

Lyle Ungar

Learning objectives

PCA as change of basis PCA minimizes reconstruction error PCA maximizes variance PCA relation to eigenvalues/vectors

PCR: PCA for feature creation

Based in part on slides by Jia Li (PSU) and Barry Slaff (Upenn)

PCA

 Express a vector x in terms of coefficients on an (orthogonal) basis vector (eigenvectors v_k)

 $\mathbf{x}_i = \boldsymbol{\Sigma}_k \ \boldsymbol{z}_{ik} \mathbf{v}_k$

• We can describe how well we approximate x in terms of the eigenvalues

PCA is used for dimensionality reduction

- visualization
- semi-supervised learning
- eigenfaces, eigenwords, eigengrasp

PCA

PCA can be viewed as

- minimizing distortion $\|\mathbf{x}_i \boldsymbol{\Sigma}_k \boldsymbol{z}_{ik} \mathbf{v}_k\|_2$
- A rotation to a new coordinate system to maximize the variance in the new coordinates

Generally done by mean centering first

• You may or may not want to standardize

Nomenclature

X = **ZV**'

- ◆ Z (n x k)
 - principal component scores
- ◆ V (p x k)
 - Loadings
 - Principal component coefficients
 - Principal components

PCA minimizes Distortion

• First subtract off the average x from all the x_i

• From here, we'll assume this has been done

• Approximate x in terms of an orthonormal basis v

• $\widehat{\boldsymbol{x}}_i = \boldsymbol{\Sigma}_k \ \boldsymbol{z}_{ik} \ \boldsymbol{v}_k$ or $\boldsymbol{X} = \boldsymbol{Z} \boldsymbol{V}^T$

Distortion

$$\sum_{i=1}^{n} ||\mathbf{x}^{i} - \mathbf{\hat{x}}^{i}||_{2}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{j}^{i} - \hat{x}_{j}^{i})^{2}$$

PCA minimizes distortion

Distortion_k :
$$\sum_{i=1}^{n} \sum_{j=k+1}^{m} \mathbf{u}_{j}^{\mathsf{T}} (\mathbf{x}^{i} - \overline{\mathbf{x}}) (\mathbf{x}^{i} - \overline{\mathbf{x}})^{\mathsf{T}} \mathbf{u}_{j}$$

$$= \sum_{j=k+1}^{m} \mathbf{u}_{j}^{\mathsf{T}} \left(\sum_{i=1}^{n} (\mathbf{x}^{i} - \overline{\mathbf{x}}) (\mathbf{x}^{i} - \overline{\mathbf{x}})^{\mathsf{T}} \right) \mathbf{u}_{j}$$

$$= n \sum_{j=k+1}^{m} \mathbf{u}_{j}^{\mathsf{T}} \Sigma \mathbf{u}_{j} = n \sum_{j=k+1}^{m} \lambda_{j}$$

See the course wiki!

PCA maximizes variance

$$\begin{aligned} \mathbf{Variance}_k &: \sum_{i=1}^n \sum_{j=1}^k (\mathbf{u}_j^\top \mathbf{x}^i - \mathbf{u}_j^\top \overline{\mathbf{x}})^2 \\ &= \sum_{j=1}^k \mathbf{u}_j^\top \left(\sum_{i=1}^n (\mathbf{x}^i - \overline{\mathbf{x}}) (\mathbf{x}^i - \overline{\mathbf{x}})^\top \right) \mathbf{u}_j \\ &= n \sum_{j=1}^k \mathbf{u}_j^\top \Sigma \mathbf{u}_j. \end{aligned}$$

See the course wiki!

$$\hat{\mathbf{x}}^i = \mathbf{x}^i = \overline{\mathbf{x}} + \sum_{j=1}^m z_j^i \mathbf{u}_j$$

Variance_k + **Distortion**_k = $n \sum_{j=1}^{m} \lambda_j$

See the course wiki!

Principal Component Analysis

 $X \rightarrow X_c = UDV^T = ZV^T$ X_c is (n x p), Z is (n x p), V is (p x p).

Z is the transformation of **X** into "PC space" Column vector z_i is the i'th *PC score vector*. Column vector v_i is the i'th *PC direction* or *loading*.

Since V is orthogonal, $X_c V = ZV^T V = Z$, and therefore:

$$\boldsymbol{z}_i = \boldsymbol{X}_c \boldsymbol{v}_i = \boldsymbol{u}_i D_{ii}$$

Hence z_i is the projection of the row vectors of X_c on the (unit) direction v_i , scaled by D_{ii} .

Principal Component Analysis

 $X \to X_c = UDV^{T} = ZV^{T}$ $X_c^T X_c = \sum_{i=1}^{p} (D_{ii})^2 v_i v_i^T$

"% Variance explained by the i'th principal component:"

$$= 100 \cdot \frac{(D_{ii})^2}{\sum_{j=1}^{p} (D_{jj})^2} = 100 \lambda_j / \sum_j \lambda_j$$

Scree plot

https://en.wikipedia.org/ wiki/Scree plot

PCA

True or false:

If X is any matrix, and X has singular value decomposition $X = UDV^T$ then the principal component scores for X are the columns of

Z = UD

PCA

If X is mean-centered, then PCA finds...?

- (a) Eigenvectors of X^TX
- (b) Right singular vectors of X
- (c) Projection directions of maximum covariance of X
- (d) All of the above

PCA: Reconstruction Problem

PCA can be viewed as an L_2 optimization, minimizing distortion, the reconstruction error.

$$Z^*, V^* = \underset{\substack{Z \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{p \times k}, \\ v_i^T v_j = \delta_{ij}}}{\operatorname{argmin}} |X_c - ZV^T|_F$$

Here we have constrained **Z**, **V** by dimension:

 X_c is still (n x p). Z is (n x k), with k \leq p. V is (p x k). If k=p then the reconstruction is perfect. k<p, not.

PCA via SVD

♦ X = ZV' = UDV'

• X nxp U nxk D kxk V' kxp

♦ Z = UD - component scores or "factor scores"

• the transformed variable values corresponding to a particular data point

♦ V' - loadings

• the weight by which each standardized original variable should be multiplied to get the component score

PCA via SVD

- $\mathbf{x}_i = \sum_k z_{ik} \mathbf{v}_k$ • What is z_{ik} ?
 - $x_i = \Sigma_k u_{ik} d_{kk} v_k$

Sparse PCA

- ♦ argmin_{Z,V} ||X Z V'||₂
 - $\mathbf{v}_i \mathbf{v}_j = \delta_{ij}$ (orthonormality)
- with constraints
 - $||\mathbf{v}_i||_1 < c_1$ for i = 1...k
 - $||\mathbf{z}_i||_1 < c_2$ for i = 1...k
- or you can view this as a penalized regression using Lagrange multipliers
- ♦ or you can use an L₁ penalty

PCR: Principal Component Regression

PCR has two steps:

- 1. Do a PCA on X to get component scores Z
- 2. Do OLS regression using Z as features

y = **w**'**z**

PCR

♦ How to find z for a new x? X = ZV' XV = z V'V = z

V p x k V'V=I k x k x 1 x p z 1 x k

PCR: Principal Component Regression

 $X \rightarrow X_c = ZV^T$

The columns $\mathbf{z_1}$... $\mathbf{z_k}$ can be used as features in supervised learning.

Ex: linear regression. Given training X and Y,

 $w^* = \underset{w \in \mathbb{R}^p}{\operatorname{argmin}} |Y - Zw|_2^2$

If k=p: result is the *same* as linear regression with X, Y If k<p: this is a form of *regularized* linear regression

So is ridge regression! How are PCR and Ridge fundamentally different?

What you should know

- PCA as minimum reconstruction error ('distortion')
- PCA as finding direction of maximum covariance
- Sensitivity of PCA to standardizing
- Nomenclature: scores, coefficients/loadings
- Coming next: autoencoders, eigenfaces, eigenwords