
Hidden Markov Models

Slides mostly from Mitch Marcus and Eric Fosler
(with lots of modifications).

Have you seen HMMs?
Have you seen dynamic programming?
Have you seen Kalman filters or linear dynamical systems?
Have you see LSTMs?



HMMs are dynamic latent variable models
• Given a sequence of sounds, find the sequence of 

words most likely to have produced them
• Given a sequence of images find the sequence of 

locations most likely to have produced them.
• Given a sequence of words, find the sequence of 

“meanings” most likely to have generated them
• Or parts of speech

—Noun, verb, adverb, …
• Or entity type

—Person, place, company, date, movie
– E.g. river bank vs. money bank
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s1 è s3 ès3 ès4ès5
|        |        |        |      |
o1 o2 o3 o4    o5
Bob went  to     the  bank 



Conditional Independence

• If we want the joint probability of an entire 
sequence, the Markov assumption lets us treat it 
as a product of “bigram” conditional probabilities:
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p(w1,w2,w3,w4) = 

p(w1) p(w2|w1) p(w3|w2,w1) p(w4|w3,w2,w1) ~

p(w1) p(w2|w1) p(w3|w2)       p(w4|w3)



A Markovian weather model:

• Tomorrow is like today, except when it isn’t.

• Markov matrix gives
p(tomorrow’s weather | today’s weather) 
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If you start from any prior distribution over 
states (weathers) and run long enough 
you converge to a stationary distribution.



The same model expressed as a graph
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Imperfect Knowledge
But sometimes we can only observe a process “as through 
a glass darkly.” We don’t get to see what is really 
happening, but only some clues that are more or less 
strongly indicative of what might be happening.

So you’re bucking for partner in a windowless law office and 
you don’t see the weather for days at a time … But you do see 
whether your office mate  (who has an actual life) brings in an 
umbrella or not:
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How to make predictions?

Now you’re bored with researching briefs,
and you want to guess the weather
from a sequence of umbrella (non)sightings:

P(w1, w2, …wn | u1, …, un)

How to do it?

You observe u, but not w.

w is the “hidden” part of the 
“Hidden Markov Model”

In speech recognition, we will observe the 
sounds, but not the intended words



Bayes rule rules!
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Bayes’ Rule!



A Rainy-Day Example
• You go into the office Sunday morning and it’s sunny.

• w1 = Sunny

• You work through the night on Sunday, and on Monday 
morning, your officemate comes in with an umbrella.

• u2 = T

• What’s the probability that Monday is rainy?
• P(w2=Rainy | w1=Sunny, u2=T) =

P(u2=T|w2=Rainy)/P(u2=T| w1=Sunny) x P(w2=Rainy| w1=Sunny) 
(likelihood of umbrella)/normalization  x   prior
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Bayes rule for speech 
• To find the most likely word 

• Start with a prior of how likely each word is
• And the likelihood of each set of sounds given the word

• The most likely word is the one most likely to have 
generated the sounds heard

The “fundamental equation of speech recognition”:

argmaxw P(w|u) = argmaxw P(u|w) P(w) / P(u)

w = word,  u = sound (“utterance”)



Speech Recognition

• Markov model for words in a sentence
P(I like cabbages) = P(I|START)P(like|I)P(cabbages|like)

• Markov model for sounds in a word
• Model the relation of words to sounds by breaking words 

down into pieces
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HMMs can also extract meaning
• Natural language is ambiguous

—�Banks banks in banks on banks.�
• Sequence of hidden states are the �meanings� (what the 

word refers to) and words are the percepts
• The (Markov) Language Model says how likely each 

meaning is to follow other meanings
• All meanings of �banks� may produce the same percept
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HMMs: Midpoint Summary
• Language can be modeled by HMMs

• Predict words from sounds
• Captures priors on words
• Hierarchical

—Phonemes to morphemes to words to phrases to sentences
• Was used in all commercial speech recognition software

— Now replaced by deep networks 

• Markov assumption, HMM definition
• “Fundamental equation of speech recognition”
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Hidden Markov Models (HMMs)

Part of Speech tagging is often done using HMMs 
Viewed graphically:
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HMM: The Model
• Starts in some initial state si

• Moves to a new state sj with probability p(sj |si) = aij

• The matrix A with elements aij is called the Markov transition matrix

• Emits an observation ov (e.g. a word, w) with probability 
p(ov |si) = biv
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A HMM is a dynamic Bayesian Network
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There is a node for the hidden state and for the emission 
(observed state) at each time step, but the probability tables 
are the same at all times.

A
B

A: Markov transition matrix
B: Emission probabilities

A AA
B B B



Recognition using an HMM
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So we need to find

Transitions        Emissions

Note that the ‘tags’ t are the 
hidden states (s) and the words 
w are the emissions (o)



Parameters of an HMM
• States: A set of states S = s1,…,sk

• Markov transition probabilities: A = a1,1,a1,2,…,ak,k
Each ai,j = p(sj | si) represents the probability of 
transitioning from state si to sj.

• Emission probabilities: A set B of functions of the 
form bi(ot) = p(o|si) giving the probability of 
observation ot being emitted by si

• Initial state distribution:     is the probability that 
si is a start state
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π i



The Three Basic HMM Problems

• Problem 1 (Evaluation): Given the 
observation sequence O=o1,…,oT and an HMM 
model                       , compute the probability 
of O given the model.

• Problem 2 (Decoding): Given the observation 
sequence O=o1,…,oT and an HMM model 

, find the state sequence that 
best explains the observations
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€ 

λ = (A,B,π )

€ 

λ = (A,B,π )

(This and following slides follow classic formulation by Rabiner and 
Juang, as adapted by Manning and Schutze.  Slides adapted from Dorr.)



The Three Basic HMM Problems

• Problem 3 (Learning): Pick the model 
parameters                       to maximize                   
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€ 

λ = (A,B,π )

€ 

P(O | λ)



Problem 1: Probability of an Observation Sequence

• What is                ?
• The probability of a observation sequence is the sum 

of the probabilities of all possible state sequences in 
the HMM.

• Naïve computation is very expensive. Given T 
observations and k states, there are kT possible state 
sequences.

• Even small HMMs, e.g. T=10 and  k=10, contain 10 
billion different paths

• The solution: use dynamic programming
• Once you are in a state it doesn’t matter how you got there
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€ 

P(O | λ)



The Trellis (for a 4 state model)
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Forward Probabilities
• What is the probability that, given an HMM    , 

at time t the state is si and the partial 
observation o1 … ot has been generated?
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€ 

α t (i) = P(o1...ot , qt = si | λ)€ 

λ



Forward Probabilities
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αt ( j) = αt−1(i)aij
i=1

k

∑
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'
( bj (ot )
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α t (i) = P(o1...ot , qt = si | λ)

Note: summation is over the k hidden states

N should be k; sorry!

k



Forward Algorithm
• Initialization:

• Induction: 

• Termination:
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αt ( j) = αt−1(i)aij
i=1
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α1(i) = π ibi (o1) 1≤ i ≤ k

P(O | λ) = αT (i)
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Forward Algorithm Complexity
• Naïve approach takes O(2T*kT) computation
• Forward algorithm using dynamic programming 

takes O(k2T) computations
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Backward Probabilities
• What is the probability that 

• given an HMM                        and 
• given the state at time t is si, 
• the partial observation ot+1 … oT is generated? 

• Analogous to forward probability, just in the 
other direction
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βt (i) = P(ot+1...oT |qt = si,λ)

€ 

λ = (A,B,π )



Backward Probabilities
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βt (i) = aijbj (ot+1)βt+1( j)
j=1
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βt (i) = P(ot+1...oT |qt = si,λ)

N should be k; sorry!



Backward Algorithm
• Initialization:

• Induction:

• Termination:  
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βT (i) =1, 1≤ i ≤ k

βt (i) = aijbj (ot+1)βt+1( j)
j=1
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Problem 2: Decoding 
• The forward algorithm gives the sum of all paths 

through an HMM efficiently.
• Here, we want to find the highest probability path.
• We want to find the state sequence Q=q1…qT, such that

30
€ 

Q = argmax
Q '

P(Q' |O,λ)



Viterbi Algorithm
• Similar to computing the forward probabilities, but 

instead of summing over transitions from 
incoming states, compute the maximum

• Forward:

• Viterbi Recursion:

31

αt ( j) = αt−1(i)aij
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Core Idea of Viterbi Algorithm
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Viterbi Algorithm
• Initialization:
• Induction: 

• Termination:

• Read out path: 
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δ1(i) = π ibi (o1) 1≤ i ≤ k

δt ( j) = max
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qt
* =ψt+1(qt+1

* ) t = T −1,...,1



Problem 3: Learning
• Up to now we’ve assumed that we know the 

underlying model 

• Often these parameters are estimated on 
annotated training data (i.e. with known 
‘hidden state’)
• But of course, such labels are often lacking

• We want to maximize the parameters with 
respect to the current data, i.e., find a model     
, such that
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λ = (A,B,π )
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λ

P(O | λ)



Problem 3: Learning
• Unfortunately, there is no known way to 

analytically find a global maximum, i.e., a 
model     , such that

• But it is possible to find a local maximum 

• Given an initial model    , we can always find a 
model    , such that 
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λ'

€ 

λ'= argmax
λ

P(O | λ)
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λ
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P(O | λ') ≥ P(O | λ)



Forward-Backward (Baum-Welch) algorithm
• EM algorithm

• Find the forward and backward probabilities for 
the current parameters

• Re-estimate the model parameters given the 
estimated probabilities

• Repeat
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Parameter Re-estimation
• Three parameters need to be re-estimated:

• Initial state distribution: 
• Transition probabilities:  ai,j

• Emission probabilities:   bi(ot)
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Re-estimating Transition Probabilities
• What’s the probability of being in state si at time t

and going to state sj, given the current model and 
parameters?
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€ 

ξ t (i, j) = P(qt = si, qt+1 = s j |O,λ)



Re-estimating Transition Probabilities
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ξt (i, j) =
αt (i) ai, j bj (ot+1) βt+1( j)

αt (i) ai, j bj (ot+1) βt+1( j)
j=1
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ξ t (i, j) = P(qt = si, qt+1 = s j |O,λ)



Re-estimating Transition Probabilities

• The intuition behind the re-estimation 
equation for transition probabilities is

• Formally:
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j,i  s statefrom stransition of number expected
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ξt (i, j)
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Re-estimating Transition Probabilities
• Defining

As the probability of being in state si, given the 
complete observation O

• We can say:
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ˆ a i, j =

ξ t (i, j)
t=1

T−1

∑

γ t (i)
t=1

T−1

∑

γ t (i) = ξt (i, j)
j=1

k

∑



Re-estimating Initial State Probabilities

• Initial state distribution:     is the probability 
that si is a start state

• Re-estimation is easy:

• Formally:
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ˆ π i = γ1(i)



Re-estimation of Emission Probabilities

• Emission probabilities are re-estimated as

• Formally:

where
• Note that     here is the Kronecker delta function and 

is not related to the     in the discussion of the Viterbi 
algorithm!!
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The Updated Model
• Coming from                         we get to               

by the following update rules:
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HMM vs CRF
• HMMs are generative models

• They model the full probability distribution

• Conditional Random Fields are discriminative
• Similar to HMMs, but only model the probability of labels 

given the data
• Generally give more accurate predictions
• A bit harder to code

—But good open source versions are available
• Very popular in the research world (until deep nets arrived)
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What you should know
• HMMs

• Markov assumption

• Markov transition matrix, Emission probabilities
• Viterbi decoding (just well enough to do the homework)

• Many other models generalize HMM
• Emission can be a real valued (e.g. Gaussian) function of 

the hidden state

• The hidden state can be a real valued vector instead of a 
“one hot” discrete state

—Instead of moving with a Markov Transition Matrix between 
states, one moves with Gaussian noise between real states

• Nonlinear versions give dynamical neural nets
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