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Overview

¢ Ordinary Least Squares (OLS) Regression: Finds the projection
direction for which the x’s are maximally correlated with the y’s

¢ PCA: Finds projection directions of the x’s with maximal
covariance

¢ Principal Component Regression (PCR): Does PCA for
dimensionality reduction on X, and then OLS using PC features.
o Regularization with Ridge Regression vs. PCR.

¢ Canonical Covariance Analysis: Finds the projection directions of X
and Y that maximize their covariance.

o Related to Partial Least Squares (PLS)

¢ Canonical Correlation Analysis (CCA): Finds the projection
directions of X and Y that maximize their correlation.

¢ All use SVD to minimize reconstruction error or maximize
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Singular Value Decomposition

«+ Singular value decomposition of matrix X (n x p)
« X=UDVT

«+ U: orthogonal, UTU=I (n x n)
« Columns of U are the left singular vectors of X.

+ D: diagonal (n x p)
o Diagonal elements of D are the singular values of X.

« All non-negative; in decreasing order of magnitude down the
diagonal.

«+ V:orthogonal, V'V=I (p x p)

« Columns of V are the right singular vectors of X.
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Thin SVD

Singular value decomposition of X: X = UDVT

X D

1R

Let k =min(n,p). Then: X = Zf’=1 Diiui”iT

tHF

Since all u;, v; are unit vectors, the importance of the i'th
term in the sum is determined by the size of D;;.
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Singular Value Decomposition

X=UDVT, X"x =v(D"D)V"

The columnsv,,...v,of V are the eigenvectors of the covariance
matrix XTX. Hence we can write

p
XTX =) (D ) viv]
i=1

k
X = z Diiuiv{
i=1
k = min(n,p).

D;; are singular values of X, (D;; )# are eigenvalues of XTX
s —

From before:

'\ /
':\"‘rf‘\. w e

T B Lyle H Ungar, University of Pennsylvania



Principal Component Analysis

If Xis mean-centered, then PCA finds the directions

v; =argmax (Xw;)"(Xw))
Wl'E[Rp

T
wi Wi=1

suchthatv; is uncorrelated with v; for all j<i.

-
=

\ /’
g~ =6 Lyle H Ungar, University of Pennsylvania



Principal Component Analysis

X— X =UDVT=2ZVT
X is(nxp), Zis(nxp), Vis(pxp).

Z is the transformation of X into "PC space”
Column vector z; is the i'th PC score vector.
Column vector v; is the i'th PC direction or loading.

Since V is orthogonal, X_.V =ZVTV =Z, and therefore:
z; = XV =uDy

Hence z; is the projection of the row vectors of X_on the
(unit) direction v;, scaled by D;;.
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Principal Component Analysis

X—X =UDVT=2ZVT

P
XX, = Z(Dii ) vv;
i=1
"% Variance explained by the i'th principal component:”

(Dy; )?

=100 - =100 A/ 2 A
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PCA

True or false:
If X is any matrix, and X has singular value decomposition
X=UDVT

then the principal component scores for X are the columns of
Z = UD.

(@) True

(b) False

T
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PCA

If X is mean-centered, then PCA finds...?

(a) Eigenvectors of X™X

(b) Right singular vectors of X

(c) Projection directions of maximum covariance of X
(d) All of the above
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PCA: Reconstruction Problem

PCA can be viewed as an L, optimization, minimizing
distortion, the reconstruction error.

Z*V*=  argmin |X,—ZVT|p
ZeR"Xk yeRPXK,

T, _x5..
Vi Vj=0i;

Here we have constrained Z, V by dimension:

X_ is still (n x p).
Z is (n x k), with k<p.
Vis (p x k).
If k=p then the reconstruction is perfect. k<p, not.

R Lyle H Ungar, University of Pennsylvania



Sparse PCA

Apply L1-norm constraints to the PCA optimization problem to zero
out loadings. (Another variation: Lo-norm constraints.)

Similarto using an L1-norm penalty to zero out weights in penalized
linear regression.

Z*V*= argmin |X.—ZVT|g
ZeRn*xk yeRPXk,
vlij=6,;j
Subject to:
|vi|1 < for i = 1, ,k

1zily <c, fori=1,..,k

Improves interpretability of PCA: “which PC scores really matter?”
See Zhou, Hastie, and Tibshirani, 2006.
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PCR: Principal Component Regression

PCR has two steps:
1. Do a PCA for dimensionality reduction of X

2. Do OLS regression using the PC features, Z, usually with
feature selection.
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PCR: Principal Component Regression

X —X_=ZVT

The columns z_,...z, can be used as features in supervised
learning.

Ex: linear regression. Given training X and Y,

w* = argmin|Y — ZW|22
WERP

If k=p: result is the same as linear regression with X, Y
If k<p: this is a form of regularized linear regression

So is ridge regression! How are PCR and Ridge
fundamentally different?
e — e ).
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PCR: Principal Component Regression

X.=UDVT=2VT, w* = argmin|Y — ZW|22

wERP

When the solution is unique, we can use the normal
equation to write:

Y=Zw*=2Z"2)"1ZTy = uD(DTUTUD)DTUTY

n
Y =0UTY = z uu Y
i—1
UUT isthe (n x n) hat matrix.
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Ridge Regression in terms of SVD

X=UDVT, w* = argmin ( |[Y — Xwl|,> +ylw|?)
weRP

Cansolve: Y = Xw* = X(XTX +y)~1XTY
Y = UDVT(W[DTD +y(VTWVT)~vDTUTY

Y =ub(DTD +yI)~1DU'Y = UDUTY

A; here are singular

ﬁ values, not eigenvalues
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OLS vs. Ridge vs. PCR

OLS: X =UDVT Y=Y, uuyY

Reqgularized methods:

PCR: X.=UDVT Y =Y%,  uulyY, k<n
. T _Dji T
Ridge: X=UDV y=yn, D74y ——u;u; Y

Ridge shrinks all the singular vectors, and keeps all.

PCR chooses the k “largest” singular vectors
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Ridge Shrinkage

2

Ridge: X=UDVT V=", wuY

i=1
Du+y

Which eigenvectors of XXT does Ridge shrink the most
(by % of original, for fixed gamma)?

(a)Largest eigenvalues

(b)SmaIIest eigenvalues

(C)AII the same
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Ridge Shrinkage Example

Suppose X, Y have a unique OLS solution.

Suppose X = UDVT and the nonzero singular values are
5 4,3,2 and 1.

- What are the nonzero eigenvalues of XX™?

- When constructing the hat matrix, how are these
eigenvalues shrunk by PCR?

- When constructing the hat matrix, how are these
eigenvalues shrunk by Ridge?

-
7
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Canonical Covariance Analysis

If Y is high-dimensional, we might want to do dimension reduction for
both Y and X.

Canonical covariance analysis finds the projection directions for
both X and Y to maximize their covariance.

or to best reconstruct X from Y and to reconstruct Y for X

(Comparison: PCA finds the projection directions of maximum
covariance for X with itself.)

This is one type of Partial Least Squares (PLS), which find
projections of x that explain all the y’s.
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PLS

Finds the projection directions of maximum covariance for Xand Y.

Project X, down to T. Project Y, down to U
T and U are k-dimensional bases for X and Y, respectively

“Inner model”: regress Uon T
One scalar regression weight per pair u;, v;.

Final model: to predict Y from X
Project each new x down into T-space
Predict u’'s based on t's (inner model)
Project each u up to each final y-hat.

*PLS can refer to many similar algorithms.
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Sog S =S Lyle H Ungar, University of Pennsylvania



Canonical Covariance Analysis (PLS)

Find reduced-dimension representations T (of X.) and U (of
Y_) such that each pair of corresponding columns t;, v, are
optimal in the following sense:

Let w;, Ui* = argmax (chi)T(YCvi)
wiE]Rp,viE]R{m
T T

Subjectto: (X,w;)T(X.w;) =0 forall j<i.

Then: t;:=X.w;, and u;:=Y.v
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Canonical Covariance Analysis (PLS)

The first singular value a, of X'Y has the interpretation

2 _ T T
(aq) _|d|n=1|%fc=1d X'Ye

Forw,=d and v, =e, this is what we've computed above.
w, is the first left singular vector of XTY.
v, is the first right singular vector of XTY.

More on PLS:
Hoskuldsson A, “"PLS Regression Methods,” J. Chemometerics, 1988

Abdi H, Partial Least Squares (PLS) Regression:
https://www.utdallas.edu/~herve/Abdi-PLS-pretty.pdf

T
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PCR and PLS Feature Scores

principal component regression uses...?

canonical covariance (PLS regression) uses...?
(a)The X matrix only

(b)The Y matrix only
(c)Both the X and Y matrices
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a)
b)
)
d)

OLS vs PCR vs PLS

uppose | have a data set with

p = 400 features, n =100 observations

hen use:

Ordinary least squares (OLS) regression
Ridge regression

Principal component regression (PCR)
Partial least squares regression (PLS)

Y
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Canonical Correlation Analysis

Find the projection directions of maximum correlation for X
and Y.

In PLS we compute (X and Y are mean-centered):

wi, v = argmax Xw)'(Yv;)
lwil=1, |vi|=1

In canonical correlation analysis (CCA), we compute:

wi, v, = argmax (Xw)T(Yv;)
|le-|=1,|le-|=1

T
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Canonical Correlation Analysis

wi,vi = argmax (Xw)'(Yv;)
|1 Xwi|=1, |[Yv;|=1

This is equivalent to finding

. . wl XTYv
W R (WTXT Xw) /2 (uTYTYv)1/2

Let X = UDVT.We define: X1/2 = ypt/2yT

Then the desired w;’, v; are the singular vectors of:

(XTX)—l/ZxTy(YTy)—l/Z
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Canonical Correlation Analysis

wi, v = argmax (Xw)T(Yv;)
| Xw;|=1, |Yv;|=1

w;, v;" are the singular vectors of:
(XTx)—l/ZxTy(YTy)—l/Z

w, and v, maximize the correlation between Xw and Yv.

w, and v, do the same and are orthogonal to (respectively)
w, and v, . Etc.

More:

http://www.cs.toronto.edu/~jepson/csc420/notes/introSVD.pdf,
http://www.ofai.at/~roman.rosipal/Papers/eig_bookos.pdf
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Canonical Correlation Analysis

Uses the singular vectors of:  (XTX)~Y/2xTy(yTy)=1/2
Correlation: re-scales the data, no units. Range -1 to 1.

Analog to auto-scalin1g: if XX is diagonal, then this
divides each row of X' by the corresponding diagonal
element of (XTX)¥/>.

In the general case where X™X is not diagonal: this
normalizes XT by “removing” covariance.

“"Whitens” the data.
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PCA vs. CCA vs. PLS

Table 1. Cost functions optimized by the different methods

.. . w’S
Maximize variance s
PCA w'Sxxw s.t. |w|* =1
Minimize residuals (I —ww')X||%
.. . Wy Sxy Wy
Maximize correlation NN
CCA Maximize fit wiSxywy s.t. [|[Xwx|® = |[Ywy|? =1
Minimize misfit WX — wi Y||? s.t. [|[Xwx|]® = ||[Ywy|* =1
/
.. . Wy SXYwy
Maximize covariance NN
PLS Maximize fit Wi Sxywy s.t. [|[wx||* = |wy|*=1
Minimize misfit |[wi X — wi Y% s.t. ||lwx||* = ||lwy|* =1

Bie et al: http://www.ofai.at/~roman.rosipal/Papers/eig_book04.pdf
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PCA, PLS, CCA, MLR

5.3 Relation to other linear subspace methods

Instead of the two eigenvalue equations in 4 we can formulate the problem in one
single eigenvalue equation:

B AW = pWw (11)
where
o 0 Czy . Ciz 0 A ﬂzwm

Solving the eigenproblem in equation 11 with slightly different matrices will
give solutions to principal component analysis (PCA), partial least squares (PLS)
and multivariate linear regression (MLR). The matrices are listed in table 1.

A B
PCA C.. I
0 G, I O
PLS Y
From: Borga, M. 2001. (Cyz 0 ) (0 I)
https://
www.cs.cmu.gdu/~tom/ CCA 0 C,y C,. O
10701_sp11/slides/ Cp O o C,
CCA_tutorial.pdf
0 C, C.. 0
x| (e, ) | ()

T

Table 1: The matrices A and B for PCA, PLS, CCA and MLR.
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Recap

¢ OLS: Finds the projection direction for which the x’s are maximally
correlated with the y's
¢ PCA: Finds projection directions of the x’s with maximal covariance
o SVD of X'X
¢ Principal Component Regression (PCR): Do PCA on X, and then
OLS using PC features.
o PCR zeros small eigenvectors; Ridge regression shrinks them all

¢ Canonical Covariance Analysis: Finds the projection directions of X
and Y that maximize their covariance.

o SVDof Y'X a form of Partial Least Squares (PLS)

¢ Canonical Correlation Analysis (CCA): Finds the projection
directions of X and Y that maximize their correlation.
o SVDof (XX)"2XY(Y'Y)!"2
‘ o The whitening makes it scale invariant
= -Alminimize reconstruetion errer-andymaximize variance/covariance




