singular value decomposition of X: $X = UDV^T$



Let k = min(n,p). Then: $\mathbf{X} = \sum_{i=1}^k D_{ii} \mathbf{u}_i \mathbf{v}_i^T$

Since all u_i , v_i are unit vectors, the importance of the i'th term in the sum is determined by the size of D_{ii} .

Singular Value Decomposition

$$X = UDV^T$$
, $X^TX = V(D^TD)V^T$

The columns $\mathbf{v_{1}}...\mathbf{v_{p}}$ of \mathbf{V} are the *eigenvectors* of the covariance matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$. Hence we can write

$$X^TX = \sum_{i=1}^p (D_{ii})^2 v_i v_i^T$$

From before:

$$X = \sum_{i=1}^k D_{ii} \boldsymbol{u}_i \boldsymbol{v}_i^T$$

k = min(n,p).

 D_{ii} are singular values of X, $(D_{ii})^2$ are eigenvalues of $\mathbf{X}^T\mathbf{X}$

Principal Component Analysis

If X is mean-centered, then PCA finds the directions

$$v_i = \underset{w_i \in \mathbb{R}^p}{argmax} (Xw_i)^T (Xw_i)$$

$$w_i^T w_i = 1$$

such that v_i is uncorrelated with v_j for all j<i.

Principal Component Analysis

$$X \rightarrow X_c = UDV^T = ZV^T$$

 X_c is $(n \times p)$, Z is $(n \times p)$, V is $(p \times p)$.

 ${f Z}$ is the transformation of ${f X}$ into "PC space" Column vector ${f z}_i$ is the i'th *PC score vector.* Column vector ${f v}_i$ is the i'th *PC direction* or loading.

Since V is orthogonal, $X_cV = ZV^TV = Z$, and therefore:

$$\mathbf{z}_i = \mathbf{X}_c \mathbf{v}_i = \mathbf{u}_i D_{ii}$$

Hence z_i is the projection of the row vectors of X_c on the (unit) direction v_i , scaled by D_{ii} .

Principal Component Analysis

$$X \rightarrow X_c = UDV^T = ZV^T$$

$$\boldsymbol{X_c^T X_c} = \sum_{i=1}^{p} (D_{ii})^2 \boldsymbol{v}_i \boldsymbol{v}_i^T$$

"% Variance explained by the i'th principal component:"

=
$$100 \cdot \frac{(D_{ii})^2}{\sum_{i=1}^{p} (D_{ii})^2}$$
 = $100 \lambda_i / \sum_i \lambda_i$

PCA

True or false:

If X is any matrix, and X has singular value decomposition $X = UDV^T$

then the principal component scores for X are the columns of Z = UD.

- (a) True
- (b) False

PCA

If X is mean-centered, then PCA finds...?

- (a) Eigenvectors of X^TX
- (b) Right singular vectors of X
- (c) Projection directions of maximum covariance of X
- (d) All of the above

PCA: Reconstruction Problem

PCA can be viewed as an L₂ optimization, minimizing distortion, the reconstruction error.

$$Z^*, V^* = \underset{Z \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{p \times k},}{\operatorname{argmin}} |X_c - ZV^T|_F$$
$$v_i^T v_j = \delta_{ij}$$

Here we have constrained **Z**, **V** by dimension:

$$X_c$$
 is still (n x p).
Z is (n x k), with kV is (p x k).

If k=p then the reconstruction is perfect. k<p, not.

Sparse PCA

Apply L1-norm constraints to the PCA optimization problem to zero out loadings. (Another variation: Lo-norm constraints.)

Similar to using an L1-norm penalty to zero out weights in penalized linear regression.

$$Z^*, V^* = \underset{Z \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{p \times k},}{\operatorname{argmin}} |X_{c} - ZV^{T}|_{F}$$
$$v_{i}^{T} v_{i} = \delta_{ij}$$

Subject to:

$$|v_i|_1 < c_1$$
 for $i = 1, ..., k$
 $|z_i|_1 < c_2$ for $i = 1, ..., k$

Improves interpretability of PCA: "which PC scores really matter?" See Zhou, Hastie, and Tibshirani, 2006.

PCR: Principal Component Regression

PCR has two steps:

- 1. Do a PCA for dimensionality reduction of X
- 2. Do OLS regression using the PC features, Z, usually with feature selection.

PCR: Principal Component Regression

$$X \rightarrow X_c = ZV^T$$

The columns $\mathbf{z_1}$... $\mathbf{z_k}$ can be used as features in supervised learning.

Ex: linear regression. Given training X and Y,

$$w^* = \underset{w \in \mathbb{R}^p}{\operatorname{argmin}} |Y - Zw|_2^2$$

If k=p: result is the *same* as linear regression with X, Y If k<p: this is a form of *regularized* linear regression

So is ridge regression! How are PCR and Ridge fundamentally different?

PCR: Principal Component Regression

$$X_c = UDV^T = ZV^T$$
, $w^* = \underset{w \in \mathbb{R}^p}{argmin} |Y - Zw|_2^2$

When the solution is unique, we can use the normal equation to write:

$$\hat{Y} = Zw^* = Z(Z^TZ)^{-1}Z^TY = UD(D^TU^TUD)^{-1}D^TU^TY$$

$$\widehat{Y} = UU^TY = \sum_{i=1}^n u_i u_i^T Y$$

 UU^T is the (n x n) hat matrix.

Ridge Regression in terms of SVD

$$X = UDV^{T}$$
, $w^{*} = \underset{w \in \mathbb{R}^{p}}{argmin} (|Y - Xw|_{2}^{2} + \gamma |w|_{2}^{2})$

Can solve:
$$\hat{Y} = Xw^* = X(X^TX + \gamma I)^{-1}X^TY$$

$$\hat{Y} = UDV^T (V[D^TD + \gamma(V^TV)]V^T)^{-1}VD^TU^TY$$

$$\widehat{Y} = UD(D^TD + \gamma I)^{-1}DU^{T}Y = U\widetilde{D}U^{T}Y$$

$$\hat{Y} = \sum_{i=1}^{n} \frac{(D_{ii})^2}{(D_{ii})^2 + \gamma} u_i u_i^T Y = \sum_{i=1}^{n} \frac{\lambda_i^2}{\lambda_i^2 + \gamma} u_i u_i^T Y$$

 λ_i here are singular values, not eigenvalues

OLS vs. Ridge vs. PCR

OLS:
$$X = UDV^T$$
 $\hat{Y} = \sum_{i=1}^{n} u_i u_i^T Y$

Regularized methods:

PCR:
$$\mathbf{X}_{c} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$$
 $\widehat{Y} = \sum_{i=1}^{k} \mathbf{u}_{i}\mathbf{u}_{i}^{T}\mathbf{Y}$, $k \leq n$

Ridge:
$$\mathbf{X} = \mathbf{U} \mathbf{D} \mathbf{V}^{\mathsf{T}}$$
 $\widehat{Y} = \sum_{i=1}^{n} \frac{D_{ii}^2}{D_{ii}^2 + \gamma} \mathbf{u}_i \mathbf{u}_i^T \mathbf{Y}$

Ridge shrinks *all* the singular vectors, and keeps all. PCR chooses the k "largest" singular vectors.

Ridge Shrinkage

Ridge:
$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T}$$
 $\widehat{Y} = \sum_{i=1}^n \frac{D_{ii}^2}{D_{ii}^2 + \gamma} \mathbf{u}_i \mathbf{u}_i^T \mathbf{Y}$

Which eigenvectors of **XX**^T does Ridge shrink the most (by % of original, for fixed gamma)?

- (a)Largest eigenvalues
- (b)Smallest eigenvalues
- (C) All the same

Ridge Shrinkage Example

Suppose X, Y have a unique OLS solution.

Suppose $X = UDV^T$ and the nonzero singular values are 5, 4, 3, 2, and 1.

- What are the nonzero eigenvalues of XX^T?
- When constructing the hat matrix, how are these eigenvalues shrunk by PCR?
- When constructing the hat matrix, how are these eigenvalues shrunk by Ridge?

Canonical Covariance Analysis

If Y is high-dimensional, we might want to do dimension reduction for both Y and X.

Canonical covariance analysis finds the projection directions for both X and Y to maximize their covariance.

or to best reconstruct X from Y and to reconstruct Y for X

(Comparison: PCA finds the projection directions of maximum covariance for X with itself.)

This is one type of Partial Least Squares (PLS), which find projections of x that explain all the y's.

PLS

Finds the projection directions of maximum covariance for **X** and **Y**.

Project **X**_c down to **T**. Project **Y**_c down to **U T** and **U** are k-dimensional bases for **X** and **Y**, respectively

"Inner model": regress **U** on **T**One scalar regression weight per pair **u**_i, **v**_i.

Final model: to predict **Y** from **X**Project each new **x** down into **T**-space

Predict **u**'s based on **t**'s (inner model)

Project each **u** up to each final **y-hat**.

*PLS can refer to many similar algorithms.

Canonical Covariance Analysis (PLS)

Find reduced-dimension representations T (of X_c) and U (of Y_c) such that each pair of corresponding columns t_i , u_i are optimal in the following sense:

Let
$$w_i^*$$
, $v_i^* = \underset{w_i \in \mathbb{R}^p, v_i \in \mathbb{R}^m}{argmax} (X_c w_i)^T (Y_c v_i)$
 $w_i^T w_i = v_i^T v_i = 1$

Subject to: $(X_c w_i^*)^T (X_c w_j^*) = 0$ for all j < i.

Then:
$$t_i := X_c w_i^*$$
 and $u_i := Y_c v_i^*$

Canonical Covariance Analysis (PLS)

The first singular value a₁ of XTY has the interpretation

$$(a_1)^2 = \max_{|d|=|e|=1} d^T X^T Y e$$

For $\mathbf{w_1} = \mathbf{d}$ and $\mathbf{v_1} = \mathbf{e}$, this is what we've computed above. $\mathbf{w_1}$ is the first left singular vector of $\mathbf{X}^T\mathbf{Y}$. $\mathbf{v_1}$ is the first right singular vector of $\mathbf{X}^T\mathbf{Y}$.

More on PLS:

Hoskuldsson A, "PLS Regression Methods," J. Chemometerics, 1988

Abdi H, Partial Least Squares (PLS) Regression: https://www.utdallas.edu/~herve/Abdi-PLS-pretty.pdf

PCR and PLS Feature Scores

principal component regression uses...?

canonical covariance (PLS regression) uses...?

- (a) The X matrix only
- (b) The Y matrix only
- (c)Both the X and Y matrices

OLS vs PCR vs PLS

Suppose I have a data set with

p = 400 features, n = 100 observations

Then use:

- a) Ordinary least squares (OLS) regression
- b) Ridge regression
- c) Principal component regression (PCR)
- d) Partial least squares regression (PLS)

Find the projection directions of maximum *correlation* for **X** and **Y**.

In PLS we compute (X and Y are mean-centered):

$$w_i^*, v_i^* = \underset{|w_i|=1, |v_i|=1}{argmax} (Xw_i)^T (Yv_i)$$

In canonical correlation analysis (CCA), we compute:

$$w_i^*, v_i^* = \underset{|Xw_i|=1, |Yv_i|=1}{argmax} (Xw_i)^T (Yv_i)$$

$$w_i^*, v_i^* = \underset{|Xw_i|=1, |Yv_i|=1}{argmax} (Xw_i)^T (Yv_i)$$

This is equivalent to finding

$$w^*, v^* = \underset{w,v \in \mathbb{R}^n}{argmax} \frac{w^T X^T Y v}{(w^T X^T X w)^{1/2} (v^T Y^T Y v)^{1/2}}$$

Let $X = UDV^T$. We define: $X^{1/2} = UD^{1/2}V^T$

Then the desired w_i^* , v_i^* are the singular vectors of:

$$(X^TX)^{-1/2}X^TY(Y^TY)^{-1/2}$$

$$w_i^*, v_i^* = \underset{|Xw_i|=1, |Yv_i|=1}{argmax} (Xw_i)^T (Yv_i)$$

 w_i^* , v_i^* are the singular vectors of:

$$(X^TX)^{-1/2}X^TY(Y^TY)^{-1/2}$$

 $\mathbf{w_1}$ and $\mathbf{v_1}$ maximize the *correlation* between $\mathbf{X}\mathbf{w}$ and $\mathbf{Y}\mathbf{v}$.

 $\mathbf{w_2}$ and $\mathbf{v_2}$ do the same <u>and</u> are orthogonal to (respectively) $\mathbf{w_1}$ and $\mathbf{v_1}$. Etc.

More:

http://www.cs.toronto.edu/~jepson/csc420/notes/introSVD.pdf, http://www.ofai.at/~roman.rosipal/Papers/eig_booko4.pdf

Uses the singular vectors of: $(X^TX)^{-1/2}X^TY(Y^TY)^{-1/2}$

Correlation: re-scales the data, no units. Range -1 to 1.

Analog to auto-scaling: if X^TX is diagonal, then this divides each row of X^T by the corresponding diagonal element of $(X^TX)^{1/2}$.

In the general case where **X**^T**X** is not diagonal: this normalizes **X**^T by "removing" covariance.

"Whitens" the data.

PCA vs. CCA vs. PLS

 ${\bf Table \ 1.} \ {\bf Cost \ functions \ optimized \ by \ the \ different \ methods$

PCA	Maximize variance	$\frac{\mathbf{w}'\mathbf{S_{XX}w}}{\mathbf{w}'\mathbf{w}}$		
		$\mathbf{w}'\mathbf{S}_{\mathbf{XX}}\mathbf{w} \text{ s.t. } \ \mathbf{w}\ ^2 = 1$		
	Minimize residuals	$\ (\mathbf{I} - \mathbf{w}\mathbf{w}')\mathbf{X}\ _F^2$		
CCA	Maximize correlation	$\frac{\mathbf{w_{X}'}\mathbf{S_{XY}}\mathbf{w_{Y}}}{\sqrt{\mathbf{w_{X}'}\mathbf{S_{XX}}\mathbf{w_{X}}}\sqrt{\mathbf{w_{Y}'}\mathbf{S_{YY}}\mathbf{w_{Y}}}}$		
	Maximize fit	$\mathbf{w}_{\mathbf{X}}'\mathbf{S}_{\mathbf{XY}}\mathbf{w}_{\mathbf{Y}} \text{ s.t. } \ \mathbf{X}\mathbf{w}_{\mathbf{X}}\ ^2 = \ \mathbf{Y}\mathbf{w}_{\mathbf{Y}}\ ^2 = 1$		
	Minimize misfit	$\ \mathbf{w}_{\mathbf{X}}'\mathbf{X} - \mathbf{w}_{\mathbf{Y}}'\mathbf{Y}\ ^2 \text{ s.t. } \ \mathbf{X}\mathbf{w}_{\mathbf{X}}\ ^2 = \ \mathbf{Y}\mathbf{w}_{\mathbf{Y}}\ ^2 = 1$		
PLS	Maximize covariance	$\frac{\mathbf{w_X'}\mathbf{S_{XY}}\mathbf{w_Y}}{\sqrt{\mathbf{w_X'}\mathbf{w_X}}\sqrt{\mathbf{w_Y'}\mathbf{w_Y}}}$		
	Maximize fit	$\mathbf{w_X'}\mathbf{S_{XY}}\mathbf{w_Y} \text{ s.t. } \ \mathbf{w_X}\ ^2 = \ \mathbf{w_Y}\ ^2 = 1$		
	Minimize misfit	$\ \mathbf{w}_{\mathbf{X}}'\mathbf{X} - \mathbf{w}_{\mathbf{Y}}'\mathbf{Y}\ ^2 \text{ s.t. } \ \mathbf{w}_{\mathbf{X}}\ ^2 = \ \mathbf{w}_{\mathbf{Y}}\ ^2 = 1$		
				

Bie et al: http://www.ofai.at/~roman.rosipal/Papers/eig_book04.pdf

PCA, PLS, CCA, MLR

5.3 Relation to other linear subspace methods

Instead of the two eigenvalue equations in 4 we can formulate the problem in one single eigenvalue equation:

$$\mathbf{B}^{-1}\mathbf{A}\hat{\mathbf{w}} = \rho\hat{\mathbf{w}} \tag{11}$$

where

$$\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{C}_{xy} \\ \mathbf{C}_{yx} & \mathbf{0} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{C}_{xx} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{yy} \end{bmatrix} \quad \text{and} \quad \hat{\mathbf{w}} = \begin{pmatrix} \mu_x \hat{\mathbf{w}}_x \\ \mu_y \hat{\mathbf{w}}_y \end{pmatrix}. \tag{12}$$

Solving the eigenproblem in equation 11 with slightly different matrices will give solutions to *principal component analysis* (PCA), *partial least squares* (*PLS*) and multivariate linear regression (MLR). The matrices are listed in table 1.

	\mathbf{A}	В
PCA	\mathbf{C}_{xx}	I
PLS	$egin{pmatrix} egin{pmatrix} oldsymbol{0} & \mathbf{C}_{xy} \ \mathbf{C}_{yx} & oldsymbol{0} \end{pmatrix}$	$\begin{pmatrix} 0 & \mathbf{I} \end{pmatrix}$
CCA	$egin{pmatrix} egin{pmatrix} oldsymbol{0} & \mathbf{C}_{xy} \ \mathbf{C}_{yx} & oldsymbol{0} \end{pmatrix}$	$egin{pmatrix} \mathbf{C}_{xx} & 0 \\ 0 & \mathbf{C}_{yy} \end{pmatrix}$
MLR	$egin{pmatrix} egin{pmatrix} oldsymbol{0} & \mathbf{C}_{xy} \ \mathbf{C}_{yx} & oldsymbol{0} \end{pmatrix}$	$egin{pmatrix} \mathbf{C}_{xx} & 0 \\ 0 & \mathbf{I} \end{pmatrix}$

From: Borga, M. 2001. https:// www.cs.cmu.edu/~tom/ 10701_sp11/slides/ CCA_tutorial.pdf

Recap

- ◆ OLS: Finds the projection direction for which the x's are maximally correlated with the y's
- ◆ PCA: Finds projection directions of the x's with maximal covariance
 - SVD of X'X
- Principal Component Regression (PCR): Do PCA on X, and then OLS using PC features.
 - PCR zeros small eigenvectors; Ridge regression shrinks them all
- ◆ Canonical Covariance Analysis: Finds the projection directions of X and Y that maximize their *covariance*.
 - SVD of Y'X
 a form of Partial Least Squares (PLS)
- ◆ Canonical Correlation Analysis (CCA): Finds the projection directions of X and Y that maximize their *correlation*.
 - SVD of (X'X)-1/2X'Y(Y'Y)-1/2
 - The whitening makes it scale invariant

minimize reconstruction error and maximize variance/covariance