Generalized Linear Models (GLM) and Radial Basis Functions (RBF)

Lyle Ungar

Computer and information Science

Learning Objectives

Extend linear regression with link functions, basis functions Know RBF algorithm and its uses

Generalized linear models (GLM)

•Linear Model: $\hat{y}(x) = \sum_{i=1}^{p} w_i x_i$

•GLM with link fn f(): $\hat{y}(x) = f(\sum_{j=1}^{p} w_j x_j)$

•Basis transformation: $\hat{y}(x) = \sum_{j=1}^{d} w_j \phi_j(x)$

Based on slide by Geoff Hinton

Link functions

- Link function $\hat{y} = f(w^T x)$
 - $f(x) = e^x$
 - f(x) = log(x)
- Equivalent to $f^{-1}(\hat{y}(\mathbf{x})) = \mathbf{w}^T \mathbf{x}$

◆ Typically, φ₀(x) = 1 so that θ₀ w₀ acts as a bias
◆ In the simplest case, we use linear basis functions φ_j(x) = x_j
◆ Could use polynomials or Gaussians

Based on slide by Christopher Bishop (PRML)

Linear Basis Function Models

Polynomial basis functions

 $\phi_j(x) = x^j$

- Global - mostly crappy

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2} - \text{Local} - \text{good!}\right\}$$

Based on slide by Christopher Bishop (PRML)

Fitting a Polynomial Curve with a Linear Model

Radial Basis Functions

Originally by Andrew Moore; now heavily edited by Lyle Ungar http://www.it.uu.se/research/project/rbf/rbf.png

Radial Basis Functions (RBFs)

$$\hat{y} = w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x)$$

where

 $\phi_i(x) = k(||x - \mu_j|| / C)$

For RBF: $k_{i} || x - \mu_{j} || / C) = exp\{-||x - \mu_{j}||_{2}^{2} / C\}$ C = "Kernel Width"

k = kernel function

$$\hat{y} = 2\phi_1(x) + 0.05\phi_2(x) + 0.5\phi_3(x)$$

where

 $\phi_j(x) = k(||x - \mu_j|| / C)$

Radial Basis Functions in 2-d

Too small Even before seeing the data, you should understand that this is a disaster!

So what do we do?

Search to find the optimal size "width" for the Gaussians (on a test set, of course!)

RBFs can do ...

Use d

- Dimensionality reduction
- Good for high dimensional feature spaces

Use d > p basis vectors

- Increases the dimensionality
- Can make a formerly nonlinear problem linear

Use d = n basis vectors

• We can use this to switch to a *dual* representation

How to find the kernel centers?

Pick random points

- Generally a bad idea
- Standard RBF: do k-means clustering and use the centers of the clusters
 - Works great!

Use all n of the training data points as kernel centers

- Requires regularization
- Estimate them: nonlinear regression
 - A good initialization helps

What you should know

- Link functions give a nonlinear regression
- Basis functions allow one to fit a nonlinear function using linear regression
- ♦ RBF
 - Cluster points
 - Put a Gaussian basic function at each cluster center
 - Pick the Gaussian width
 - Fit a linear regression

How is my speed?

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app