Minimum Description Length (MDL)

Lyle Ungar

AIC – Akaike Information Criterion
BIC – Bayesian Information Criterion
RIC – Risk Inflation Criterion
MDL

- Sender and receiver both know X
- Want to send y using minimum number of bits
- Send y in two parts
 - Code (the model)
 - Residual (training error = “in-sample error”)
- Decision tree
 - Code = the tree
 - Residual = the misclassifications
- Linear regression
 - Code = the weights
 - Residual = prediction errors

The MDL model is of optimal complexity

Trades off bias and variance
Complexity of a decision tree

- Need to code the structure of the tree and the values on the leaves

Homework!
Complexity of Classification Error

- Have two sequences y, \hat{y}
 - Code the difference between them
 - $Y' = (0, 1, 1, 0, 1, 1, 1, 0, 0)$
 - $\hat{Y}' = (0, 0, 1, 1, 1, 1, 1, 0, 0)$
 - $Y' - \hat{Y}' = (0, 1, 0, -1, 0, 0, 0, 0, 0)$

- How to code the differences?

- How many bits would the best possible code take?

Homework!
MDL for linear regression

- Need to code the model
 - For example
 - \(y = 3.1x_1 + 97.2x_{321} - 17.4x_{5204} \)
 - Two part code for model
 - Which features are in the model
 - Coefficients for those features

- Need to code the residual
 - \(\sum_i (y_i - \hat{y}_i)^2 \)

- How to code a real number?
 - Class exercise

How to code which features are in the model?
How to code the feature values?
Complexity of a real number

- A real number could require infinite number of bits
- So we need to decide what accuracy to code it to
 - Code sum of square error (SSE) to the accuracy given by the irreducible variance (bits $\sim 1/\sigma^2$)
 - Code each w_i to its accuracy (bits $\sim n^{1/2}$)
- We know that y and w_i are both normally distributed
 - $y \sim N(x \cdot w, \sigma^2)$
 - $w_{j}^{\text{est}} \sim N(w_j, \sigma^2/n)$
- Code a real value by dividing it into regions of equal probability mass
 - Optimal coding length is given by entropy
 $= \int p(y) \log(p(y)) \, dy$
MDL regression penalty

Code the residual / data loglikelihood

\[- \log(\text{likelihood}) = - \log(\prod_i p(y_i|x_i)) \sim \text{Err}/ 2\sigma^2\]

Code the model

for each feature: is it in the model?
If it is included, what is its coefficient?
MDL regression penalty

Minimize
\[\text{Err}_q / 2\sigma^2 + \lambda |w|_0 \]

Penalty \[\lambda = - \log(\pi) + (1/2) \log(n) \]

Code each feature presence using \(-\log(\pi)\) bits/feature
\[\pi = q/p \] assume \(q << p\), so \(\log(1-\pi)\) is near 0
if \(q=1\), then \(-\log(\pi) = \log(p)\)

Code each coefficient with accuracy proportional to \(n^{1/2}\)
\[(1/2) \log(n) \] bits/feature
\[n \text{ observations} \quad q = |w|_0 \text{ actual features} \]
\[p \text{ potential features} \]
Entropy of features being present or absent:
\[\Sigma (-\pi \log(\pi) - (1-\pi)\log(1-\pi)) = \]
\[(-\pi \log(\pi) - (1-\pi)\log(1-\pi))p = \]
\[-q \log(\pi) - (p-q) \log (1-\pi) \]
If \(\pi << 1 \) then \(\log (1-\pi) \) is roughly 0
\[- q \log(\pi) \] - is the cost of coding the \(q \) features
So each feature costs \(\log(\pi) \) bits

\[\pi = q/p \] probability of a feature being selected
\(n \) observations \(q = |w|_0 \) actual features
\(p \) potential features
Regression penalty methods

Minimize
\[\text{Err}_q / 2 \sigma^2 + \lambda |w|_0 \]

L\(_0\) penalty on coefficients
SSE with the \(|w|_0 = q\) features

<table>
<thead>
<tr>
<th>Method</th>
<th>penalty ((\lambda))</th>
<th>Code for coefficient and feature presence/absence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>1</td>
<td>code coefficient using 1 bit</td>
</tr>
<tr>
<td>BIC</td>
<td>((1/2) \log(n))</td>
<td>code coefficient using (n^{1/2}) bits</td>
</tr>
<tr>
<td>RIC</td>
<td>(\log(p))</td>
<td>code feature presence/absence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>assume one feature will come in</td>
</tr>
</tbody>
</table>

\(n\) observations, \(p\) potential features,

How do you estimate \(\sigma^2\)?
Regression penalty methods

◆ Which penalty should you use if

- You expect 10 out of 100,000 features, $n = 100$
- You expect 200 out of 1,000 features, $n = 1,000,000$
- You expect 500 out of 1,000 features, $n = 1,000$

Minimize

$$ Err_q / 2\sigma^2 + \lambda |w|_0 $$

Method penalty (λ)

A) AIC 1 code coefficient using 1 bit
B) BIC $(1/2) \log(n)$ code coefficient using $n^{1/2}$ bits
C) RIC $\log(p)$ code feature presence/absence
Mallows’ C_p, AIC as MDL

\[\text{Err}/2\sigma^2 + q \]

- **Mallows’ C_p**
 \[C_p = \frac{\text{Err}_q}{\sigma^2} + 2q - n \]

- **AIC**
 \[\text{AIC} = -2 \log(\text{likelihood}) + 2q \]
 \[= -2 \log(\prod (1/\sqrt{2\pi}\sigma) \exp(-\text{Err}_q/2\sigma^2)) + 2q \]

But the best estimate we have is $\sigma^2 = \frac{\text{Err}_q}{n}$

\[\text{AIC} \sim 2n \log\left(\frac{\text{Err}_q}{n}\right)^{1/2} - 2 \log \exp(-\frac{\text{Err}_q}{2\text{Err}_q/n}) + 2q \]
\[\sim n \log(\frac{\text{Err}_q}{n}) + 2q \]

\[q = |w|_0 \quad \text{features in the model} \]

n doesn’t effect maximization
BIC is MDL (as n goes to infinity)

\[
\text{Err}/ 2\sigma^2 + (1/2) \log(n) \ q
\]

\[\text{BIC} \]

\[-2 \log(\text{likelihood}) + 2 \log(\sqrt{n}) \ q \]

\[= n \log(\text{Err}_q/n) + \log(n) \ q \]

using the exact same derivation as before.

\[q = |w|_0 \] features in the model
Why does MDL work?

- We want to tune model complexity
 - How many bits should we use to code the model?
- Minimize

 Test error = training error + penalty

 = bias + variance

 - Training error = bias = bits to code residual
 - $\Sigma_i (y_i - \hat{y}_i)^2 / 2\sigma^2 = - p(y|X) \log p(y|X)$
 - Penalty = variance = bits to code the model

Ignoring irreducible uncertainty
What you should know

- **How to code (in the info-theory sense)**
 - decision trees, regression models,
 - classification and prediction errors

- **AIC, BIC and RIC**
 - Assumptions behind them
 - Why they are useful

You think maybe 10 out of 100,000 features will be significant. Use

A) L_2 with CV
B) L_1 with CV
C) L_0 with AIC
D) L_0 with BIC
E) L_0 with RIC

You think maybe 500 out of 1,000 features will be significant. Do **not** use

A) L_2 with CV
B) L_1 with CV
C) L_0 with AIC
D) L_0 with BIC
E) L_0 with RIC
Regression penalty methods

Minimize

\[\text{Err/ } 2\sigma^2 + \lambda |w|_0 \]

Is this error

A) \(\sum_i (y_i - \hat{y}_i)^2 \)

B) \((1/n) \sum_i (y_i - \hat{y}_i)^2 \)

C) \(\sqrt{((1/n) \sum_i (y_i - \hat{y}_i)^2)} \)

D) something else

Where does the \(2\sigma^2 \) come from?
Bonus: p-values

◆ P-value: the probability of getting a false positive
If I check 1,000 univariate correlations between x_j and some y, and accept those with $p < 0.01$

I should expect roughly ___ false positives

A) 0
B) 1
C) 10
D) 100
E) 1,000

How would you ‘fix’ this?
Bonus: p-values

- **Bonferroni**
 - require a p-value to be p times smaller
 - p-value $< 0.01(1/p)$

- **Simes: sequential feature selection**
 - Sort features by their p-values
 - For the first feature to be accepted, use Bonferroni
 - p-value $< 0.01(1/p)$ -- if nothing passes, then stop
 - If it is accepted, the p-value for the second feature is:
 - p-value $< 0.01(2/p)$ -- if nothing passes, then stop
 - If it is accepted, the p-value for the third feature is:
 - p-value $< 0.01(3/p)$
 - ...

$p = \text{number of features}$

$1/p = \text{prior probability}$